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Abstract: State density distribution, in contrast to worst-case reachability, can1

be leveraged for safety-related problems to better quantify the likelihood of the2

risk for potentially hazardous situations. In this work, we propose a data-driven3

method to compute the density distribution of reachable states for nonlinear and4

even black-box systems. Our semi-supervised approach learns system dynamics5

and the state density jointly from trajectory data, guided by the fact that the state6

density evolution follows the Liouville partial differential equation. With the help7

of neural network reachability tools, our approach can estimate the set of all pos-8

sible future states as well as their density. Moreover, we could perform online9

safety verification with probability ranges for unsafe behaviors to occur. We use10

an extensive set of experiments to show that our learned solution can produce a11

much more accurate estimate on density distribution, and can quantify risks less12

conservatively and flexibly comparing with worst-case analysis.13

Keywords: Reachability Density Distribution, Learning Density Distribution, Li-14

ouville Theorem15

1 Introduction16

(a) t = 0s. (b) t = 0.35s. (c) t = 0.80s.
Figure 1: Reachability density of Van der Pol.

Reachability analysis has been a central topic17

and the key for the verification of safety-critical18

autonomous systems. The majority of existing19

reachability approaches either compute worst-20

case reachable sets [1, 2, 3, 4, 5, 6], or use21

Monte Carlo simulation to estimate the reach-22

able states with probabilistic guarantees [7, 8,23

9, 2]. There are several obvious disadvantages24

of such methods. 1). Worst-case methods, especially those for nonlinear systems, often over-25

approximate the reachable sets and produce very conservative results (due to convex set representa-26

tions [10, 11, 12, 13], wrap effects [14, 15], low-order approximation [3, 16], etc.), not to say they27

are usually very computationally expensive (also known as the curse of dimensionality). 2). Exist-28

ing methods do not care about reachable state concentration and produce the same reachable state29

estimations for different distributions of initial states if those distributions share the same support 1.30

That is, current approaches do not compute which states are more likely to be reached. For example,31

in Fig. 1, the state density distribution of a Van der Pol oscillator evolves over time and concentrates32

on certain states (the highlighted part in the figure), even if the initial states are uniformly distributed.33

If one uses an existing worst-case reachability algorithm, most likely the results in Fig. 1 (b)(c) will34

show almost the entire black region inside the highlighted part is reachable, as those methods often35

use convex sets to represent the reachable sets.36

In this paper, we aim to tackle the above problems and propose a learning-based method that can37

compute the density distribution of the reachable states from given initial distributions. The state38

1The probabilistic guarantees of the sampling-based methods do rely on the form of the initial states distri-
bution. However, the final reachable sets estimate is the same for different distributions with the same support.
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density is much more powerful than worst-case reachability and can better quantify risks. Our39

proposed method is based on the Liouville theorem [17, 18, 19], which is from classical Hamiltonian40

mechanics and asserts that the state density distribution function (which is the measurement of state41

concentration) is constant along the trajectories of the system. Given an autonomous system ẋ =42

f(x) that is locally Lipschitz continuous, the evolution of the state density ρ(x, t) (i.e. the density43

of state x at time t) is characterized by a Liouville partial differential equation (PDE). We learn44

the state density as a neural network (NN) while respecting the laws of physics described by the45

nonlinear Liouville PDE, in a way that is similar to the physics-informed NN [20].46

Furthermore, we make two major improvements to make the learned density NN suitable for ver-47

ification. 1). Instead of learning ρ for a fixed initial distribution ρ(x0, 0), we learn the density48

concentration function which specifies the multiplicative change of density from any ρ(x0, 0). 2).49

We use a single NN to jointly learn both the reachable state Φ(x0, t) and its corresponding density.50

Moreover, we use Reachable Polyhedral Marching (RPM) [21]—an exact ReLU NN reachability51

tool—to parse our learned NN as linear mappings from input polyhedrons to output polyhedrons.52

