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Abstract

While transformers demonstrate impressive performance on many knowledge1

intensive (KI) tasks, their ability to serve as implicit knowledge bases (KBs)2

remains limited, as shown on several slot-filling, question-answering (QA), fact3

verification, and entity-linking tasks. In this paper, we implement an efficient,4

data-programming technique that enriches training data with KB-derived context5

and improves transformer utilization of encoded knowledge when fine-tuning6

for a particular QA task, namely answer sentence selection (AS2). Our method7

outperforms state of the art transformer approach on WikiQA and TrecQA, two8

widely studied AS2 benchmarks, increasing by 2.0% p@1, 1.3% MAP, 1.1%9

MRR, and 4.4% p@1, 0.9% MAP, 2.4% MRR, respectively. To demonstrate our10

improvements in an industry setting, we additionally evaluate our approach on a11

proprietary dataset of Alexa QA pairs, and show increase of 2.3% F1 and 2.0%12

MAP. We additionally find that these improvements remain even when KB context13

is omitted at inference time, allowing for the use of our models within existing14

transformer workflows without additional latency or deployment costs.15

1 Introduction16

Transformers [25] and deep neural language models [31, 14, 13] have recently been shown to act17

as parameterized, implicit knowledge bases (KBs) [19]. This idea is substantiated by their strong18

performance [17, 5, 11] on knowledge-intensive (KI) tasks [18], such as question-answering [21],19

in addition to conventional natural language processing (NLP) tasks [20, 13, 7]. However, it has20

been shown that transformer knowledge acquisition [19, 22] and subsequent utilization [24, 8] can21

be uncontrollable, highly context dependent, and tightly coupled to language acquisition. These22

limitations may impact performance on KI tasks, such as Answer Sentence Selection (AS2). In23

this paper study, we show that an efficient, data-programming approach utilizing a KB improves24

performance on several AS2 tasks, demonstrating that some of these problems can be mitigated by a25

simple data augmentation technique employed during transformer fine-tuning.26

State of the art transformer models [5, 11] on widely studied AS2 benchmarks [30, 29] still fail to27

classify many QA pairs correctly, especially when examples require the model to precisely leverage28

encoded information. Table 1 illustrates a few such failures. In Example 1, the model is unable to29
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Example 1: Q: How old is Elton John’s husband?
Correct: David Furnish is 57 years old. He was born on October 25, 1962.
Selected: Elton John and David Furnish became an item after meeting in the early 1990s and
in 2005.

Example 2: Q: How many humps on a Camel?
Correct: The two surviving species of camel are the dromedary, or one-humped camel, which
is native to the Middle East and the Horn of Africa; and the Bactrian, or two-humped camel,
which inhabits Central Asia.
Selected: A camel is an even-toed ungulate within the genus Camelus, bearing distinctive
fatty deposits known as "humps" on its back.

Example 3: Q: What some legal uses of meth?
Correct: Although rarely prescribed, methamphetamine hydrochloride is approved by the
U.S. Food and Drug Administration (FDA) for the treatment of attention deficit hyperactivity
disorder and obesity under the trade name Desoxyn.
Selected: Methamphetamine, also known as metamfetamine, meth, ice, crystal, glass, tik,
N-methylamphetamine, methylamphetamine, and desoxyephedrine, is a psychostimulant of the
phenethylamine and amphetamine class of psychoactive drugs.

Table 1: Three QA examples incorrectly predicted by a state-of-the-art transformer answer selection
model (TANDA [5]).

