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Abstract

Diffusion probabilistic model (DPM) recently becomes one of the hottest topic in computer
vision. Its image generation application such as Imagen, Latent Diffusion Models and Stable
Diffusion have shown impressive generation capabilities, which aroused extensive discussion
in the community. Many recent studies also found it is useful in many other vision tasks,
like image deblurring, super-resolution and anomaly detection. Inspired by the success of
DPM, we propose the first DPM based model toward general medical image segmentation
tasks, which we named MedSegDiff. In order to enhance the step-wise regional attention
in DPM for the medical image segmentation, we propose dynamic conditional encoding,
which establishes the state-adaptive conditions for each sampling step. We further propose
Feature Frequency Parser (FF-Parser), to eliminate the negative effect of high-frequency
noise component in this process. We verify MedSegDiff on three medical segmentation
tasks with different image modalities, which are optic cup segmentation over fundus im-
ages, brain tumor segmentation over MRI images and thyroid nodule segmentation over
ultrasound images. The experimental results show that MedSegDiff outperforms state-of-
the-art (SOTA) methods with considerable performance gap, indicating the generalization
and effectiveness of the proposed model.

Keywords: diffusion probabilistic model, medical image segmentation, brain tumor, optic
cup, thyroid nodule

1. Introduction

Medical image segmentation is the process of partitioning a medical image into meaningful
regions. Segmentation is a fundamental step in many medical image analysis applications
such as diagnosis, surgical planning, and image-guided surgery. This is important because
it allows doctors and other medical professionals to better understand what they’re looking
at. It also makes it easier to compare images and track changes over time. In recent years,
there has been a growing interest in automatic medical image segmentation methods. These
methods have the potential to reduce the time and effort required for manual segmentation,
and to improve the consistency and accuracy of results. With the development of the deep
learning techniques, more and more studies successfully applied the neural network (NN)
based models to the medical image segmentation tasks, from the popular convolution neural
networks (CNN) (Ji et al., 2021) to the recent vision transformers (ViT) (Chen et al., 2021;
Wang et al., 2021; Liu et al., 2022; Zhao et al., 2021).

Very recently, diffusion probabilistic model (DPM)(Ho et al., 2020) gained popularity
as a powerful class of generative models(Zhao and Shi, 2021; Goodfellow et al., 2020), that
is able to generate images with high diversity and synthesis quality. Recent large diffusion
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models, such as DALL-E2(Ramesh et al., 2022), Imagen(Saharia et al., 2022a), and Stable
Diffusion(Rombach et al., 2022) have shown incredible generation capability. Diffusion
models are originally applied in fields in which there is no absolute ground-truth. However,
recent studies show that it is also effective for the problems in which the ground-truth is
unique, like super-resolution(Saharia et al., 2022b) and deblurring(Whang et al., 2022).

Inspired by the recent success of DPM, we design a unique DPM-based segmentation
model for the medical image segmentation tasks. To our knowledge, we are the first to pro-
pose the DPM-based model under the background of general medical image segmentation
with different image modalities. We note that in tasks of medical image segmentation, the
lesions/organs are often ambiguous and hard to discriminate from the background. In that
case, an adaptive calibration process is the key to obtain a delicate result. Following this
mindset, we propose dynamic conditional encoding over vanilla DPM to design the pro-
posed model, named MedSegDiff. Note that in the iterative sampling process, MedSegDiff
conditions each of the step with image prior, in order to learn the segmentation map from
it. Toward the adaptive regional attention, we integrate the segmentation map of current
step into the image prior encoding at each step. The specific implementation is to fuse the
current-step segmentation mask with the image prior on the feature level with a multi-scale
manner. In this way, the corrupted current-step mask helps to dynamically enhance the
condition features, thus improves the reconstruction accuracy. In order to eliminate the
high-frequency noises in the corrupted given mask in this process, we further propose the
feature frequency parser (FF-Parser) to filter the features in the Fourier space. FF-Parsers
are adopted on each skip connection path for the multi-scale integration. We verify Med-
SegDiff on three different medical segmentation tasks, the optic-cup segmentation, the brain
tumor segmentation, and the thyroid nodule segmentation. The images of these tasks have
different modalities, which are the fundus images, brain CT images, the ultrasound images
respectively. MedSegDiff outperforms the previous SOTA on all three tasks with different
modalities, which shows the generalization and effectiveness the proposed method. In brief,
the contributions of the paper are:

• The fist to propose DPM-based model toward general medical image segmentation.

