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ABSTRACT

Approximate k-Nearest Neighbour (ANN) methods are commonly used for min-
ing information from big high-dimensional datasets. For each application the
high-level dataset properties and run-time requirements determine which method
will provide the most suitable tradeoffs. However, due to a significant lack of
comprehensive benchmarking, judicious method selection is not currently possi-
ble for ANN applications that involve frequent online changes to datasets. Here
we address this issue by building upon existing benchmarks for static search prob-
lems to provide a new benchmarking framework for big high dimensional dynamic
data. We apply our framework to dynamic scenarios modelled after common real
world applications. In all cases we are able to identify a suitable recall-runtime
tradeoff to improve upon a worst-case exhaustive search. Our framework pro-
vides a flexible solution to accelerate future ANN research and enable researchers
in other online data-rich domains to find suitable methods for handling their ANN
searches.1

1 INTRODUCTION

Approximate k-Nearest Neighbour (ANN) search is a widely applicable technique for tractably com-
puting local statistics over large datasets of high dimensional discrete samples (Beyer et al., 1999).
ANN methods achieve sub-linear search times by trading off search accuracy and runtime. ANN
methods are applied in many domains such as image retrieval, robotic localisation, cross-modal
search and other semantic searches (Prokhorenkova & Shekhovtsov, 2020). ANN search is well
suited to applications where an index structure can be precomputed over a static dataset to then
provide a suitable recall-runtime tradeoff.

Achieving an optimal tradeoff for specific dataset properties and application requirements relies on
hyperparameter tuning for each suitable ANN method. For instance, graph based indexes can be
tuned to achieve high search accuracy while quantisation methods are better suited to perform faster
searches with less exact results. In practice, when given a new dataset, there is a significant com-
putational cost to evaluate and select the best performing ANN method. Several ANN benchmarks
have been established to guide the selection and parameter tuning required for achieving tractable
searches (Aumüller et al., 2017; Matsui, 2020). However, current ANN benchmarks focus on static
search problems and cannot be used to inform if any ANN methods are suitable for tackling dynamic
search problems where the indexed dataset changes over time.

We observe that current ANN benchmarks do not generalise to dynamic search problems because
they perform index construction as an offline process that optimises for search performance on a
fixed dataset (Figure 1a). This fails to address the requirements of growing fields such as Ma-
chine Learning (ML) where there is a strong need for tractable k-nearest neighbour search on large
dynamic sets of high dimensional samples (Prokhorenkova & Shekhovtsov, 2020). For example,
local statistics can be extracted by computing neighbourhoods in an embedding space of a learning
process, but computing these neighbourhoods requires frequent evaluation of sample locations in
the highly dynamic embedding. Due to the lack of suitable ANN benchmarks, achieving tractable

1Code submitted in supplementary materials and will be available publicly on publication
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Figure 1: a) Existing ANN benchmarks evaluate performance using a single batch of searches per-
formed on a static index. b) Our framework generalises to dynamic search problems where batches
of index updates occur between batches of searches. Our benchmarks provide an improved model
for optimising ANN usage in online data collection and online feature learning.

search performance currently requires extensive evaluation and tuning on the already computation-
ally expensive and highly parameterised systems that could utilise dynamic ANN search. Here, we
address this gap and present a novel ANN benchmarking framework for dynamic search problems.
Unlike existing benchmarking of ANN search we include the computational costs of constructing
and maintaining an index structure throughout a dynamic process.

The main contributions of our work are as follows:

• We present a novel characterisation of the complexity and dynamic variations for ANN search on
big high dimensional (∼ 100 dimensions) dynamic datasets (Section 2). From this, we generate
benchmarks that model domain specific applications in two key categories of dynamic search
problems: online data collection and online feature learning (Figure 1b).

• We establish the baseline performance of five promising ANN methods using extended hyper-
parameter sets to better address the requirements of dynamic search problems (Section 5). We
discover that ANN methods such as ScaNN (Guo et al., 2020) and HNSW (Malkov & Yashunin,
2018) can outperform an exhaustive search despite online index overheads.

• We show that our benchmarking framework can successfully identify which ANN method is best
suited for a given dynamic search problem. Our framework generates the key tradeoffs for select-
ing a suitable ANN method and can be extended to additional dynamic search problems and for
future ANN research.