leverage knowledge of the identity between Elton John’s husband and David Furnish. In Example 2,30

one-humped or two-humped are not recognizable as quantities pertaining to the uncommonly quantity31

humps. Example 3 shows the difficulty in reasoning for the a rare prescriptive use of the illicit drug32

methamphetamine. These examples illustrate some of the deficiencies of transformer knowledge33

utilization illustrated in prior studies [24, 8] and highlights the relevance of the AS2 task as a means34

to assess their impact on KI task performance.35

A number of recent studies have also studied approaches that aim to improve transformer performance36

on KI tasks, proposing the use of differentiable knowledge retrievers [6, 9, 12], retrieval-augmented37

generation (RAG) [9], KB embeddings such as KnowBERT [17] and ERNIE [32], and pre-training on38

verbalized KBs such as KELM [1]. While these approaches offer promising benefits for transformer39

knowledge encoding and retrieval, to our knowledge, none of them have been shown to outperform40

existing state of the art on AS2, a task that is essential to several question answering services provided41

by commercial voice assistants. Additionally, each of these approaches is significantly complex and42

require significant work to leverage in production applications. Our approach, on the other hand,43

leverages ElasticSearch to tag KB entries in input QA pairs, derives weak-supervision signals from44

tagged KB entries, and incorporates this context only during fine-tuning. We show that our simple,45

efficient and data-programming method confers significant performance benefits over the AS2 state46

of the art, even when KB context is omitted at inference time.47

The main contributions of our work are:48

• We show that several limitations in the use of transformers implicit KBs can be overcome49

using a simple data-programming approach by outperforming state-of-the-art models on50

several QA tasks:51

1. increasing by 2.0% p@1, 1.3% MAP, 1.1% MRR and 4.4% p@1, 0.9% MAP, 2.4%52

MRR on WikiQA and TrecQA respectively, two widely used AS2 benchmarks.53

2. increasing by 2.3% F1 and 2.0% MAP on AlexaQA pairs, a proprietary commercial54

answer classification benchmark.55

• We show that KB is not needed at inference time, allowing our trained models to be used as56

drop-in replacements for existing transformer-based AS2 systems.57

2 Background58

2.1 Limitation of Transformers as Knowledge Bases59

Transformers appear able to function as implicit knowledge bases, demonstrating strong performance60

on question-answering [22] and fill-in-the-blank cloze tasks, without access to external information61
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[19, 8]. However, knowledge acquisition is inefficient and largely uncontrollable, and subsequent62

knowledge utilization is highly sensitive to the language used in the task.63

The need for massive volumes of pre-training data indicates an inherent inefficiency in transformer64

encoding of structured knowledge [20]. Cloze task probes [19] show that the most frequently observed65

- rather than the most relevant - information gets encoded. It has been argued that [22] transformer66

knowledge acquisition is uncontrollable since the maximum-likelihood pre-training objective offers67

no way to ensure or prevent the acquisition of specific facts. Further, transformer ability to recall68

factual knowledge remains tightly bound to learned linguistic representation as shown by varying69

prompt wording in cloze tasks [8]. In a systematic study [24], it was shown that transformers70

exhibit sensitivity to the context and values of measurement and are thus unable to robustly compare71

quantities. For example, while RoBERTa [14] can effectively compare numbers, it fails to do so72

when values are given in terms of ages. This study also found limitations in multi-hop reasoning73

faculties and insensitivity to adverbial modifies like "always", "some", and "never" on multiple tasks.74

Other studies have shown insensitivity to negation [3], difficulty with misspellings and short, simple75

sequences [23], and sensitivity to sequence length, punctuation, and subject-verb agreement [2].76

2.2 Answer Sentence Selection (AS2) and Answer Classification77

The task of selecting answer candidates given a question can be modeled using a classifier scoring78

the candidates. In this way, the AS2 task may be used as a form of knowledge probe that requires79

the transformer leverage encoded relations to select the most factually correct answer. Let q be a80

question, Cq = {c1, . . . , cn} be a set of answer sentence candidates for q, we defineR as a ranking81

function, which orders the candidates in Cq according to a score, p (q, ci), indicating the probability82

of ci to be a correct answer for q. Answer sentence selection can be performed by taking the highest83

scoring candidate in Cq. Widely used metrics for AS2 performance are mean average precision84

(MAP) and mean reciprocal rank (MRR). The AS2 task can be adapted to perform binary answer85

classification, a related task that can be used to automatically evaluate QA system accuracy [28].86

Models developed for these tasks have numerous applications within virtual assistants, whether as a87