Using such parsed polyhedrons, we can perform online forward and backward reachability analysis53

and get the range of density bounds [ρmin, ρmax] for each output polyhedron. Together, our method54

can perform online safety verification by computing the probability of safety (instead of a single yes55

or no answer) under various initial conditions, even with unknown system dynamics f (i.e. a black-56

box system where we only have access to a simulator of x(t)). In this way, it also has the potential57

to collect environmental data in run-time and update its distribution for online safety verification.58

We conduct experiments on 10 different benchmarks covering systems from low dimension aca-59

demic examples to high dimension black-box simulators equipped with either hand-crafted or NN60

controllers. Surprisingly, without using any ground-truth density data in the learning process, our61

approach can achieve up to 99.89% of error reduction in KL divergence with respect to the ground-62

truth value, when compared to sampling-based methods like kernel density estimation and Gaussian63

Processes. Moreover, our learned density concentration function can also be used for reachability64

distribution analysis. We show that in several systems, more than 90% of the states can actually65

just reside in a small region (less than 10% of the volume of the convex hull for those states) in66

the state space, which also points out the conservativeness of the worst-case reachability analysis67

methods in terms of quantifying risks. We also show that different initial distributions can lead to a68

drastic change in the safety probability, which can help in cases when unsafe is inevitable but can be69

designed to happen with a very low probability.70

Our major contributions are: (1) we are the first to provide an explicit probability density function71

for reachable states of dynamical systems characterized as ordinary differential equations; this den-72

sity function can be used for online safety analysis, (2) we propose the first data-driven method to73

learn the state density evolution and give accurate state density estimation for arbitrary (bounded74

support) initial density conditions without retraining or fine-tuning, and (3) we use a variety of ex-75

amples to show the necessity to perform reachability distribution analysis instead of pure worst-case76

reachability, to flexibly and less conservatively quantify safety risks.77

Related work Reachability analysis, especially worst-case reachability using sampling-based78

methods or set propagation, has been studied for decades. The literature on reachability has been79

extensively studied in many surveys [1, 6, 22, 23]. Here we only discuss a few closely related works.80

Hamilton Jacobian PDE has been used to derive the exact reachable sets in [24, 1, 5]. However,81

the HJ-PDE does not provide the density information. Many data-driven approaches can com-82

pute probabilistic reachable sets using scenario optimization [7, 25], convex shapes [8, 9, 26],83

support vector machines [27, 28], kernel embedding [29], active learning [30], and Gaussian84

process [2]. However, the probabilistic guarantees they provide are usually in the form that85

Prob(x(t) ∈ estimated set) > 1 − ε with enough samples, instead of the state density dis-86

tribution. [31] estimates human state distribution using a probabilistic model but requires state87

discretization. [32] uses the Liouville equation to maximize the backward reachable set for only88

polynomial system dynamics. In [33] the authors compute the stochastic reachability by discretiz-89

ing stochastic hybrid systems to Markov Chains (MC), then perform probabilistic analysis on the90

discretized MC. The closed-form expression of the probability requires integrals over the whole state91

space hence is computation-heavy and cannot be used for online safety check. The closest to ours92

is [34] where Perron-Frobenius and Koopman operators are learned from samples of trajectories.93

Then, the learned operators can be used to transform the moments of the distribution over time. The94
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distribution at time t is then recovered from the transformed moments. However, as they use mo-95

ments up to a specific order to represent a distribution, even if the learned operators are perfect, the96

estimation error of the distribution might not be zero. Also, such a moment-based method is hard to97

scale to large-dimensional systems. Recently, there is also a growing interest in studying the (worst-98

case) reachability of NN [35, 36, 37, 38, 21] or systems with NN controllers [39, 4, 40, 41, 42]. In99

this paper, we use [21] to parse our learned NN as a set of linear mappings between polyhedrons for100

online reachability computation, but this step can be replaced with other NN reachability tools.101

