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Abstract

In this work, we investigate the unexplored intersection of domain generalization1

and data-free learning. In particular, we address the question: How can knowledge2

contained in models trained on different source data domains can be merged into3

a single model that generalizes well to unseen target domains, in the absence4

of source and target domain data? Machine learning models that can cope with5

domain shift are essential for for real-world scenarios with often changing data6

distributions. Prior domain generalization methods typically rely on using source7

domain data, making them unsuitable for private decentralized data. We define the8

novel problem of Data-Free Domain Generalization (DFDG), a practical setting9

where models trained on the source domains separately are available instead of the10

original datasets, and investigate how to effectively solve the domain generalization11

problem in that case. We propose DEKAN, an approach that extracts and fuses12

domain-specific knowledge from the available teacher models into a student model13

robust to domain shift. Our empirical evaluation demonstrates the effectiveness of14

our method which achieves first state-of-the-art results in DFDG by significantly15

outperforming ensemble and data-free knowledge distillation baselines.16

1 Introduction17

Deep learning methods have achieved impressive performance in a wide variety of tasks where the data18

is independent and identically distributed. However, real-world scenarios usually involve a distribution19

shift between the training data used during development and the test data faced at deployment time.20

In such situations, deep learning models often suffer from a performance degradation and fail to21

generalize to the out-of-distribution (OOD) data from the target domain [62, 66, 17, 21]. For instance,22

this domain shift problem is encountered when applying deep learning models on MRI data from23

different clinical centers that use different scanners [10]. Domain Adaptation (DA) approaches24

[71, 73] assume access to data from the source domain(s) for training as well as target domain data25

for model adaptation. However, data collection from the target domain can sometimes be expensive,26

slow, or infeasible, e.g. self-driving cars have to generalize to a variety of weather conditions [80] and27

object poses [3] in urban and rural environments from different countries. In this work, we focus on28

the Domain Generalization (DG) [5, 48] setting, where a model trained on multiple source domains29

is applied without any modification to unseen target domains.30

A plethora of DG methods requiring only access to the source domains were proposed [86]. Neverthe-31

less, the assumption that access to source domain data can always be granted does not hold in many32

cases. For instance, General Data Protection Regulation (GDPR) prohibits the access to sensitive data33

that might identify individuals, e.g. bio-metric data or other confidential information. Likewise, some34

commercial entities are not willing to share their original data to prevent competitive disadvantage.35

Furthermore, as datasets get larger, their release, transfer, storage and management can become36

prohibitively expensive [39]. To circumvent the concerns related to releasing the original dataset, the37

data owners might want to share a model trained on their data instead. In light of increasing data38

privacy concerns, this alternative has recently enjoyed a surge of interest [44, 7, 50, 37, 33, 28, 78, 1].39
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Although data-free knowledge distillation methods were developed to transfer knowledge from a40

teacher model to a student model without any access to the original data [39, 44, 7, 50, 78, 9], only41

single-teacher scenarios with no domain shift were studied. On the other hand, source-free domain42

adaptation approaches were proposed to tackle the domain shift problem where one [37, 33, 28, 70, 11]43

or multiple [1] models trained on source domain data are available instead of the original dataset(s).44

Nonetheless, they require access to data from the target domain. In this work, we investigate45

the unstudied intersection of Domain Generalization and Data-Free Learning. Data-Free Domain46

Generalization (DFDG) is a problem setting that assumes only access to models trained on the source47

domains, without requiring data from source or target domains. Hereby, the goal is to have a single48

model able to generalize to unseen domains without any modification or data exposure. To the best of49

our knowledge, we are the first to address this problem. Related settings are discussed in Appendix A.50

Our contribution is threefold: Firstly, we introduce and define the novel and practical DFDG setting.51

Secondly, we tackle it by proposing a first and strong approach that merges the knowledge stored in52

the domain-specific models via synthetic data generation and distills it into a single model. Thirdly,53

we demonstrate the effectiveness of our method by evaluating it on two DG benchmark datasets.54