QA system component or as a stand-alone resource to reduce QA pair annotation costs.88

Transformer models [5, 11] have set a strong state of the art on the AS2 task and have recently89

demonstrated strong performance for the automatic evaluation of QA systems [28].90

3 Datasets91

3.1 Academic Datasets for AS292

Answer Sentence Natural Questions (ASNQ) [5] is a large scale QA dataset derived from Google’s93

Natural Questions [10] dataset. This dataset has more than ∼84K unique questions, each with one94

correct reference answer at minimum. The train split of this dataset is used to transfer a pre-trained95

transformer model to the AS2 task.96

WikiQA [30] is a challenging AS2 dataset constituted of manually annotated QA pairs, with questions97

derived from Bing query logs and associated candidate answer sentences extracted from Wikipedia.98

We utilize the clean version of this dataset for our research, which contains ∼1.1K unique questions,99

each with exactly one correct reference answer.100

TrecQA [27] is a widely used AS2 benchmark first used by Wang et. al. [29]. We leverage the clean101

version of the TrecQA dataset, which removes questions with no answers or with only positive or102

only negative answers. We additionally utilize the TRAIN-ALL split for fine-tuning, which contains103

1.2 K unique questions, each with at least one correct reference answer.104

All of our academic datasets are available under dataset specific licenses that permit their use and105

distribution for academic purposes.106

3.2 Industry Datasets for Answer Classification107

AlexaQA is a proprietary benchmarking dataset of QA pairs built from monthly samples of Alexa108

traffic taken over a 4 month period, de-identified, and annotated with correct/incorrect labels by109

expert annotators. This dataset contains ∼107K unique questions, with each question containing at110

3

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)


least one correct answer. Because the distribution of this dataset is significantly different from our111

academic benchmarks and thus less suitable for AS2, we measure performance on the task of binary112

answer classification.113

4 Modeling114

4.1 Dataset Preprocessing115

We implement a novel data enrichment pipeline that use an ElasticSearch index built from item and116

relation labels in Alexa’s KB to tag QA pairs with associated KB entries. KB meta-data for the tagged117

entries is used to derive the context we incorporate into our modeling. After popularity based filters118

are applied, we get an index containing 20.7M labels corresponding to entities and their relations.119

Table 2 summarizes the statistics of our datasets after processing with our pipeline, split by subset.120

Further details of the data augmentation pipeline can be found in Appendix A.121

Dataset #QA pairs % w/o KB #Correct w/ KB #Incorrect w/ KB

ASNQ Dev 276,809 .020% 1,117 275,692
ASNQ Test 879,594 .036% 3,600 875,672

ASNQ Train 29,987,324 .027% 120,184 29,867,166

WikiQA Dev 1,130 .000% 140 990
WikiQA Test 2,351 .000% 293 2,507

WikiQA Train 8,672 .000% 1,040 7,632

TrecQA Dev 1,117 .000% 205 912
TrecQA Test 1,442 .000% 248 1,194

TrecQA Train 53,417 .000% 6,403 47,011

AlexaQA Dev 26,951 .040% 25,822 1,192
AlexaQA Test 26,965 .000% 25,796 1,169

AlexaQA Train 215,416 .635% 205,070 8,978

Table 2: Dataset Statistics and KB Tag Rate

4.2 Architecture for AS2122

Our model builds upon the Transfer-and-Adapt (TANDA) architecture [5], the state-of-the-art for123

AS2, by leveraging KB-derived context to address deficiencies observed in transformer knowledge124

utilization for this task. We transfer a pre-trained transformer to the AS2 task using ASNQ and125

then adapt the transferred model onto our target dataset, either WikiQA, TrecQA, or AlexaQA.126