2 PROPOSED CATEGORISATION OF DYNAMIC SEARCH PROBLEMS

In this section, we identify two key categories of dynamic search problems based on their require-
ments: online data collection and online feature learning. We also identify key measures that char-
acterise specific instances of both static and dynamic search problems.

ANN search with online data collection or online feature learning requires online index construction
(Figure 1b). A major practical advantage of online index construction is that it allows for search
information to be fed back in a closed loop fashion. To categorise dynamic search problems, we
consider their requirements for online data collection or online feature learning. Autonomous navi-
gation, live internet services and generative learning methods are common examples of online data
collection that generate an increasing number of samples over time. An increase in the number of
indexed samples will directly increase the computational cost of performing searches. Within many
machine learning processes, the training of an embedding space is an example of online feature
learning. Updating model parameters during the learning process will update the embedded repre-
sentation of indexed samples. This update can affect local and global index structures and degrade
the performance of subsequent searches.

From a database perspective, we match online data collection and online feature learning with the
operations of adding new samples and updating existing samples respectively. Our benchmarks are
designed around each of these two operations in order to model the range of dynamic search prob-
lems we are interested in. The removal of samples is another fundamental database operation which
is often heuristically applied to maintain sample diversity while limiting the total sample count. Re-
moving samples can therefore be viewed as a heuristic that is providing a tractability tradeoff. In
this research we omit the remove operator to focus on benchmarking the baseline tractability from
ANN methods alone.
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In addition to categorising the types of dynamic search problems, we also identify key measures
that characterise specific instances of dynamic search problems. Table 1 provides an overview of
these measures. Each measure either needs to be specified when defining a benchmark or can be
used to evaluate the performance of ANN methods on that benchmark. We identify six measures
available to static benchmarking problems. Sample count and sample dimensionality are enough
to specify most static benchmarks and search accuracy and search runtime are the most common
performance evaluation measures. Initialisation time and memory footprint are less commonly used
for performance evaluation (Aumüller et al., 2017; Matsui, 2020).

Table 1: Key measures of high dimensional search problem characteristics that can be used for
specifying benchmarks and evaluating the performance of ANN methods. Dynamic search problems
require additional benchmark and evaluation measures that are not present in static search problems.

Specified by ANN Method Static Search Dynamic Search
Measure Benchmark Dependant Problems Problems

Sample count ✓ ✗ ✓ ✓
Sample dimensionality ✓ ✗ ✓ ✓
Initialisation time ✗ ✓ ✓ ✓
Memory footprint ✗ ✓ ✓ ✓
Event type ✓ ✓ ✗ ✓
Event processing time ✗ ✓ ✗ ✓
Event frequency ✓ ✗ ✗ ✓
Event batching ✓ ✗ ✗ ✓
Search accuracy ✗ ✓ ✓ ✓
Search runtime ✗ ✓ ✓ ✓
Search frequency ✓ ✗ ✗ ✓
Search batching ✓ ✗ ✗ ✓

We identify an additional six measures that apply to dynamic search problems, but not to static
ones. To specify a benchmark we include event type to select between add events in our online data
collection benchmarks and update events in our online feature learning benchmarks. To fully specify
the characteristics of a dynamic benchmark we propose the use of frequency and batching measures
for both events and searches. Event batching and search batching define the number of events or
searches that will be executed in a continuous block, then followed by a block of the other. Event
frequency and search frequency define how much time is available before another block of events
or searches will be available. Lastly, event processing time is an additional performance evaluation
measure where we capture the runtime cost of online index construction and updates.

The frequency of events and searches has a direct impact on the tradeoff between search accuracy
and search runtime. Given a fixed amount of computational resources we have a hard limit on the
maximum number of operations that can be performed in any period of time. Examples of these
changes include increasing the sensor speed on an autonomous vehicle and increasing the batch
gradient decent batch size of a closed loop learning pipeline. To avoid latency, the fixed budget of
compute operations must be divided between each of the events and searches processed during the
available time period. Increasing the frequency will then result in a reduced amount of compute for
processing the events and the searches. For dynamic search problems, we expect that less compute
per event will eventually degrade the index quality. Degraded index quality and less compute per
search will both ultimately result in lower search accuracy.