2 Approach55

2.1 Problem statement56

Let Di
s and Dj

t denote the datasets available from the source and target domains respectively with57

i = 1, .., I and j = 1, .., J . Hereby, I and J denote the number of source and target domains58

respectively. In the Domain Generalization (DG) [5, 48] problem setting, the goal is to train a model59

on the source domain data Di
s in a way that enables generalization to a priori unavailable target60

domain data Dj
t , without any model modification at test time. We consider the source-data-free61

scenario of this problem where the source domain datasets Di
s are not accessible, e.g., due to privacy,62

security, safety or commercial concerns, and models trained on these datasets separately are available63

instead. We refer to the source domain models as teacher models Ti as in the knowledge distillation64

literature [22]. We assume that the teacher models were trained without the prior knowledge that they65

would be used in a DFDG setting, i.e., their training does not involve any domain shift robustness66

mechanism. Hence, the application scenarios where the source domain data is not accessible67

anymore, e.g., was deleted, are also considered. We refer to this novel learning scenario as Data-Free68

Domain Generalization (DFDG). The major difference with Source-Free Domain Adaptation (SFDA)69

[37, 33, 28] is the absence of target domain data Dj
t in DFDG. The DFDG problem is a prototype for70

a practical use case where a model robust to domain shifts is needed and models trained on the same71

task but different data domains are available. This problem definition is motivated by the question:72

How can we amalgamate the knowledge from multiple models trained on different domains into a73

single model that is able to generalize to unseen target domains without any data exposure?74

2.2 Domain Entanglement via Knowledge Amalgamation from Domain-Specific Networks75

We propose Domain Entanglement via Knowledge Amalgamation from domain-specific Networks76

(DEKAN). Our approach tackles the challenges of DFDG in 3 stages: Knowledge extraction, fusion77

and transfer. In the first stage, we extract the knowledge from the different source domain teacher78

models separately by generating domain-specific synthetic datasets via inceptionism-style [46] image79

synthesis, i.e., we initialize random noise images x̂ and optimize them to be recognized as a sample80

from a pre-defined class by a trained model. In particular, we use the data-free knowledge distillation81

method described in [78, 83]. Then, DEKAN generates cross-domain synthetic data by leveraging all82

pairs of inter-domain model-dataset combinations. In the final stage, DEKAN transfers the extracted83

knowledge from the domain-specific teachers to a student model via knowledge distillation using the84

generated data. Hereby, for the cross-domain synthetic images, the average predictions of the two85

corresponding teachers is used. At test time, i.e., deployment phase, the resulting student model is86

evaluated on target domain data without any modification. Details about the first and third stages, as87

well as DEKAN’s complete algorithm can be found in Appendix B. In the following, we focus on the88

cross-domain knowledge fusion stage, where we generate cross-domain synthetic images that capture89

class-discriminative features present in two domains, and match the distribution of intermediate90

features extracted by a domain-specific model from images of another domain.91
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Figure 1: Overview of the Cross-Domain Data-Free Knowledge Fusion.

Let Ta and Tb denote the teacher models, andDa
g andDb

g the synthetic data generated in the first stage,92

specific to two domains a and b. We generate synthetic images Dab
g by minimizing the cross-domain93

inversion loss LabCD (Eq. 5), where LC denotes the classification loss, e.g., cross-entropy, LR an94

image prior regularization, LCDM the cross-domain feature moment matching loss, and α1 and95

α2 weighting coefficients. LR penalizes the l2-norm and the total variation of the image to ensure96

the convergence to valid natural images [42, 52, 46, 78]. We incentivize the generated images to97

contain class-discriminative features from both domains by minimizing the classification loss using98

both teachers. We hypothesize that images that can be recognized by models trained on different99

domains capture more domain-agnostic semantic features than those generated by inverting a single100

domain-specific model as done in prior works [78].101

LabCD = LC(Ta(x̂), y) + LC(Tb(x̂), y) + α1LR(x̂) + α2L
ab
CDM (x̂), (1)