• Dynamic conditional encoding strategy is proposed for step-wise attention.

• FF-Parser is proposed to eliminate the negative effects of high-frequency components.

• SOTA performance on three different medical segmentation tasks with different image
modalities.

2. Method

We design our model based on diffusion model mentioned in (Ho et al., 2020). Diffusion
models are generative models composed of two stages, a forward diffusion stage and a
reverse diffusion stage. In the forward process, the segmentation label x0 is gradually added
Gaussian noise through a series of steps T . In the reverse process, a neural network is trained
to recover the original data by reversing the noising process, which can be represented as:

pθ(x0:T−1|xT ) = ΠT
t=1pθ(xt−1|xt), (1)
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Figure 1: An illustration of MedSegDiff. For the clarity, the time step encoding is omitted
in the figure.

where θ is reverse process parameters. Starting from a Gaussian noise, pθ(xT ) = N (xT ; 0, In×n),
where I is the raw image, the reverse process transforms the latent variable distribution
pθ(xT ) to the data distribution pθ(x0). To be symmetrical to the forward process, the
reverse process recovers the noise image step by step to obtain the final clear segmentation.

Following the standard implementation of DPM, we adopt a UNet as the network for
the learning. An illustration is shown in Figure 1. In order to achieve the segmentation, we
condition the step estimation function ϵ by raw image prior, which can be represented as:

ϵθ(xt, I, t) = D((EI
t + Ex

t , t), t), (2)

where EI
t is the conditional feature embedding, in our case, the raw image embedding, Ex

t

is the segmentation map feature embedding of the current step. The two components are
added and sent to a UNet decoder D for the reconstruction. The step index t is integrated
with the added embedding and decoder features. In each of these, it is embedded using a
shared learned look-up table, following (Ho et al., 2020).

2.1. Dynamic Conditional Encoding

In most conditional DPM, the conditional prior will be a unique given information. However,
medical image segmentation is notorious for its ambiguous objects. The lesions or tissues
are often hard to discriminate from its background. The low-contrast image modalities,
such as MRI or ultrasound images, make it even worse. Given only a static image I as the
condition for each step will be hard to learn. To address this problem, we propose a dynamic
conditional encoding for each step. We note that on the one hand, the raw image contains
the accurate segmentation target information but hard to discriminate from the background,
on the other hand, the current-step segmentation map contains the enhanced target regions
but not accurate. This motivated us to integrate the current-step segmentation information
xt into the conditional raw image encoding for the mutual complement. To be specific, we
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implement the integration on the feature level. In the raw image encoder, we enhance its
intermediate feature with the current-step encoding features. Each scale of the conditional
feature mapmk

I is fused with the xt encoding featuresm
k
x with the same shape, k is the index

of layer. The fusion is implemented by an attentive-like mechanism A. In particular, two
feature maps are first applied layer normalization and multiply together to get an affinity
map. Then we multiply the affinity map with the condition encoding features to enhance
the attentive region, which is:

A(mk
I ,m

k
x) = (LN(mk

I )⊗ LN(mk
x))⊗mk

I , (3)

where ⊗ implies element-wise multiplication, LN denotes layer normalization. The opera-
tion is applied on the middle two stages, where each is the convolutional stage implemented
following ResNet34. Such a strategy helps MedSegDiff dynamically localize and calibrate
the segmentation. Although effective the strategy it is, another specific problem is that
integrating xt embedding will induce extra high-frequency noise. To address this problem,
we propose FF-Parser to constrain the high-frequency components in the features.

2.2. FF-Parser

We connect FF-parser in the path ways of the feature integration. The function of it is
to constrain the noise-related components in the xt features. Our main idea is to learn
a parameterized attentive (weight) map applying on the Fourier-space features. Given a
decoder feature map m ∈ RH×W×C , we first perform 2D FFT(fast fourier transform) along
the spatial dimensions, which we can represented as:

M = F [m] ∈ CH×W×C , (4)

where F [·] denotes the 2D FFT. We then modulate the spectrum of m by multiplying a
parameterized attentive map A ∈ CH×W×C to M :

M ′ = A⊗M, (5)

where ⊗ denotes the element-wise product. Finally, we reverse M ′ back to the spatial
domain by adopting inverse FFT:

m′ = F−1[M ′]. (6)

FF-Parser can be regarded as a learnable version of frequency filters which are wildly applied
in the digital image processing (Pitas, 2000). Different from the spacial attention, it globally
adjusts the components of the specific frequencies. Thus it can be learn to constrain the
high-frequency component for the adaptive integration.