The batching of events and searches can also impact the search accuracy-runtime tradeoff in a less
direct way. For a fixed amount of compute in a given period of time, we now consider a fixed number
of events and searches that will be processed. At each extreme of batching we could have events and
searches alternating one after another or we could have a large chunk of events clumped together
followed by a large chunk of the searches. Examples here are an autonomous vehicle capturing and
querying for each location as it travels and a closed loop learning pipeline completing a full forward
pass to then feeding back neighbourhood information about an entire dataset. Theoretically, larger
batches of events can provide a total amount of compute that is capable of applying global changes
to an index structure, while small batches would be limited to more localised changes. We expect
that an index limited to localised changes will degrade in quality, thus reducing search accuracy.
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This assertion is supported by the frequent use of dynamic programming and hierarchical structures
used in offline index construction for static search problems. Additionally, search batches are always
assumed to be mutually independent when benchmarking static search problems. However batching
can provide small efficiency gains by increasing the utilisation of parallel hardware. In the context of
dynamic search problems we also investigate the performance of ANN methods when consecutive
searches do share mutual information.

3 FRAMEWORK STRUCTURE AND MODULES

We have designed a flexible, extensible and open access framework to specify and evaluate ANN
benchmarks for dynamic search problems. In the previous section we identified twelve important
measures for specifying and evaluating dynamic search problems. In this section we detail the three
main modules of our framework and how they address these measures. We highlight other novel
additions that extend the protocols of existing ANN benchmarks (Aumüller et al., 2018; Matsui,
2020) and discuss the key challenges of benchmarking dynamic search problems. Importantly, we
describe each of the frontend components that users of our framework will likely need to interact
with as (shown in green in Figure 2).
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Figure 2: Our framework is built to address the requirements of benchmarking high dimensional
dynamic search problems. The three main modules of our framework manage datasets (left), ANN
methods (right) and evaluation (middle). Using our framework involves interacting with the frontend
components shown in green.

3.1 EVALUATION MODULE

Evaluation of dynamic search problems is itself a substantial challenge with each measure on each
ANN method at each point in time creating additional outputs that need to be searched and filtered
to identify the top performing configurations. A configuration file (Plot Config) is used to specify
which datasets, ANN methods and performance measures are to be executed. The performance
measures listed in Table 1 can be plotted against each other or individual measures can be plotted
over time. The time series plots provide a novel perspective that does not exist for static search
problems. Each ANN method can be plotted to evaluate its full set of hyperparameter options, or
the Pareto frontiers of multiple ANN methods can be plotted to compare their relative performance.
Figures in Section 5 and Appendix A showcase some of these plots.

3.2 DYNAMIC DATA MODULE

Defining a dynamic search problem in our framework requires three components: a configuration
file (Data Config), a data blob (Raw Samples) and a block of Python code (Benchmark Formula-
tion). Data Config specifies any hyperparameters for initialising the dataset or augmenting it over
time, including the seven benchmark measures from Table 1. Raw Samples contains samples for

4



Under review as a conference paper at ICLR 2023

initialising the dataset and for growing or augmenting it over time, alternatively this can be gen-
erated programmatically in the code block. Lastly, Benchmark Formulation makes use of helper
functions to execute dynamic events, ANN searches and outputting results. In the backend of this
module, the groundtruth results, baseline compute times and baseline memory usage are generated
by running each newly defined dynamic benchmark using a bruteforce nearest neighbour method.
Together this module provides a flexible system for defining and evaluating dynamic benchmarks
that are parameterised to model the key properties of specific dynamic search problems.

3.3 SEARCH MODULE

Defining a dynamic search problem in our framework requires three components: a search configu-
ration file (Search Config), an indexing configuration file (Index Config) and a block of Python code
(ANN Method). The configuration files specify the full hyperparameter ranges for index construc-
tion, handling dynamic events and performing ANN searches. The code file provides an interface
between the framework and a specific ANN method which includes functions for index construc-
tion, handling dynamic events and performing ANN searches. Common ANN methods are currently
designed, parameterised and tuned using static search problems. Therefore we expect that the recom-
mended hyperparameter ranges will not align with the optimal range for dynamic search problems.
The frequency and batching (of events and searches) is handled within the backend components, this
includes the ability to bypass particularly slow event handling to achieve tractable evaluation trade-
offs. Further discussion of hyperparameter tuning and slow event handling is provided in Appendix
A.