To measure the probability distribution in the reachable sets, the most naı̈ve approach is to use his-102

tograms or kernel density estimation [19], similar to the Monte-Carlo method used in dispersion103

analysis [43]. But this could lead to poor accuracy and computational scalability [44]. Another ap-104

proach propagates the uncertainty by approximating the solution of the probability density function105

(PDF) transport equation [45], which could still be time-consuming due to the optimization process106

performed at each time step. Our approach finds the PDF transport equation by solving the Liou-107

ville PDE 2 using NN. Similar ideas have been explored in [18]. However, the density NN in [18]108

was learned solely for a fixed initial states distribution and therefore, cannot be used for online pre-109

diction. Instead, we jointly learn the reachable states and density changes, and can perform online110

reachability density computation for any initial states distribution.111

The idea of using deep learning to solve PDEs can be traced back to the 1990s [46, 47, 48],112

where the solutions of the PDE on a priori fixed mesh are approximated by NN. Recently,113

there is a growing interest in the related sub-fields including: mesh-free methods in strong114

form [20, 49, 50] and weak form [51, 52], solving high-dimension PDEs via BSDE method [53],115

solving parametric PDE [54, 55] and stochastic differential equations [56, 57], learning differential116

operators[58, 59, 60], and developing more advanced toolboxes [61, 62, 63]. Our idea for solving117

Liouville PDE along trajectories is similar to [53] but without the stochastic term.118

2 Preliminaries119

We denote by R, R≥0, Rn, Rn×n the sets of real numbers, non-negative real numbers, n-dimensional120

real vectors, and n × n real matrices. We consider autonomous dynamical systems of the form121

ẋ(t) = f(x(t)), where for all t ∈ R, x(t) ∈ X ⊆ Rd is the state and X is a compact set that122

represents the state space. We assume that f : Rd 7→ Rd is locally Lipschitz continuous. The123

solution of the above differential equation exists and is unique for a given initial condition x0. We124

define the flow map Φ : X × R 7→ X such that Φ(x0, t) (also written as x(t) for brevity) is the125

state at time t starting from x0 at time 0. Note that system parameters can be easily incorporated as126

additional state variables with time derivative to be 0.127

We analyze the evolution of the dynamical system by equipping it with a density function ρ : X ×128

R → R≥0, which measures how states distribute in the state space at a specific time instant. A129

larger density ρ(x, t) means the state is more likely to reside around x at time t, and vice versa.130

The density function is completely determined by the underlying dynamics (i.e., function f ) and131

the initial density map ρ0 : X 7→ R≥0. Specifically, given a ρ0, the density function ρ solves the132

following boundary value problem of the Liouville PDE [17]:133

∂ρ

∂t
+∇ · (ρ · f) = 0, ρ(x, 0) = ρ0(x), (1)

where ∇ · (ρ · f) =
∑d
i=1

∂[ρ·f ]i
∂[x]i

is the divergence for the vector field ρ · f , and [·]i takes the134

i-th coordinate of a vector.3 Intuitively, as shown in [17], Liouville PDE is analogous to the mass135

conservation in fluid mechanics, where the change of density ∂ρ
∂t at one point is balanced by the136

total flux traversing the surface of a small volume surrounding that point. It is hard to solve the137

Liouville PDE for a closed from of the density function ρ. However, it is relatively easy to evaluate138

the density along a trajectory of the system. To do that, we first convert the PDE into an ODE as139

follows. Considering a trajectory Φ(x0, t), the density along this trajectory is an univariate function140

2In the absence of process noise, this PDF transport equation reduces to stochastic Liouville equation [17]
3A general form of Liouville PDE can have a non-zero term on the right-hand side indicating how many