2.3. Training and Architecture

MedSegDiff is trained following the standard process of DPM (Ho et al., 2020). Specifically,
the loss can be represented as:

L = Ex0,ϵ,t[||ϵ− ϵθ(
√
âtx0 +

√
1− âtϵ, Ii, t)||2]. (7)
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Figure 2: An illustration of FF-Parser. FFT denotes Fast Fourier Transform.

In each of the iteration, a random couple of raw image Ii and segmentation label Si will be
sampled for the training. The iteration number is sampled from a uniform distribution and
ϵ from a Gaussian distribution.

The main architecture of MedSegDiff is a modified ResUNet(Yu et al., 2019), which
we implement it with a ResNet encoder following a UNet decoder. The detailed network
setting is following (Nichol and Dhariwal, 2021). I and xt are encoded with two individual
encoders. The encoder is consisted of the convolution stages containing multiple residual
blocks. The number of residual blocks in each stage is following that of ResNet34. Each
residual block is composed of two convolutional blocks, each one consists of group-norm and
SiLU(Elfwing et al., 2018) active layer and a convolutional layer. The residual block receives
the time embedding through a linear layer, SiLU activation, and another linear layer. The
result is then added to the output of the first convolutional block. The obtained EI and Ext

are added together and sent to the last encoding stage. A standard convolutional decoder
is connected to predict the final result.

3. Experiments

3.1. Dataset

We conduct the experiments on three different medical tasks with different image modalities,
which are optic-cup segmentation from fundus images, brain tumor segmentation from MRI
images, and thyroid nodule segmentation from ultrasound images. The experiments of
glaucoma, thyroid cancer and melanoma diagnosis are conducted on REFUGE-2 dataset
(Fang et al., 2022), BraTs-2021 dataset (Baid et al., 2021) and DDTI dataset (Pedraza
et al., 2015), which contain 1200, 2000, 8046 samples, respectively. The datasets are publicly
available with both segmentation and diagnosis labels. Train/validation/test sets are split
following the default settings of the dataset.
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3.2. Implementation Details

We experiment with huge, large, basic, and small variants of our model, MedSegDiff++,
MedSegDiff-L,MedSegDiff-B, andMedSegDiff-S, respectively. InMedSegDiff-S,MedSegDiff-
B MedSegDiff-L, MedSegDiff++, we use UNet with 4x, 5x, 6x, 6x downsamples respectively.
In the experiments, we employ 100 diffusion steps for the inference, which is much smaller
than most of the previous studies(Ho et al., 2020; Nichol and Dhariwal, 2021). All the
experiments are implemented with the PyTorch platform and trained/tested on 4 Tesla
P40 GPU with 24GB of memory except MedSegDiff++ and MedSegDiff-L. All images are
uniformly resized to the dimension of 256×256 pixels. The networks are trained in an end-
to-end manner using AdamW(Loshchilov and Hutter, 2017) optimizer. MedSegDiff-B and
MedSegDiff-S are trained with 32 batch size, MedSegDiff-L and MedSegDiff++ are trained
with 64 batch size. The learning rate is initially set to 1 ×10−4. All models are set 25
times of ensemble in the inference. We use STAPLE(Warfield et al., 2004) algorithm to
fuse the different samples. The diffusion based competitor EnsemDiff(Wolleb et al., 2021)
is reproduced with the same setting for the fair comparison.

3.3. Main Results

We compare with SOTA segmentation methods proposed for the three specific tasks and
general medical image segmentation methods. The main results are shown in Table 1. In
the table, ResUnet(Yu et al., 2019) and BEAL(Wang et al., 2019) are proposed for optic
disc/cup segmentation, TransBTS(Wang et al., 2021) and EnsemDiff(Wolleb et al., 2021) are
proposed for the brain tumor segmentation, MTSeg(Gong et al., 2021) and UltraUNet(Chu
et al., 2021) are proposed for the Thyroid Nodule segmentation, CENet(Gu et al., 2019),
MRNet(Ji et al., 2021), SegNet(Badrinarayanan et al., 2017), nnUNet(Isensee et al., 2021)
and TransUNet(Chen et al., 2021) are proposed for the general medical image segmentation.
We evaluate the segmentation performance by Dice score and IoU.