Training incorporates KB-derived context in both transfer and adapt steps, as discussed below. During127

inference, we optionally remove KB context so as to evaluate our approach as a drop-in replacement128

for existing transformer-based AS2 systems.129

We use a pre-trained RoBERTa-base model [14] and the same optimizer, hyper-parameters, and early130

stopping strategy described in [5] except for an increased sequence length of 256 to accomodate131

additional context. Experiments on ASNQ, WikiQA, and TrecQA use AWS EC2 p3dn.24xlarge hosts,132

and those on AlexaQA use AWS SageMaker ml.p3.16xlarge notebook instances.133

4.3 Incorporating KB-derived Context for Transformer Training134

Metadata for each entry tagged by the preprocessing pipeline (Section 4.1) is resolved to a textual135

representation using corresponding KB labels. An example of the JSON produced thus is shown136

below:137

138
{139

"text": "David Furnish is 57 years old.",140

"kb_tags": [{141

"kb_id": "e-478772",142

"popularity": 0.981,143

"candidate_title": "David Furnish",144
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"candidate_aliases": "David James Furnish, Elton John ’s145

husband"146

"collection": "celebrity",147

"relations": "married_to, years_old, birth_date, ... ",148

}]}149150

Inspired by other studies [16, 1] that verbalize structured data for use in language models, we insert151

the textual representation of KB context directly into model input. This approach may distract the152

model from attending to the QA pair itself if too much context is added and we thus employ two153

strategies to prevent this. First, we limit metadata to the collection property, whose values include154

common categories such as "celebrity", "quantity", and "generic drug form". 1. The collection155

property in our KB has many analogous properties in other KBs, for example, the instance of relation156

in Wikidata [4].157

Second, we employ a filter that constrains the number of entries from which KB context is added.158

The intersection filter exploits the intuitive hypothesis that correct QA pairs will contain the same159

KB entries, adding context only if the same entry is tagged in both the question and the answer. For160

example, this filter adds context for entry David Furnish from the QA pair: Q: how old is Elton John’s161

husband; A: David Furnish is 57 years old because the question contains Elton John’s husband,162

an alias for "David Furnish" in our KB, and the answer contains David Furnish. The intersection163

filter excluded context for entries like 57 and husband, even though entries for both exist in our164

KB. We additionally study the 1-best filter, which selects the KB entry from the answer with the165

highest popularity in our KB as a more lenient alternative. Two strategies of concatenating context166

to question/answer text are also explored: append and prepend; in both cases, the model’s special167

separator token 2 is used to separate the context from question/answer text.168

An example of the resulting sequences are shown below:169

• Append: how old is elton john’s husband <\s> john furnish is 57 years old. he was born on170

october 25, 1962 <\s> celebrity <\s> celebrity171

• Prepend: <\s> celebrity <\s> celebrity <\s> how old is elton john’s husband <\s> john172

furnish is 57 years old. he was born on october 25, 1962173

5 Results174

Performance of KB augmented transformer models for standard fine-tuning (FT) on ASNQ is shown175

in Table 3. Transfer-and-Adapt performance with KB augmentation is reported for WikiQA, TrecQA,176

and AlexaQA in Tables 4, 5 and 6 respectively. We indicate the datasets used in Transfer-and-Adapt177

setting using two arguments, transfer dataset→ adapt dataset with numerics in parentheses indicate178

training epochs. Baseline models - i.e. the RoBERTa base TANDA state-of-the-art set by [5] - are179

indicated by * and lack the -KB suffix.180

We additionally evaluate a setting in which KB context is omitted at inference time to explore the181

ability of our approach to modulate transformer knowledge utilization. Results for this setting are182

reported for each dataset and are indicated by the value of the Incl. KB at Inference column.183

Model KB Approach Incl. KB at Inference p@1 MAP MRR
RoBERTa FT ASNQ(9)* – No .599 .672 .716
RoBERTa FT ASNQ-KB(9) Append, Intersection Yes .627 .696 .737
RoBERTa FT ASNQ-KB(9) Prepend, Intersection Yes .627 .702 .745
RoBERTa FT ASNQ-KB(9) Prepend, 1 best Yes .616 .694 .736