4 APPROXIMATE NEAREST NEIGHBOUR SEARCH METHODS

Approximate k-Nearest Neighbour (ANN) methods are designed to provide favourable tradeoffs
between search performance and computational resources (Beyer et al., 1999; Prokhorenkova &
Shekhovtsov, 2020). Many viable methods exist and we can differentiate them by the index struc-
tures that facilitate the efficient searches. These index structures determine each of the six measur-
able performance indicators listed in Table 1. Deeper consideration can also be given to underlying
factors such as the impact of memory bandwidth and partial index updates for determining the
event processing time of a method. In this section we provide an overview of the methods we have
evaluated. Our selection criteria is to focus on methods with an optimised, publicly available imple-
mentation that can be interfaced with Python code. Table 2 summarises the type of index structure
used by each method, if it is an exact search, whether samples can be added without rebuilding
the index (incremental construction for online data collection) and whether sample values can be
updated without rebuilding the index (for online feature learning). Methods that do not support
these functions will have additional construction overheads as the entire index is rebuilt each time a
dynamic event is processed.

Table 2: ANN methods in current and common usage for static search problems. We extend and
evaluate each method with our dynamic search problem benchmarks.

Exact Incremental Update
Index Type ANN Method Search Construction Samples

None Bruteforce ✓ - -
Quantisation IVFPQ (Johnson et al., 2019) ✗ ✓ ✗

ScaNN (Guo et al., 2020) ✗ ✗ ✗
Tree Annoy (Bernhardsson, 2013) ✗ ✗ ✗

k-d Tree (Pedregosa et al., 2011) ✗ ✗ ✗
Graph HNSW (Malkov & Yashunin, 2018) ✗ ✓ ✓

The baseline approach to nearest neighbour search exhaustively computes distances between each
query and each sample in a dataset while maintaining a set of the k-nearest samples for each query.
This bruteforce method can be accelerated with parallel computation of partial distances, full dis-
tances and simultaneous queries. A linear recall-runtime tradeoff can be achieved by only computing
distances to a subset of samples (reported as Baseline in Section 5). Importantly, there are no ad-
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ditional overheads for constructing or maintaining an index over the samples. Currently there is no
consensus on which ANN methods, if any, are most suitable to replace bruteforce search in dynamic
search problems. Recent papers include examples of using bruteforce search (Komorowski, 2021;
Vidanapathirana et al., 2021), k-d trees (Kim & Kim, 2018; Xu et al., 2021) and graphs (An et al.,
2019; Schubert et al., 2021) to address similar dynamic search problems.

Quantisation methods (Johnson et al., 2019; Guo et al., 2020) cluster a dataset into local neigh-
bourhoods where efficient residual distances are used. Quantisation methods are related to hashing
methods with their regular partition of a high dimensional space. However, quantisation methods
achieve this partition by grouping samples around cluster centers rather than cutting up the space
with hyperplanes. Clustered samples are then mapped to a codebook using a reduced dimensional
space within each cluster. Cluster centers are learned from the intrinsic structure of a dataset and
this provides a significant improvement to recall performance, but at the expense of a larger index
construction time.

Tree methods (Bernhardsson, 2013; Bentley, 1975; Pedregosa et al., 2011) connect dataset samples
into a traversable index structure with a single source and no cycles. Tree methods are frequently
used for their fast index construction and searches. Compared to quantisation methods, tree meth-
ods have an additional memory cost of storing the edge information that enables the search paths.
Traversing a tree involves many local decisions that utilise an increasingly smaller subset of the
global information as sample dimensionality increases. As such, higher recall can only be achieved
with a significant amount of backtracking on a single tree or by searching in parallel over a forest
of semi-redundant trees. Despite these limitations, standard k-d tree implementations continue to be
applied to high dimensional search problems (Kim & Kim, 2018; Xu et al., 2021).

Graph methods (Arya & Mount, 1993; Harwood & Drummond, 2016; Malkov & Yashunin, 2018)
generalise tree methods by allowing any set of directed edges that connect all dataset samples.
Graph methods are some of the most recent and promising methods due to favourable recall-runtime
tradeoffs in existing ANN benchmarks. Like tree methods they require the additional storage of
edge information. Graph methods are better suited for indexing big high dimensional data due to
their lack of an explicit hierarchical structure which ensures that all local regions are well connected
to other areas of the graph. However, the selection of an appropriate set of edges is computationally
intensive, leading to large index construction times. Hierarchical navigable small world graphs
(HNSW) (Malkov & Yashunin, 2018) avoid this cost by semi-randomly selecting a set of edges with
desirable statistical properties.