In Table 1, we compare with the methods implemented with various network architec-
tures, including CNN (ResUNet, BEAL, nnUNet, SegNet), vision transformer (TransBTS,
TransUNet) and DPM (EnsemDiff). We can see the advanced network architectures com-
monly gain better results. For example, in optic-cup segmentation, ViT-based general
segmentation method: TransUNet is even better than the CNN-based task toward method:
BEAL. On brain tumor segmentation, recently proposed DPM-based segmentation method
EnsemDiff outperforms all those previous ViT-based competitors, i.e., TransBTS and Tran-
sUNet. MedSegDiff not only adopts the recent successful DPM, but also designs an appro-
priate strategy over it specifically towards the general medical image segmentation task.
We can see MedSegDiff outperforms all the other methods on three different tasks, which
shows the generalization toward different medical segmentation tasks and different image
modalities. Comparing against DPM-based model proposed specifically for the brain tumor
segmentation, i.e., EnsemDiff, it improves 2.3% on Dice and 2.4% on IoU, which indicates
the effectiveness of our unique techniques, i.e, dynamic conditioning and FF-Parser.

Figure 3 shows several typical examples generated by our MedSegDiff and other SOTA
methods. It can be seen the target lesions/tissues are all ambiguous on the images so that
they are hard to be recognized by human eyes. Comparing with these computer-aided
methods, it is obvious that the segmentation maps generated by the proposed method are
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Figure 3: The visual comparison of Top-4 general medical image segmentation methods in
Table 1. From top to down are brain-tumor segmentation, optic-cup segmentation
and thyroid nodule segmentation, respectively.

more accurate than the other methods, especially for the ambiguous regions. To be benefited
from DPM together with the proposed dynamic conditioning and FF-Parser, it can better
localize and calibrate the segmentation on the low-contrast or ambiguous images.

3.4. Ablation Study

We do comprehensive ablation study to verify the effectiveness of the proposed dynamic
conditioning and FF-Parser. The results are shown in Table 2, where Dy-Cond denotes
dynamic conditioning. We evaluate the performance by Dice score(%) on all three tasks.
From the table, we can see Dy-Cond gains considerable improvements over vanilla DPM. On
the case which the region localization is important, i.e., optic-cup segmentation, it improves
2.1%. On the cases which the images are low-contrast, like brain tumor and thyroid nodule
segmentation, it improves 1.6% and 1.8% respectively. It shows Dy-Cond is a generally
effective strategy on DPM for both of the cases. FF-Parser which established over Dy-
Cond mitigates the high-frequency noises thus further optimize the segmentation results.
It helps MedSegDiff further improve near 1% performance and achieve the best on all three
tasks.

4. Conclusion

In this paper, we provided a scheme for DPM-based general medical image segmentation,
named MedSegDiff. We propose two novel techniques to promise the performance of it,
i.e., the dynamic conditional encoding and FF-Parser. The comparison experiments are
conducted on three medical image segmentation tasks with different image modalities, which
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Table 1: The comparison of MedSegDiff with SOTA segmentation methods. Best results
are denoted as bold. The grey background denotes the methods are proposed for
that/these particular tasks.

Optic-Cup Brain-Turmor Thyroid Nodule

Dice IoU Dice IoU Dice IoU

ResUnet 80.1 72.3 - - - -
BEAL 83.5 74.1 - - - -

TransBTS - - 87.6 78.3 - -
EnsemDiff - - 88.7 80.9 - -

MTSeg - - - - 82.3 75.2
UltraUNet - - - - 84.5 76.2

CENet 78.6 69,4 76.2 68.9 78.9 71.2
MRNet 84.2 75.1 83.4 75.6 80.4 73.4
SegNet 80.4 70.7 80.2 72.9 81.7 74.5
nnUNet 84.9 75.1 88.2 80.4 84.2 76.2

TransUNet 85.6 75.9 86.6 79.0 83.5 75.1

MedSegDiff-S 81.2 71.7 82.3 73.6 80.8 73.7
MedSegDiff-B 85.9 76.2 88.9 81.2 84.8 76.4
MedSegDiff-L 86.9 78.5 89.9 82.3 86.1 79.6
MedSegDiff++ 87.5 79.1 90.5 82.8 86.6 80.2

Table 2: An ablation study on dynamic condition encoding and FF-Parser. Dice score(%)
is used as the metric.

Dy-Cond FF-Parser OpticCup BrainTumor ThyroidNodule

84.6 88.2 84.1
✓ 86.7 89.8 85.9
✓ ✓ 87.5 90.5 86.6

shows our model outperforms previous SOTA. As the first DPM application in general
medical image segmentation, we believe MedSegDiff will serve as an essential benchmark
for future research.
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