In addition, the cross-domain feature distribution matching loss LabCDM optimizes the cross-domain102

synthetic images Dab
g so that their feature distribution matches the distribution of the features103

extracted by Ta, the model trained on domain a, for images Db
g synthesized from domain b. Note104

that LabCDM 6= LbaCDM and that using the model Tb and the data generated by inverting Ta in the first105

stage, i.e., Da
g , would yield the cross-domain images Dba

g that are different from Dab
g . Formally,106

LabCDM (x̂) =
∑
l

max(‖µl(x̂)− b
aµ̂l‖2 − b

aδl, 0) +
∑
l

max(‖σ2
l (x̂)− b

aσ̂
2
l ‖2 − b

aγl, 0). (2)

LabCDM minimizes the l2-norm between the BN-statistics of the synthetic data, µl(x̂) and σ2
l (x̂), and107

target statistics, at each BN layer l. In this case, the target statistics, baµ̂l and b
aσ̂

2
l , are computed in108

a way that involves knowledge from different domains. In particular, they result from feeding the109

synthetic data specific to domain b through the teacher model trained on data from domain a, and110

computing the first two feature moments, i.e., mean and variance, for each BN layer. The intention111

behind this is to synthesize images that capture the features learned by the model on domain a that are112

activated and recognized when exposed to images from domain b. We hypothesize that such images113

would encompass domain-agnostic semantic information that would be useful for training a single114

model resilient to domain shift in the next stage. We relax LCDM by allowing the BN-statistics of the115

synthetic input to fluctuate within a certain interval. Here, we compute the relaxation constants baδl116

and b
aγl as the εCD percentile of the distribution of differences between the stored BN-statistics, i.e.,117

computed on the original domain a images, and those computed using the images Db
g synthesized118

from the domain b teacher model in the first stage. Note that εCD = 100% corresponds to synthesized119

images x̂ yielding the BN-statistics from domain a, i.e., stored in model Ta, would not be penalized,120

i.e., LabCDM = 0. This stage can be viewed as a domain augmentation, since the synthesized images121

Dab
g do not belong neither to domain a nor to domain b.122
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3 Experiments and Results123

The conducted experiments1 aim to tackle the following key questions: (a) How does DEKAN124

compare to leveraging the domain specific models directly to make predictions on data from unseen125

domains? (b) How does our approach compare to data-free knowledge distillation methods applied to126

each domain separately? (c) How much does the unavailability of data cost in terms of performance?127

We design baseline methods to address the novel DFDG problem. The first category of baselines128

applies the available domain-specific models on the data from the target domains (Question (a)). We129

consider two ensemble baselines that aggregate the predictions of these models, e.g., by taking the130

average of the model predictions (AvgPred), or by taking the prediction of the most confident model,131

i.e., the model with the lowest entropy (HighestConf). Besides, we implement oracle methods that132

evaluate each of the domain-specific models separately on the target domain and then report the133

results of the best model (BestTeacher). Furthermore, we propose a baseline that applies a data-free134

knowledge distillation method [83] on each of the models separately to generate domain-specific135

synthetic images used to then train a student model via knowledge distillation (Multi-DI; Question136

(b)). Note that Multi-DI is equivalent to the application of DEKAN’s first and third stage. Finally, we137

compare DEKAN to an upper-bound baseline that uses the original data from the source domains to138

train a single model via Empirical Risk Minimization (ERM) [68, 20] (Question (c)).139

We evaluate DEKAN and the baselines on two DG benchmark datasets, PACS [30] and Digits, which140

comprises images from MNIST [29], MNIST-M [15], SVHN [51] and USPS [24]. Table 1 shows the141

results of DEKAN and the baselines. Hereby, the column name refers to the unseen target domain,142

i.e., the 3 other domains are the source domains used to train the teacher models. The test accuracy is143

computed on the test set of the target domain. DEKAN outperforms all data-free baselines on both144

datasets on average, setting a first state-of-the-art performance for the novel DFDG problem. We145

further discuss the results in Appendix C.