5 BENCHMARKING EXPERIMENTS

We evaluate the ANN methods of interest across our proposed benchmarks and report the key find-
ings. We present the Pareto frontier of recall-runtime performance for each method. Runtime re-
sults are reported on a logarithmic scale as a ratio against the full bruteforce runtime (speedup over
bruteforce). We limit all methods to run on a single AMD EPYC 7543 CPU thread (3.7 GHz turbo,
256MB cache) with up to 10GB RAM. This firstly aims to provide results that are more analogous to
theoretical complexity analysis. Comparing the theoretical complexity of different ANN algorithms
is otherwise impractical due to algorithm performance being dependant on dataset properties. And
secondly, a single thread mitigates performance biases that can occur at particular parallelisation
thresholds. However, algorithms are not restricted from performing thread level parallelisation by
taking advantage of hardware specific SIMD instructions for I/O and arithmetic. Recall results are
reported as an average, where each search returns the top 50 nearest neighbours for a query and is
scored against the ground truth top 50. All neighbours are weighted equally for scoring. This choice
of neighbourhood size and weighting is selected to be realistic for the real-world applications being
modelled. In practice, these moderately large neighbourhood sets are sized to accommodate inher-
ent noisiness in the samples and a secondary metric would be used to re-weight these shortlisted
samples for downstream usage.

Our results in Figure 3 show that existing ANN methods can achieve useful performance by ex-
ceeding a bruteforce baseline on our two applications. For the online data collection benchmark
in Figure 3a, k-d tree (green circle) is the only method that does not outperform the bruteforce
baseline. This validates that k-d trees are not suitable in these dynamic high dimensional search
problems, but also that other methods are indeed capable of providing a desirable recall-runtime
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Figure 3: Recall vs runtime performance against a bruteforce baseline using our extended hyper-
parameters and tuning for dynamic search problems. a) An online data collection benchmark with
100k samples, 128 dimensions, 100k added events, event and search batch size 1. b) An online
feature learning benchmark with 5k samples, 96 dimensions, 100k update events, event and search
batch size 200.

tradeoff. HNSW (Malkov & Yashunin, 2018) (purple triangle) is the only algorithm outperforming
bruteforce above 70% recall, while ScaNN (Guo et al., 2020) (red diamond) is the fastest algorithm
below 70% recall. The benchmarks produced by our framework succeed in identifying crossover
points, such as this one between HNSW and ScaNN, which are critical knowledge when selecting an
ANN method for a given application. Comparing to the online feature learning benchmark in Figure
3b, all methods perform considerably worse compared to the baseline. This is in part due to the
update events (discussed in Section 2) affecting all samples in an index, while the add events have
a more local impact. For the online feature learning benchmark, no method is faster than bruteforce
beyond 78% recall, or more than 5× faster beyond 20%. K-d trees perform well below the baseline
and we are unable to produce results for the current IVFPQ implementation. Further discussion on
time series performance, hyperparameter tuning and dataset scale is provided in the Appendix A.

We verify the importance of the novel characteristics defined in Table 1 and Section 2 by varying the
benchmark specified hyperparameters that have been added for dynamic search problems. Specifi-
cally these hyperparameters are the frequency and batching of both events and searches. The impact
of each hyperparameter on the ANN search performance indicates if that parameter is an important
consideration when creating benchmarks for real-world dynamic search problems. In Figure 4a we
see that increasing the event frequency increases the difficulty of the dynamic search problem. The
recall-runtime tradeoff moves towards the origin until it saturates. Figure 4b demonstrates similar
behaviour for increases in search frequency. Figure 4c and Figure 4d shows that significant perfor-
mance differences can also be induced by varying the event batching. Collectively from the results
in Figure 4, it is evident that each of the benchmark hyperparameters we have defined are important
considerations when characterising a dynamic search problem for benchmarking. Further discussion
on the relationship to time series performance is provided in the Appendix A.