(new) states appear or exit from the system during the run time [19]. In all the systems we discuss here, there
is no state entering (other than the initial states) or leaving the system, so the right-hand side of Eq. (1) is zero.
The total density of the systems we consider is invariant over time.
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of t, i.e., ρ(t) = ρ(Φ(x0, t), t). If we consider the augmented system with states [x, ρ], from Eq. (1)141

we can easily get the dynamics of the augmented system [19]:142 [
ẋ
ρ̇

]
=

[
f(x)

−∇ · f(x)ρ

]
. (2)

Therefore, to compute the density at an arbitrary point xT ∈ X at time T , one can simply proceed143

as follows: First, find the initial state x0 = Φ(xT ,−T ) using the inverse dynamics −f . Then,144

solve the Eq. (2) with initial condition [x0, ρ0(x0)]. The solution at time T just gives the desired145

density value. However, such a procedure only gives the density at a single point, therefore, cannot146

be used in reachability analysis. Instead, we need to compute the solution of Eq. (2) for a set of147

initial conditions and use that to compute the reachable sets. To achieve this, we use an NN with148

ReLU (Rectified Linear Unit) activation functions [64] to jointly approximate the flow map Φ and149

the density concentration function, as will be shown in the next section.150

3 Density learning and online reachability density computation151

Let us take a closer look at Eq. (2). For an initial condition [x0, ρ0(x0)], the closed form152

of the solution ρ is ρ(Φ(x0, t), t) = ρ0(x0) exp
(
−
∫ t

0
∇ · f(Φ(x0, τ))dτ

)
. Interestingly, the153

solution of ρ is linear in the initial condition ρ0. The gained part denoted by G(x0, t) :=154

exp
(
−
∫ t

0
∇ · f(Φ(x0, τ))dτ

)
is a function of the initial state x0 and time t, but is independent155

of ρ0. This mapping G is completely determined by the underlying dynamics and we call it the156

density concentration function. With G in hand, the density at an arbitrary time and state can be157

quickly computed from any ρ0. However, G is obviously hard to compute. Therefore, we use NN to158

approximate the density concentration function. In addition to G, we also use NN to learn the flow159

map Φ, which will be a necessity for computing the reachable set distribution shown in Sec. 3.2.160

3.1 System dynamics and density learning framework161

Let the parameterized versions of the flow map and the density concentration function be Φω and162

Gθ respectively, where ω and θ are parameters. To train the neural network, we construct a dataset163

by randomly sampling N trajectories of the system: Dtrain = {ξi}N−1
i=0 in T time steps (with time164

interval ∆t): ξi = {(xi0, 0), (xi1,∆t), ..., (x
i
T−1, (T − 1)∆t)} where xij = Φ(xi0, j∆t). Then, the165

goal of the learning is to find parameters ω and θ satisfying166 {
Φω(xi0, k∆t)− xik = 0, ∀i, k,
∂Gθ(xi0,k∆t)

∂t +Gθ(x
i
0, k∆t) · (∇ · f(xik)) = 0, ∀i, k,

(3)

where the first constraint is for the flow map estimation, and the second constraint enforces the167

Liouville equation for all the data points.168

As for the implementation, we model Φω andGθ jointly as a fully-connected neural network NN(·, ·)169

with ReLU activations. To ensure numerical stability as G is an exponential function, we add a170

nonlinear transform from the NN output to the density concentration function:171 {
Gθ(x0, t) = exp(t · NN[0:1](x0, t)) = exp(t · z(x0, t)),

Φω(x0, t) = NN[1:n+1](x0, t),
(4)

where NN[i:j+1] is to choose the i, i+ 1, ..., j-th dimensions from the output of the NN, and z is the172

intermediate density estimation from the NN. In this way, we guarantee that the density concentra-173

tion function at t = 0 is always 1. We optimize our NN via back propagation with the loss function:174

175

L = λ ·
∑
i,k

[
Φω(xi0, k∆t)− xik

]2
+
∑
i,k

[
Ġθ(x

i
0, k∆t) +Gθ(x

i
0, k∆t)

(
∇ · f(xik)