Algorithm Art Painting Cartoon Photo Sketch Average

Ensemble - AvgPred 79.88 65.40 96.35 79.46 80.27
Ensemble - HighestConf 82.28 65.96 96.59 76.86 80.42
Multi-DI 82.59 71.54 95.03 73.71 80.47
DEKAN (ours) 82.61 75.81 95.21 78.70 83.08

BestTeacher (oracle) 75.24 62.80 96.41 69.76 76.05
ERM [20] (not data-free) 86.0 81.8 96.8 80.4 86.2

Algorithm MNIST MNIST-M SVHN USPS Average

Ensemble - AvgPred 97.85 45.83 31.33 96.12 67.78
Ensemble - HighestConf 98.52 46.71 30.45 96.47 68.04
Multi-DI 93.50 54.86 35.62 96.35 70.12
DEKAN (ours) 93.13 55.20 39.99 96.45 71.19

BestTeacher (oracle) 99.27 48.33 38.11 97.73 70.86
ERM (not data-free) 98.22 55.18 50.13 96.54 75.02

Table 1: Domain Generalization results on PACS (top) and Digits (bottom).

146

4 Conclusion147

This work addressed the unstudied intersection of domain generalization and data-free learning, a148

practical setting where a model robust to domain shifts is needed and the available models were149

trained on the same task but with data from different domains. We proposed DEKAN, an approach150

that fuses domain-specific knowledge from the available teacher models into a single student model151

that can generalize to data from a priori unknown domains. Our empirical evaluation demonstrated152

the effectiveness of our method which outperformed ensemble and data-free knowledge distillation153

baselines, hence achieving first state-of-the-art results in the novel and challenging data-free domain154

generalization problem.155

1Code will be made public upon paper acceptance.
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A Related Work436

Our method addresses the Data-Free Domain Generalization (DFDG) problem. To the best of our437

knowledge, we are the first to address this problem. In the following, we discuss approaches to related438

problem settings.439

A.1 Domain Generalization440

Domain Generalization (DG) approaches can be broadly classified into three categories. Domain441

alignment methods attempt to learn a domain-invariant representation of the data from the source442

domains by regularizing the learning objective. Variants of such a regularization include the mini-443

mization across the source domains of the maximum mean discrepancy criteria (MMD) [19, 32], the444

minimization of a distance metric between the domain-specific means [67] or covariance matrices445

[65], the minimization of a contrastive loss [47, 79, 41, 26], or the maximization of loss gradient446

alignment [61, 59]. Other works use adversarial training with a domain discriminator model [16, 34]447

for the same purpose. Another category of works leverages meta-learning techniques, e.g., the bi-level448

optimization scheme proposed in [12], to optimize for quick adaptation to different domains [31], or449

to learn how to regularize the output layer [4]. A combination of meta-learning and embedding space450

regularization is proposed in [10]. Another line of works augment the training data to tackle DG. On451

the one hand, some approaches perturb the source domain data by computing inter-domain examples452

[74, 76, 72] via Mixup [82], by randomizing the style of images [49], by computing adversarial453

examples [18] using a class classifier [63, 69, 55] or a domain classifier [60], or corrupting learned454

features to incentivize new feature discovery [14]. On the other hand, CNNs are trained to generate455

new images from the source domains [56, 64, 6] or from novel domains [43, 87]. Other works perturb456

intermediate representations of the data [23, 88, 14]. We refer to [86] for a more extensive overview457

of DG approaches.458

Unlike standard DG approaches that require access to the source domain datasets, our method merges459

the domain-specific knowledge from models trained on the source domains into a single model460

resilient to domain shift, while preserving data privacy.461

A.2 Knowledge Distillation462

Knowledge distillation (KD) [22] was originally proposed to compress the knowledge of a large463

teacher network into a smaller student network. Several KD extensions and improvements [58, 81,464

75, 2, 53] enabled its application to a variety of scenarios including quantization [45, 54], domain465

adaptation [84, 85], semantic segmentation [38], and few-shot learning [57, 8]. While these methods466

rely on the original data, Data-Free Knowledge Distillation (DFKD) methods were recently developed467