Lastly, we consider the role of mutual information that exists between consecutive search batches
due to temporal consistency in dynamic search problems. In the context of ANN search, this tem-
poral consistency creates higher overlap between groundtruth neighbourhood sets in consecutive
search batches. We model temporally consistent events by augmenting our datasets to interpolate
between samples over time. In Figure 5 we plot the ANN search performance of the interpolated
dataset against performance of the non-interpolated dataset. From our results we conclude that the
ANN methods we evaluate fail to exploit mutual information between consecutive search batches.
Ideally, an ANN method designed specifically for dynamic search problems would show consider-
ably improved recall-runtime performance for the interpolated dataset.
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Figure 4: Recall vs runtime performance when varying the frequency and batching of both events
and searches. Shown for an online feature learning benchmark with 5k samples, 96 dimensions,
100k update events, event and search batch size 200, HNSW method (Malkov & Yashunin, 2018).
a) Increasing event frequency with fixed search frequency. b) Fixed event frequency with increasing
search frequency. c) Increasing event batching with fixed search batch size. d) Increasing event and
search batch size together.
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Figure 5: Recall vs runtime performance for temporally dependant events. Shown for an online data
collection benchmark with 100k samples, 128 dimensions, 100k added events, event and search
batch size 1, HNSW method (Malkov & Yashunin, 2018), 10% interpolation.
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6 CONCLUSIONS AND FUTURE WORKS

We present a novel benchmarking framework to address the significant gap in utilising ANN meth-
ods for dynamic search problem. ANN methods are seeing increasing use in domains such as ma-
chine learning where there is a need to distill local statistics from large amount of high dimensional
data. However the dynamic nature of this data is at odds with the static search problems that are
used when designing and benchmarking current ANN methods. Our framework directly addresses
this issue by allowing us to define new benchmarks that give a first indication of how current ANN
methods will actually perform in dynamic contexts.

Our generalised approach to dynamic search problems has enabled us to categorise and implement
benchmarks that model a number of real-world problems. Specifically we focus on the dynamic
search problems that feature online data collection and online feature learning. Within these two
categories we have also explored the effects of dynamic search problem characteristics and temporal
dependence between consecutive samples. Our extensible framework allows for future work to add
new categories of dynamic search problems, build upon the current ones or replay real-world data
captures. In particular, our work does not currently extend to include the fundamental database
operation of removing samples. Removing samples becomes an important consideration when the
pruning of old or low saliency samples is needed for bounding memory consumption.

Our benchmarks show that judicious selection of ANN methods is critical for efficient performance
on dynamic search problems. We find that a standard implementation of k-d trees performs signifi-
cantly worse than an exhaustive search. This is despite continued usage in dynamic high dimensional
data contexts (Kim & Kim, 2018; Xu et al., 2021). In contrast, HNSW (Malkov & Yashunin, 2018)
and ScaNN (Guo et al., 2020) perform very favourably on our dynamic search problems. Again
the extensibility of our framework supports the inclusion of additional ANN methods as well as
the evaluation of new or altered methods. We hope the performance benchmarks established in this
paper will be a launchpad that is quickly exceeded by further research.

We have demonstrated that additional hyperparameters and hyperparameter tuning can adapt exist-
ing ANN methods from static to dynamic search problems. However, there are still large research
gaps in designing ANN methods that are specifically tailored for exploiting the full information
available in dynamic search problems. ANN methods with slow index construction benefit greatly
from reducing the frequency of event and batching them into larger index updates. Some ANN
methods have been designed to exploit mutual information from application specific temporal re-
lationships (Garg & Milford, 2021). Extending general ANN methods in this way could provide a
large performance gain on these dynamic search problems.

Dynamic search problems are not going away, they are instead becoming more wide spread due to
increasing demands for fast and realtime processing of big and rich data streams. This means there
is lots to be gained from a deep and thorough exploration of which dynamic search problems are
common place, and which ANN methods are best suited to address their specific demands. Our
benchmarking framework is well positioned as a launching point for others who are interested in
exploring and contributing to the many open problems that exist in this area.
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A APPENDIX

Each datapoint from the figures in Section 5 is an average over a series of events and searches
that define that benchmark as a particular dynamic search problem. We can further analyse the
performance of each ANN algorithm by considering the time series of how performance measures
(as defines in Table 1) vary throughout benchmarking. Figure 6 illustrates these temporal variations
for the search performance measure. We compare each ANN method using the hyperparameter
set identified at the harmonic mean of that methods Pareto frontier. For analysing and optimising
individual ANN methods, time series results across hyperparameter sweeps of that method can be
compared instead.