)]2
, (5)

where the first term denotes the state estimator square error [65], the second term indicates how176

far (in the sense of L2-norm) the solution deviates from the Liouville Equation, and λ balances177

these two loss terms. We approximate the time derivative of the density concentration function by178
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Ġθ(x
i
0, k∆t) =

[
Gθ(x

i
0, (k + 1)∆t)−Gθ(xi0, k∆t)

]
/∆t. Our method can also work for black-179

box systems if we approximate ∇ · f(·) numerically. With some tools from statistical learning180

theory, we can show that with a large enough number N of samples, the learned flow map and the181

density concentration function can be arbitrarily accurate. A formal proof is shown in Appendix A.182

3.2 System reachable set distribution computation via NN Reachability Analaysis183

In the last section, we have learned an NN that can estimate the density at a single point given the184

initial density. In this section, we will boost this single-point estimation to set-based estimation185

by analyzing the reachability of the learned NN. To compute the set of all reachable states and the186

corresponding density from a set of initial conditions, we use the Reachable Polyhedron Marching187

(RPM) method [21] to further process the learned NN for G and Φ. RPM is a polyhedron-based188

approach for exact reachability analysis for ReLU NNs. It partitions the input space into polyhedral189

cells so that in each cell the ReLU activation map does not change and the NN becomes a fixed affine190

mapping. With the cells and the corresponding affine mapping on each cell, the exact reachable set191

for a set of input can be quickly evaluated. Backward reachability analysis can also be performed by192

computing the intersection of the pre-image of a query output set with the input polyhedron cells.193

System forward reachable set with density. Recall that the input of the NN in Sec. 3.1 consists of194

the initial state x0 and time t. For the simplicity of comparison with other methods, we only estimate195

the reachable set and the density at given fixed time instances t and fix the last element of the input196

of the NN. Thus for each time step t, the input polyhedral cells generated from the RPM will be197

a set of linear inequality constraints on x, and those input cells together with the set of the affine198

mappings and output polyhedral cells can be represented as: {(Ak, bk, Ck, dk, Ek, fk)}Nk=1, where199

in each input cell Hk := {v ∈ Rd|Akv ≤ bk}, the NN becomes an affine mapping y = Ckv + dk,200

and thus the image of the input cell is also a polyhedron Mk = {y ∈ Rd+1|Eky ≤ fk}.201

Recall that the first dimension of our NN output estimates the density concentration function202

z, and the rest dimensions estimate the state x, thus the output cell can be written as Mk =203

{(z, x)|Ek[z, x]T ≤ fk}. By projecting it to the state space, we get the reachable set of the system,204

i.e., Rok := {x ∈ X |(z, x) ∈ Mk}. Then, in each cell Mk, we evaluate the lower and upper bounds205

of z, and denote them by zk,min and zk,max. The density bound for cell Mk is then computed as206 {
ρk,min = ρ0(x̄k) · exp(t · zk,min),

ρk,max = ρ0(x̄k) · exp(t · zk,max),
(6)

where x̄k is the center ofHk. Finally the system forward reachable set is a union of projected output207

polyhedral cells:
N⋃
k=1

Rok where each cell Rok is associated with a density bound [ρk,min, ρk,max].208

System reachable set probability computation. Given an initial state distribution, we want to209

figure out the probability distribution of the system forward reachable sets, as well as the probability210

for the states land into a query set (e.g., the query set could be the unsafe region).211

For an arbitrary initial probability density function (whose support is bounded), we can apply RPM212

to partition its support into cells4 as in the last section. Finally, we obtain the reachable sets with213

bounded state densities {(Hk, ρ
min
k , ρmaxk )}Nk=1 and the probability bound in each cell is:214 {

Pmink = Vol(Hk)ρmink ,

Pmaxk = Vol(Hk)ρmaxk ,
(7)

where Vol(·) computes the volume for a polyhedron. By computing for all input cells {Hk}Nk=1,215

we can derive the system forward reachable set and the corresponding probability bound as216 {
(Hk, P

min
k , Pmaxk )

}
k=1:N

. The backward reachable set probability can be computed in a similar217

fashion, by checking the intersection between the query output region and the output cells derived by218

RPM, computing each intersection’s probability range by its volume and density bound and finally219

aggregating the probability of all intersections. Detailed computation is shown in Appendix B. 5220

4We can always further divide those input cells to make the bound tighter/ more precise, while still guaran-
teeing the Neural Network on each cell can be seen as an affine transformation.