[39, 44, 50, 7]. Hereby, knowledge is transferred from one [44, 50, 7, 9, 78, 40, 83] or multiple [36]468

teacher(s) to the student model via the generation of synthetic data, either by optimizing random469

noise examples [50, 78, 83] or by training a generator network [44, 7, 9, 40]. Nevertheless, the470

aforementioned DFKD methods focus on scenarios without any domain shift, i.e. the student is471

evaluated on examples from the same data distribution used for training the teacher. In the DFDG472

problem setting we address, the student is trained from multiple teachers that are trained on different473

source domains in a way that enables generalization to data from unseen target domains. We propose474

a baseline that extends the usage of a recent DFKD method [83] to the DFDG setting, and compare it475

to our approach (Section 3).476

A.3 Source-free domain adaptation477

The recently addressed Source-Free Domain Adaptation problem [37, 33, 28] assumes access to478

one or multiple model(s) trained on the source domains, as well as data examples from a specific479

target domain. Proposed approaches to tackle it include the combination of generative models480

with a regularization loss [33], a feature alignment mechanism [77], or a weighting of the target481

domain samples by their similarity to the source domain [28]. SHOT [37] employs an information482

maximization loss along with a self-supervised pseudo-labeling, and is extended to the multi-source483

scenario via source model weighting [1]. BUFR [11] aligns the target domain feature distribution484

with the one from the source domain. Another line of works leverage Batch Normalization (BN) [25]485

layers by replacing the BN-statistics computed on the source domain with those computed on the486
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target domain [35], or by training the BN-parameters on the target domain via entropy minimization487

[70]. While these approaches rely on the availability of data from a known target domain, we address488

the DFDG scenario where the model is expected to generalize to a priori unknown target domain(s)489

without any modification or exposure to their data. We also note that some methods [28, 37, 11]490

modify the training procedure on the source domain, which would not be possible in cases where the491

data is not accessible anymore.492

B More details about DEKAN493

To address the DFDG problem, we propose Domain Entanglement via Knowledge Amalgamation494

from domain-specific Networks (DEKAN). Our approach tackles the different challenges of DFDG495

in 3 stages: Knowledge extraction, fusion and transfer. In the first stage, we extract the knowledge496

from the different source domain teacher models separately by generating domain-specific synthetic497

datasets. Thereafter, DEKAN generates cross-domain synthetic data by leveraging all pairs of498

inter-domain model-dataset combinations. Hereby, the cross-domain examples are optimized to be499

recognizable by teacher models trained on different domains. In the final stage, DEKAN transfers the500

extracted knowledge from the domain-specific teachers to a student model via knowledge distillation501

using the generated data. At test time, i.e., deployment phase, the resulting student model is evaluated502

on target domain data without any modification. In the following, we introduce the method stages in503

more detail. DEKAN’s training procedure is described in Algorithm 1.504

B.0.1 Intra-Domain Data-Free Knowledge Extraction505

In this stage, we extract the domain-specific knowledge from the available teacher models Ti506

separately by generating domain-specific synthetic datasets Di
g . For this, we apply [83], an improved507

version of the data-free knowledge distillation method DeepInversion (DI) [78] that enables the508

generation of more diverse images. Hereby, we use inceptionism-style [46] image synthesis, also509

called DeepDream, i.e., we initialize random noise images x̂ and optimize them to be recognized as510

a sample from a pre-defined class by a trained model. This process is also referred to as Inversion511

[13, 78]. Following [78, 83], uniformly sample labels y and optimize the corresponding random512

images x̂ by minimizing the domain-specific inversion loss LDS given by513

LDS = LC(T (x̂), y) + λ1LR(x̂) + λ2LM (x̂), (3)

where LC denotes the classification loss, e.g., cross-entropy, LR an image prior regularization, LM a514

feature moment matching loss, and λ1 and λ2 weighting coefficients. LR penalizes the l2-norm and515

the total variation of the image to ensure the convergence to valid natural images [42, 52, 46, 78].516

LM , also called moment matching loss [40], optimizes the synthetic images so that their feature517

distributions captured by batch normalization (BN) layers match those of the real data used to train518

the teacher model. Formally,519

LM (x̂) =
∑
l

max(‖µl(x̂)− µ̂l‖2 − δl, 0) +
∑
l

max(‖σ2
l (x̂)− σ̂l

2‖2 − γl, 0). (4)

LM minimizes the l2-norm between the BN-statistics of the synthetic data, i.e., mean µl(x̂) and520

variance σ2
l (x̂), and those stored in the trained teacher model, µ̂l and σ̂l2, at each BN layer l [78].521