RoBERTa FT ASNQ-KB(9) Append, Intersection No .628 .692 .736
RoBERTa FT ASNQ-KB(9) Prepend, Intersection No .621 .696 .739
RoBERTa FT ASNQ-KB(9) Prepend, 1 best No .617 .693 .735

Table 3: Performance of KB-augmented fine-tuned (FT) transformer models on ASNQ
1initial experimentation using metadata derived from the popularity, aliases, and relations suggested that the

collection property was the most effective.
2We tried other separator tokens, including "#", ":", and " ", and found the special separator performs

marginally better

5



Model KB Approach Incl. KB at Inference p@1 MAP MRR
RoBERTa ASNQ(9) → WikiQA(9)* – No .827 .890 .901
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Append, Intersection Yes .835 .891 .903
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, Intersection Yes .847 .903 .913
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, 1-best Yes .835 .885 .898

RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Append, Intersection No .835 .892 .902
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, Intersection No .843 .895 .907
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, 1-best No .839 .887 .900

Table 4: Performance of KB-augmented fine-tuned (FT) transformer models on WikiQA

Model KB Approach Incl. KB at Inference p@1 MAP MRR
RoBERTa ASNQ(9) → TrecQA(9)* – No .897 .906 .942
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Append, Intersection Yes .911 .901 .952
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, Intersection Yes .926 .914 .960
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, 1-best Yes .897 .900 .944

RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Append, Intersection No .941 .915 .966
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, Intersection No .911 .901 .955
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, 1-best No .926 .905 .959

Table 5: Performance of KB-augmented fine-tuned (FT) transformer models on TrecQA

Model KB Approach Incl. KB at Inference F1 MAP

RoBERTa ASNQ(1) → AlexaQA(1) – No .848 .839
RoBERTa ASNQ(9) → AlexaQA(1)* – No .829 .842
RoBERTa ASNQ-KB(1) →AlexaQA-KB(1) Append, Intersection Yes .852 .860
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, Intersection Yes .850 .862
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, 1-best Yes .850 .858

RoBERTa ASNQ-KB(1)-→AlexaQA-KB(1) Append, Intersection No .851 .859
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, Intersection No .850 .861
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, 1-best No .849 .857

Table 6: Performance of KB-augmented fine-tuned (FT) transformer models on AlexaQA. Models
transferred for only (1) epoch are shown, since our experiments indicate that further epochs of transfer
to ASNQ conveyed marginal benefits for AlexaQA.

These results show that:184

• KB context improves fine-tuning performance on ASNQ, increasing the p@1, MRR and185

MAP by 2.9%, 3.0%, and 2.9% after 9 epochs.186

• Training with KB context improves on the strong performance set by the state of the art187

TANDA approach on widely studied benchmarks, increasing the p@1, MRR and MAP by188

2%, 1.3%, and 1.1% and 4.4%, 0.9%, and 2.4% on WikiQA and TrecQA respectively.189

• The benefits of KB context generalize to our industry setting, increasing the F1 and MAP by190

2.3% and 2.0% over the TANDA state of the art, RoBERTa ASNQ(9)→AlexaQA(1), and191

by .4% and 2.3% over the more challenging baseline, RoBERTa ASNQ(1)→ AlexaQA(1).192

• Models trained with our approach continue to outperform the TANDA state of the art even193

when KB context is omitted at inference time; in other words, the benefits of KB context are194

primarily realized during model training.195

6 Discussion196

6.1 Comparing Context Generation Strategies197

Results reported in Tables 3, 4, 5 and 6 all demonstrate that our approach outperforms the state of the198

art approach, even in the more challenging setting where KB context is omitted at inference time. We199

explain the robustness of our models to the omission of KB context in light of the proportion of each200
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dataset that our approach impacts. The intersection filter adds KB context to only 3.38% of the ASNQ201

dataset, 5.27% of TrecQA, and 8.33% of WikiQA while the 1 best filter adds context for 31.17% for202

ASNQ, 51.1% for TrecQA, 40.79% for WikiQA. We hypothesize that the large number of training203

examples seen without context allows the model to leverage context as a for weak supervision that204

encourages knowledge utilization and elaborate further in subsection 6.2 below.205