5The RPM method cannot handle systems with higher than 4 dimensional state space in our experiments.
But the technique discussed in Sec. 3.2 can work with any set-based NN reachability tools with slight modifica-
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System Dim. Control
Van der Pol Oscillator (vdp) 2 -
Double integrator (dint) [42] 2 NN

Kraichnan-Orszag system (kop) [66] 3 -
Inverted pendulum (pend) [67] 4 LQR

Ground robot navigation (rpbot) 4 NN
FACTEST car tracking system (car) [68] 5 Tracking

Quadrotor control system (quad) [42] 6 NN
Adaptive cruise control system (acc) [4] 7 NN

F-16 Ground collision avoidance (gcas) [69] 13 Hybrid
8-Car platoon system (toon) [70] 16 NN

Table 1: Benchmarks from low dimen-
sion academic models to complex systems
with handcrafted or NN controllers.

Figure 2: KL divergence with ODE-simulated density. Our
method consistently outperforms other baselines. The histogram
method cannot estimate the density for “acc”, “gcas” and “toon”.

4 Experimental evaluation in simulation221

Here we show the benefits of learning density concentration function from Liouville PDE in state222

density and reachable set distribution estimation. More experiments are provided in Appendix C∼H.223

4.1 Implementation details224

Datasets: We investigate 10 benchmark dynamical systems as reported in Table 1. These bench-225

mark systems range from low dimension academic models (2∼3 dimensions) to complex and even226

black-box systems (13∼16 dimensions) controlled by handcrafted or NN controllers. All controllers227

(except for the ground robot navigation example) are from the original references. More details (the228

model description and initial distributions) will be provided in Appendix C.229

Training: For each system, we generate 10k trajectories through simulation with varied trajectory230

lengths from 10 to 100 time-steps, depending on different configurations of the simulation envi-231

ronment. We use 80% of the samples to train the NN as described in Sec. 3.1 and use the rest for232

validation. For the trajectory data, we collect the system states and compute for the system diver-233

gence term. For black-box systems, we use the gradient perturbation method to approximate the234

derivatives. We use feed-forward NN which has 3 hidden layers with 64 hidden units in each layer.235

We use PyTorch [71] to train the NN and the training takes 1∼2 hours on an RTX2080 Ti GPU.236

4.2 Density estimation verification237

We first test the density estimation accuracy of our learned NN. We compare our approach with238

other baselines including kernel density estimation (KDE), Sigmoidal Gaussian Process Density239

(SGPD) [72] and the histogram approach. For each simulation scenario, we first solve Eq. (2) to240

generate 20k ∼ 100k trajectories of (state, density) pairs, and treat this density value as the ground241

truth. For the KDE method, we choose an Epanechnikov kernel. We then measure the KL divergence242

between the density estimate of each method and the ground truth. As shown in Fig. 2, our approach243

has consistently outperformed KDE, SGPD and histogram approaches, with the largest reduction of244

99.69% in KL divergence when compared with the histogram approach for the Kraichnan-Orszag245

system, while our method doesn’t use any ODE generated density values during training. Also in246

high-dimension systems (dimension ≥ 7), the histogram approach fails to predict the density due to247

the curse of the dimensionality, whereas our approach can always predict the density, with a 30.13%248

to 99.87% decrease in KL divergence comparing to KDE. More plots will be given in Appendix D.249