In order to increase the diversity of the generated images, we relax this optimization by allowing522

the BN-statistics computed on the synthetic images to deviate from those stored in the model within523

certain margins, as introduced in [83]. These deviation margins are defined by relaxation constants for524

mean and variance, denoted by δl and γl respectively. The latter are computed as the εDS percentile525

of the distribution of differences between the stored BN-statistics and those computed using random526

images, as proposed in [83]. We note that the higher the value of the hyperparameter εDS , the higher527

the relaxation.528

We apply this data-free inversion step to each domain-specific model Ti separately, yielding domain-529

specific synthetic datasets Di
g that are correctly classified by their respective model and match the530

distribution of the features extracted by it.531
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B.0.2 Cross-Domain Data-Free Knowledge Fusion532

We propose a technique to merge the knowledge from two domains by generating cross-domain533

synthetic images that capture class-discriminative features present in the two domains, and match the534

distribution of intermediate features extracted by a domain-specific model from images of another535

domain. Let Ta and Tb denote the teacher models, and Da
g and Db

g the synthetic data generated in the536

previous stage, specific to two different domains a and b respectively. As depicted in Figure 1, we537

generate cross-domain synthetic images Dab
g by minimizing the cross-domain inversion loss LabCD,538

that we formulate as539

LabCD = LC(Ta(x̂), y) + LC(Tb(x̂), y) + α1LR(x̂) + α2L
ab
CDM (x̂), (5)

where LC denotes the classification loss, e.g., cross-entropy, LR the aforementioned image prior540

regularization, LCDM the cross-domain feature moment matching loss, and α1 and α2 weighting541

coefficients. We incentivize the generated images to contain class-discriminative features from both542

domains by minimizing the classification loss using both teachers. We hypothesize that images that543

can be recognized by models trained on different domains capture more domain-agnostic semantic544

features than those generated by inverting a single domain-specific model as done in the previous545

stage and prior works [78].546

In addition, the cross-domain feature distribution matching loss LabCDM optimizes the cross-domain547

synthetic images Dab
g so that their feature distribution matches the distribution of the features548

extracted by Ta, the model trained on domain a, for images Db
g synthesized from domain b. Note549

that LabCDM 6= LbaCDM and that using the model Tb and the data generated by inverting Ta in the first550

stage, i.e., Da
g , would yield the cross-domain images Dba

g that are different from Dab
g . Formally,551

LabCDM (x̂) =
∑
l

max(‖µl(x̂)− b
aµ̂l‖2 − b

aδl, 0) +
∑
l

max(‖σ2
l (x̂)− b

aσ̂
2
l ‖2 − b

aγl, 0). (6)

Similarly to LM (Eq. 4) in the first stage, LabCDM minimizes the l2-norm between the BN-statistics of552

the synthetic data, µl(x̂) and σ2
l (x̂), and target statistics, at each BN layer l. In this case, the target553

statistics, baµ̂l and b
aσ̂

2
l , are computed in a way that involves knowledge from different domains. In554

particular, they result from feeding the synthetic data specific to domain b through the teacher model555

trained on data from domain a, and computing the first two feature moments, i.e., mean and variance,556

for each BN layer. The intention behind this is to synthesize images that capture the features learned557

by the model on domain a that are activated and recognized when exposed to images from domain558

b. We hypothesize that such images would encompass domain-agnostic semantic information that559

would be useful for training a single model resilient to domain shift in the next stage.560

As in the first stage, we relax the cross-domain distribution matching loss LCDM by allowing the561

BN-statistics of the synthetic input to fluctuate within a certain interval. Here, we compute the562

relaxation constants baδl and b
aγl as the εCD percentile of the distribution of differences between the563

stored BN-statistics, i.e., computed on the original domain a images, and those computed using the564

images Db
g synthesized from the domain b teacher model in the first stage. Note that in the case where565

the hyperparameter εCD is set to 100%, synthesized images x̂ yielding the BN-statistics from domain566

a, i.e., stored in model Ta, would not be penalized, i.e., LabCDM = 0. This stage can be viewed as a567

domain augmentation, since the synthesized images Dab
g do not belong neither to domain a nor to568

domain b. The synthesis of cross-domain data is applied to all possible domain pairs.569