These results show that the more intuitive intersection filter performs better than the 1 best filter206

for both concatenation strategies, despite impacting between significantly less of each dataset. We207

conclude that the explicit conceptual alignment provided by the intersection conveys additional208

benefits beyond the addition of conceptual keywords provided by the 1 best filter. The prepend209

strategy outperforms the append strategy on all datasets other than TrecQA, a deviation that we210

attribute to the small size of the TrecQA test set. We explicate these findings in light of the positional211

invariance the prepend strategy - that is, prepend always adds context in the same position in the212

sequence, whereas append does not. As a result, prepend models appear better able to attend to213

context and outperform their append counterparts, even though prepend models suffer more when214

context is omitted at inference.215

6.2 Impact of KB Context216

We leverage the three illustrative examples presented in Table 1 to probe the impact of our KB context217

and its potential to address the previously studied [8, 24] deficiencies of transformers as implicit218

KBs. Models trained with our approach classify each of these examples correctly, even when KB is219

omitted at inference, indicating that they may be able to exploit our context to refine their utilization220

of encoded knowledge. In order to identify the mechanism behind these benefits, we compare the221

attention of TANDA with that of our best model, prepend, intersection, using box plots of attention222

intensity and bar plots of activate head counts per layer in Appendix B.223

Example 1 requires the model to leverage encoded knowledge in order to make the connection224

between "husband" and "David Furnish" necessary to recognize that the phrase "is 57 years old"225

answers the question phrase "how old". Figure 1 presents model attention weights between tokens226

"how" and "57" and between "husband" and "David", where it can be seen that our approach227

significantly improves both the quantity of heads attending to these keywords and the intensity of228

this attention. It is likely that model pre-training has encoded this knowledge, given that the second229

sentence on David Furnish’s Wikipedia page reads: "He is married to English musician Sir Elton230

John". Unsurprisingly, changing the question or the answer text to remove this relation - to either231

"How old is David Furnish" or "Elton John’s husband David Furnish is 57 years old" - produces the232

correct answer from the TANDA model.233

Example 2 probes transformer ability to robustly recognize that "one-humped" and "two-humped"234

are values for the quantity sought by "how many" and are related to the subject "Camel". We235

hypothesize that the KB context "animal" added for similar entities during training increases attention236

on "camel" tokens and their modifiers, "one-humped" and "two-humped" in this case. Figure 2237

compares model attention weights of tokens "many" and "Camel" with the values "one" and "two"238

and again demonstrate that our approach significantly increases the intensity of model attention239

between these terms. Changing the answer to use common numeric values "the Dromedary Camel240

has 1 hump...and the Bactrian Camel has 2 humps" is sufficient for the TANDA model to select the241

correct answer.242

Example 3 illustrates whether the model is able to connect the adverbial phrase "some legal uses" in243

the question with the phrase approved...for the treatment of... in the correct answer. Interestingly,244

the KB context added for "meth" and entities like it is "generic drug", which we hypothesize may245

encourage attention to relevant terms like "treatment" that are not commonly used in context of the246

subject "meth". Figure 3 shows the weights connecting "treatment" with "uses" and "meth" and247

further demonstrates the impact of our approach on model attention. We conclude that in some cases,248

the context itself may provide relevant information that helps the model more effectively utilize249

uncommon knowledge, like that meth may be used as a medical treatment.250
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7 Conclusion251

In this paper, we presented a data-programming approach that enriches transformer training data with252

KB-derived context, and demonstrate that it beats state of the art approach on several challenging253

knowledge-intensive question-answering benchmarks such as ASNQ, WikiQA, TrecQA, and Alexa254