4.3 Reachable set distribution analysis250

Forward reachable set distribution analysis. Being confident that our approach is able to pro-251

vide an accurate state density estimation, we extend our NN to do distribution analysis, which is a252

valuable technique in safety-related applications like autonomous driving. Here we use an existing253

reachability tool RPM [21] to compute the forward reachable sets with probability bounds. Details254

about how to derive the density and probability bound for the reachable sets are presented in Sec. 3.2255

and in Appendix B. Also, RPM was only able to parse the NN for Van der Pol, Double integrator,256

ground robot navigation, and the FACTEST car model. It fails in handling other high-dimension257

complex systems due to numerical issues when partitioning for the input set. Thus, we only report258

the results on those 4 models in this section. The main purpose is to show that for some systems the259

tion based on the set presentation of the tool. Developing a better NN reachability tool that can scale to higher
dimensional systems is another topic and is out of the scope of our paper.
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(a) The system forward reach set computed by the ConvexHull method(blue) [9], DryVR(red) [68] and
GSC(green) [73]. We further show the relative volume of each kind of reachable set, comparing to the vol-
ume of the convex hull of the sampled points (gray). As time evolves, the conventional reachability methods
often result in a larger over-approximation of the reachable sets with an increasing estimation error.

(b) The system forward reach set derived by RPM. The reachable sets are represented in polyhedral cells. The
color ranged from dark purple to light yellow indicates the density inside the polyhedral cells. The edges
colored in green indicate the boundaries of the RPM polyhedral cells with density below a threshold.

Figure 3: The Van der Pol oscillator forward reachable set comparison between (a) the worst-case reachability
methods [68, 73] and (b) our probabilistic approach. Our approach clearly identifies reachable sets in high and
low densities, and shows that as time evolves, the states will concentrate on a limit cycle, which is as expected.

(a) Van der Pol system (b) Double integrator (c) Ground robot model (d) FACTEST car model

Figure 4: The (relative) volume of reachable set with different probability level using our method, and com-
parison to other methods. The top part of each figure is in logarithm scale.

density tends to concentrate on certain states, where a small portion of the reachable sets contains the260

majority of states that are more likely to be reached. Therefore, our method can better quantify risks261

than worst-case reachability, by providing a flexible threshold for the probability of reachability.262

We start with the Van der Pol oscillator. The initial states are uniformly sampled from a square263

region: [−2.5, 2.5]×[−2.5, 2.5]. As illustrated in Fig. 1, the system states will gradually converge to264

a limit cycle. Using worst-case reachability analysis for this system will result in a very conservative265

over-approximation, and this over-approximation will propagate over time and lead to increasing266

conservativeness of the reachable set estimation. As shown in Fig. 3(a), for the worst-case methods267

like DryVR(red) [68, 74] and GSG(Green) [73], the volume of their estimated reachable set relative268

to the volume of the convex hull of the system states keeps increasing over time, from 1.9670X to269

5.3027X for the DryVR [68] approach, and from 1.7636X to 2.8086X for GSG [73]. However, our270

method can give the probability bound for every reachable set in the state space as shown in the271

heatmap in Fig. 3(b), clearly identifying the region around the limit cycle in high density (bright272

color), and the rest space in low density (dark color).273

We can also compute the relative volume of the reachable sets (comparing to the convex hull) pre-274

serving different levels of reachable probability, whose evolution over time reflects the system’s275

tendency for concentration. As shown in Fig. 4, we use the above 4 systems and study the volume276

of the reachable set with probability threshold 0.50, 0.70, 0.80, 0.90, and 0.99. As expected, the rel-277

ative volume will increase as the probability threshold increases. In all cases, there exist some time278

instances where a small volume of the reachable set actually preserves high probability, which shows279
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the state concentration exists in many existing systems. While as shown in Fig. 4, the worst-case280

reachability tools can only generate one curve which presents the (relative) volume of the reach-281

able set that covers all possible states. Not surprisingly, the worst-case reachability tools give very282

conservative results. We believe using our proposed method to do reachable set distribution analy-283

sis will benefit future study for systems with uncertainty, and for systems where the failure case is284

inevitable but happens with a low probability. More comparisons with state-of-the-art reachability285

methods (Verisig [39], Sherlock [75] and ReachNN [40]) are shown in Appendix H.286