B.0.3 Multi-Domain Knowledge Distillation570

In this stage the domains-specific and cross-domain knowledge, captured in the synthetic data571

generated in the first and second stages respectively, is transferred to a single student model S. To572

this end, we use knowledge distillation [22], i.e., we train the student model to mimic the predictions573

of the teachers for the synthetic data. As described in Equation 7, we minimize the Kullback-Leibler574

divergence DKL between the predictions of the student S and the teacher(s) corresponding to the575

synthetic image x̂. In particular, if the data example is domain-specific, i.e., it was generated in the576

first DEKAN stage, the predictions of the corresponding teacher are used as soft labels to train the577
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student. For the cross-domain synthetic images that were generated in the second stage, the average578

predictions of the two corresponding teachers is used instead. The aggregation of the prediction579

distributions of two domain-specific teacher models contributes to the knowledge amalgamation580

across domains.581

LKD = DKL(S(x̂) || p) with p =

{
Ti(x̂), if x̂ ∈ Di

g (domain-specific)
1
2 (Ti(x̂) + Tj(x̂)), if x̂ ∈ Dij

g (cross-domain)
(7)

Algorithm 1 summarizes the 3 stages of the DEKAN’s training procedure. We note that the updates582

of the syntehtic data and the student model parameters θ are performed using gradient-based opti-583

mization, specifically Adam [27] in our case. Explicit update rule formulas and iteration over the584

synthetic data batches are omitted for simplicity of notation.585

Algorithm 1 Domain Entanglement via Knowledge Amalgamation from domain-specific Networks
Require: T1..I : I Domain-specific teacher models

// First stage: Intra-Domain Knowledge Extraction
1: for i← 1 to I do
2: Initialize the domain-specific synthetic dataset Di

g: Images x̂ ∼ N (0, I) and arbitrary labels
3: while not converged do
4: Update Di

g by minimizing the domains-specific inversion loss LDS (Eq. 3) using Ti
5: end while
6: end for

// Second stage: Cross-Domain Knowledge Fusion
7: for i← 1 to I do
8: for j ← 1 to I and i 6= j do
9: Initialize the cross-domain synthetic dataset Dij

g : Images x̂ ∼ N (0, I) and arbitrary labels
10: while not converged do
11: Update Dij

g by minimizing the cross-domain inversion loss LijCD (Eq. 5) using Ti, Tj
and Dj

g
12: end while
13: end for
14: end for

// Third stage: Multi-Domain Knowledge Distillation
15: Initialize the student model Sθ randomly or from a pre-trained model
16: Concatenate the domain-specific and cross-domain synthetic datasets into one dataset Dg

17: while not converged do
18: Randomly sample a mini-batch B = {x̂, y} from Dg

19: Update θ by minimizing the knowledge distillation loss LKD (Eq. 7) using B and T1..I
20: end while
21: return Domain-generalized student model Sθ

C Results Discussion586

DEKAN outperforms all data-free baselines on both datasets on average, setting a first state-of-the-art587

performance for the novel DFDG problem. We find that generative approaches, i.e., Multi-DI and588

DEKAN, outperform the ensemble methods on average, suggesting that training a single model589

on data from different domains enables a better aggregation of knowledge than the aggregation of590

domain-specific model predictions. Most importantly, DEKAN substantially outperforms Multi-DI,591

highlighting the importance of the synthesized cross-domain images. This is especially the case for592

the challenging domains, i.e., the domains where all the methods yield the lowest performance. In593

particular, the generation of cross-domain synthetic data leads to performance improvements of 5%594

and 4.3% on the Sketch and Cartoon PACS domains respectively, as well as a 4.3% increase on the595

SVHN domain of Digits. Additionally, we note the positive knowledge transfer across domains on596

the PACS dataset, as all the multi-domain methods outperform the oracle BestTeacher baseline that597

uses a single domain-specific teacher model, i.e., the teacher that achieves the highest performance598

on a validation set from the target domain. Finally, it is worth noting that while DEKAN significantly599
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reduces the gap between the best data-free baseline and the upper-bound baseline that uses the original600

data, there is still potential for improvement.601
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