QA. Our findings indicate that our approach addresses some deficiencies of transformer knowledge255

utilization that negatively impact AS2 performance. We probed the mechanism of our approach256

with challenging examples that highlight the potential ways in which our KB context may allow257

transformers to better utilize encoded knowledge. Our method is simple, efficient and task-agnostic,258

and training benefits remain even when KB context is omitted at inference time. We believe that259

our approach provides a way to rapidly integrate the benefits of KBs within the deployed inference260

pipelines utilized in many virtual-assistant workflows.261

While we improve on the state of the art approach in AS2, we do acknowledge that our approach262

may face limitations of its own. While our approach is efficient in that it not require significant263

pre-training, unlike KB based approaches like KELM, KnowBERT, and ERNIE as well as retrieval264

oriented approaches like REALM and RAG, it is inefficient in that it likely does not leverage the full265

richness of our KB. This has the negative consequence that our approach still requires significant266

task-specific training and thus consumes significant GPU hours and the natural resources used to267

power them. Further work beyond the data-programming approach that we propose in the direction268

of more effective transformer architectures that enhance knowledge utilization can lessen this impact269

and provide models capable of more completely disentangling knowledge and language acquisition.270
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al. [5] in order to accurately assess the added benefits of our approach over their state373
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applicable? [N/A]397

(b) Did you describe any potential participant risks, with links to Institutional Review398

Board (IRB) approvals, if applicable? [N/A]399

(c) Did you include the estimated hourly wage paid to participants and the total amount400

spent on participant compensation? [N/A]401

A Augmentation Pipeline Detail402

Our pipeline consists of two components, the first of which tags KB entries in the input text and the403

second of which queries the KB to obtain reference for each tag. The tagging component matches404

text to KB entries by aggregating the results of three queries on the resulting ElasticSearch index. For405

each word w in the set of words W = {w1, . . . , wn} in the input text, we tag wi as a KB entry if:406

• wi is an exact match for a label in the index407

• wi is contained by a label in the index408

• wi and wi + 1 is a quorum match for a label in the index409

Using the contains and quorum queries introduces a degree of fuzziness that allows the index to410

effectively capture KB entries with multi-word labels. The results of these 3 queries are sorted411

for relevance using the default ElasticSearch relevance metric and the top result is used as the tag.412

Consecutive words that match the same label and construct are assumed to be a single KB entry and413

are thus concatenated.414

The tagging component effectively acts as a simple IR system that, given input word tokens, returns415

the KB id for any tagged KB entry. While much more advanced IR systems exist [15], we do not416

consider them here and opt instead for this rudimentary approach. We use this pipeline to tag KB417

entries in both the question and the answer texts.418

The query component of the pipeline obtains reference information from the KB for each KB entries419

tagged in the input text. For each KB tag t in the set of tags T = {t1, . . . , tn} matched in the420

input text, the query component retrieves reference known about t from the KB, including the tag421

classification and any allowed relations. Retrieved reference information is stored in a lookup table422

for subsequent use.423

B Attention Weight Comparison424

In the graphs below, we illustrate the impact of our approach on model attention for the challenging425

AS2 examples presented in Table 1. We do not add KB context at inference for any of these examples,426

opting to visualize the impact of our approach in the more challenging "omit KB" setting. We leverage427

BertViz [26] to extract model attention weights and quantify model attention between meaningful428

keywords selected in question and answer texts. Box plots, shown on the left, quantify the intensity429

of model attention across all layers, while bar plots, shown on the right, quantify the number of heads430

per layer exhibiting attention weights greater than an arbitrary minimum of 0.1.431
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Figure 1: Attention comparison for the correct QA pair Q: How old is Elton John’s husband A: David
Furnish is 57 years old. He was born on October 25, 1962

.

Figure 2: Attention comparison for the correct QA pair Q: How many humps on a Camel? A: The two
surviving species of camel are the dromedary, or one-humped camel, which is native to the Middle
East and the Horn of Africa; and the Bactrian, or two-humped camel, which inhabits Central Asia.
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Figure 3: Attention comparison for the correct QA pair Q: What some legal uses of meth? A:
Although rarely prescribed, methamphetamine hydrochloride is approved by the U.S. Food and Drug
Administration (FDA) for the treatment of attention deficit hyperactivity disorder and obesity under
the trade name Desoxyn.
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