In Figure 6 we see that recall performance of all methods is relatively consistent across this bench-
mark. Because this is an online data collection benchmark we might expect to see a decrease in
recall as the dataset grows from 100k to 200k samples, and similarly, from degradation as the index
is continuously expanded and rebuilt. However, Annoy is the only method with a slight down-
wards trend in its recall performance. For all other methods, the recall remains flat over time and
we would need to consider the time series of other performance measures to confirm if the cost of
processing a larger dataset is being paid elsewhere. For both the k-d Tree and ScaNN methods we
can see periodic oscillations in the recall. These oscillations are caused by the slow event handling
in the backend of our search module (introduced in Section 3). Reducing the regularity of index
updates is important for reducing average runtime, however it results in decreasing recall until the
next index update is performed. In practice, we find that slow searches create downstream latency
for systems using the outputted ANN results, while slow event handling can instead be absorbed by
the recall-runtime tradeoff. As such, maintaining a consistent search frequency is more important
than prioritising event handling. Our framework incorporates this behaviour by extending all ANN
methods with an optional hyperparameter that delays index updates for a specified number of events.
This delay artificially lowers the event frequency and increases the event batching (as discussed in
Section 2 and Figure 4).

0 0.2 0.4 0.6 0.8 1

·105

0.4

0.6

0.8

1

Events processed

A
ve

ra
ge

to
p

50
re

ca
ll

k-d Tree
Annoy
HNSW
ScaNN
IVFPQ

Figure 6: Events processed vs recall performance for the harmonic mean of the Pareto frontiers.
Shown for an online data collection benchmark with 100k samples, 128 dimensions, 100k added
events, event and search batch size 1.

Figure 7 presents additional plots to illustrate the role of hyperparameter tuning and sample count,
on the two dynamic search problems we have analysed. Comparing Figure 7a to 7b and Figure 7d
to 7e shows the importance of additional hyperparameters and hyperparameter tuning for dynamic
search problems. Figures 7a and 7d contain results when using recommended hyperparameter sets
that have been tuned on static search problems. Whereas, Figures 7b and 7e replicate the dynamic
search problem results from Figure 3. Our tailored approach to hyperparameter tuning results in im-
proved performance for all ANN methods. This comparison highlights the critical importance of our
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Figure 7: Recall performance against a bruteforce baseline. a, b, c) An online data collection bench-
mark with 100k samples, 128 dimensions, 100k added events, event and search batch size 1. d,
e, f) An online feature learning benchmark with 5k samples, 96 dimensions, 100k update events,
event and search batch size 200. Top - Recall vs runtime with hyperparameter tuning taken from
static search problems. Middle - Recall vs runtime with our extended hyperparameters and tuning
for dynamic search problems. Bottom - Runtime vs sample count with datasets ranging from 10k to
500k samples and events evaluated at 50% recall.
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benchmarking framework - the best practice approaches for static search problems do not translate
directly to dynamic search problems. To address the requirements of dynamic search problems we
extend the hyperparameter ranges of each method in directions that result in higher computational
efficiency. This efficiency will typically be gained at the expense of recall. Additionally, we add an
additional hyperparameter for optional management of slow event handling. Again we find that a
reduction in recall is typical when the slow event handling is applied.

Lastly, in Figures 7c and 7f we illustrate the relationship between sample count and runtime, on
log-log plots for the two dynamic search problems we have analysed. For each ANN method,
we plot the best runtime performance that achieves at least 50% recall for a dataset of a given
sample count. At 50% recall the baseline bruteforce method can choose to ignore half of the dataset,
so the baseline cutoff is shown at 2. Here we see a trend for the dynamic search problems that
is consistent with what has previously been found for static search problems. This trend shows
that ANN methods increasingly improve their performance over a baseline bruteforce search as
sample count increases. Extending our prior analysis of Figure 3, we identify the crossing points
for the online feature learning benchmark where each ANN method becomes more efficient than
the baseline. These crossing points are of similar interest to the crossing points of ANN methods
with each other, as this information is needed to guide users towards the most suitable ANN method
for a given application. Additionally by comparing Figures 7c and 7f we verify that update events
(as introduced in Section 2) do result in worse performance than the add events, even when sample
count is taken into consideration. For the same sample count and ANN method, we consistently
see lower performance on the online feature learning benchmarks than the online data collection
benchmarks. Further analysis of each individual ANN method will be required to identify the root
cause of this performance difference between event types, and potentially to then further improve
ANN search performance for online feature learning.
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