(a) (b)

Figure 5: (a) A robot tries to reach the goal while
avoiding the obstacle. (b) Probabilistic safety verifica-
tion under different initial distributions. As the robot
has less uncertainty in its initial position and velocity, it
will have lower probability to collide.

Online safety verification under different ini-287

tial state distributions. Since our approach288

learns the density concentration function in-289

stead of absolute density value, it has the flex-290

ibility to estimate online reach sets distribution291

with any possible (bounded support) initial dis-292

tributions. Consider the safety verification for293

the ground robot navigation problem (shown in294

Fig. 5(a)): The probability of colliding with295

a obstacle in the center of the map is deter-296

mined by the initial state distribution 6, which297

is parametrized as a truncated Gaussian distri-298

bution N(µ, σ2I) where µ and σ measure the299

expectation and uncertainty of the initial robot state. Our method can estimate the upper and lower300

bounds for the probability of colliding with the obstacle, and this safety evaluation process can run301

in faster than 50Hz with parallel computation and heuristic searching used (see details in Appendix302

E). As shown in Fig. 5(b), when the initial state uncertainty σ decreases from 1.0 to 0.02, the up-303

per and lower bounds for the probability of collision decrease to close to zero (from 0.04236 to304

3.5344 × 10−06, where other worst-case reachability analysis methods can only report a collision305

is inevitable, without quantifying the corresponding risks. This also shows the advantage of our ap-306

proach in adapting to different density conditions in computation without retraining or fine-tuning.307

Limitations and trade-offs of performing reachable set distribution analysis. Experimental308

results show that our method can compute much less conservative probabilistic reachable sets than309

most worst-case reachability methods. This less conservative result benefits from RPM which can310

provide exact NN reachability analysis by sacrificing scalability. Therefore RPM also constrains us311

from performing online reachability analysis for high-dimensional systems or systems with large ini-312

tial sets. Technically, we are solving a harder problem than worst-case reachability approximation,313

as we need not only the reachable set, but also the density over those reachable states. Like worst-314

case analysis, this is the reason why it can only scale to lower-dimensional systems and smaller315

initial sets when we want to perform accurate reachable computation. We believe that our approach316

can better quantify risks under different conditions, especially when unsafe is inevitable (similar to317

Fig. 5(a)). Our method can also give worst-case reachability by taking all output reachable cells318

produced by RPM regardless of their density. This worst-case reachability using RPM is less con-319

servative than other NN reachability tools, at the cost of not scaling to high-dimensional systems.320

5 Conclusion and discussion321

In this paper, we propose a Neural Network (NN)-based probabilistic safety verification frame-322

work that can estimate state density, compute reachable sets and corresponding probability. Our323

Liouville-based NN can accurately estimate the state density even for high-dimension systems. Our324

probabilistic reachable set framework can handle nonlinear (and potentially black-box) systems with325

varying initial state distributions and can be used for fast online safety verification. We recognize326

that the task of computing probabilistic reachable sets is very useful, and our method is more help-327

ful than worst-case reachability particularly when the system states are more likely to concentrate.328

One limitation of our approach is that the NN reachability tool we used (RPM) cannot handle high-329

dimension systems or cases where the initial set is very large, due to the numerical issues when330

partitioning for polyhedral cells. This limitation is due to the scalability and accuracy trade-off of331

NN reachability, which is an independent problem from our paper. We plan to explore other NN332

reachability methods and more complicated hybrid systems in real-world applications.333

6How to compute the probability of a reachable set is discussed in Sec.3.2
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