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Abstract

Neural network models trained on text data have been found to encode undesirable
linguistic or sensitive concepts in their representation. Removing such concepts is
non-trivial because of a complex relationship between the concept, text input, and
the learnt representation. Recent work has proposed post-hoc and adversarial meth-
ods to remove such unwanted concepts from a model’s representation. Through
an extensive theoretical and empirical analysis, we show that these methods can
be counter-productive: they are unable to remove the concepts entirely, and in
the worst case may end up destroying all task-relevant features. The reason is the
methods’ reliance on a probing classifier as a proxy for the concept. Even under
the most favorable conditions for learning a probing classifier when a concept’s rel-
evant features in representation space alone can provide 100% accuracy, we prove
that a probing classifier is likely to use non-concept features and thus post-hoc or
adversarial methods will fail to remove the concept correctly. These theoretical im-
plications are confirmed by experiments on models trained on synthetic, Multi-NLI,
and Twitter datasets. For sensitive applications of concept removal such as fairness,
we recommend caution against using these methods and propose a spuriousness
metric to gauge the quality of the final classifier.

1 Introduction

Neural models in text classification have been shown to learn spuriously correlated features [17, 29]
or embed sensitive attributes like gender or race [9, 8, 7] in their representation layer. Classifiers that
use such sensitive or spurious concepts (henceforth concepts) raise concerns of model unfairness and
out-of-distribution generalization failure [41, 3, 16]. Removing the influence of these concepts is
non-trivial because the classifiers are based on hard-to-interpret deep neural networks. Moreover,
since many concepts cannot be modified at the input tokens level, removal methods that work at the
representation layer have been proposed: 1) post-hoc removal [8, 50, 15] on a pre-trained model (e.g.,
null space projection [34]), and 2) adversarial removal [16, 49, 13] by jointly training the main task
classifier with an (adversarial) classifier for the concept.

In this paper, we theoretically show that both these classes of methods can be counter-productive
in real-world settings where the main task label is often correlated with the concept. Examples
include natural language inference (main task) where the presence of negation (spurious concept)
may be correlated with the “contradicts” label; or tweet sentiment classification (main task) where the
author’s gender (sensitive concept) may be correlated with the sentiment label. Our key result is based
on the observation that both these methods internally use an auxiliary (or probing) classifier [1, 43]
that aims to predict the spurious concept based on the representation learnt by the main classifier.

We show that an auxiliary classifier cannot be a reliable signal on whether the representation includes
features that are causally derived from the concept. As previous work has argued [5, 45, 42, 3], if
the representation features causally derived from the concept are not predictive enough, the probing
classifier for the concept can be expected to rely on correlated features to obtain a higher accuracy.
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However, we show a stronger result: this behavior holds even when there is no potential accuracy gain
and the concept’s features are easily learnable. Specifically, even when the concept’s causally-related
features alone can provide 100% accuracy and are linearly separable with respect to a binary probing
task label, the probing classifier may still learn non-zero weights for the correlated main-task relevant
features. Based on this result, under some simplifying assumptions, we prove that both post-hoc and
adversarial training methods can fail to remove the undesired concept, remove useful task-relevant
features in addition to the undesired concept, or do both. As an extreme case, we show that post-hoc
removal methods can lead to a random-guess main-task classifier by removing all task-relevant
information from the representation.

Empirical results on four datasets—natural language inference, sentiment analysis, tweet-mention
detection, and a synthetic task—confirm our claims. Across all datasets, as the correlation between
the main task and the concept increases, post-hoc removal using null space projection removes a
higher amount of the main-task features, eventually leading to a random-guess classifier. In particular,
for a pre-trained classifier that does not use the concept at all, the method modifies the representation
to yield a lower main-task accuracy, irrespective of the correlation between the main task and the
concept. Similarly, for the adversarial removal method, we find that it does not remove all concept-
related features. For most datasets, the concept-related features left within an adversarial classifier’s
representation are comparable to that for a standard main-task classifier.

Our theoretical analysis complements past empirical critique of adversarial methods for concept
removal [13]. More generally, we extend the literature on probing classifiers and their unreliability [5].
Adding to known limitations of standard methods [20, 37] based on accuracy of a probing classifier,
our results show that recent causally-inspired methods like amnesic probing [14] are also flawed
because they depend on access to a good quality concept classifier. Our contributions include:

• Theoretical analysis of null space and adversarial removal methods showing that they fail to remove
an undesirable concept from a model’s representation, even under favorable conditions.

• Empirical results on four datasets showing that the methods are unable to remove a spurious
concept’s features fully and end up unnecessarily removing task-relevant features.

• A practical spuriousness score motivated by theory for evaluating the output of removal methods.

2 Concept removal: Background and problem statement

For a classification task, let (xi, yim)ni=1 be set of examples in the dataset Dm, where xi ∈ X are
the input features and yim ∈ Ym the label. We call this the main task and label yim the main task
label. The main task classifier can be written as cm(h(x)) where h : X → Z is an encoder mapping
the input x to a latent representation z := h(x) and cm : Z → Ym is the classifier on top of the
representation Z. Additionally, we are given labels for a spurious or sensitive concept, yp ∈ Yp,
and our goal is to ensure that the representation h(x) learnt by the main classifier does not include
features causally derived from the concept. Below we define what it means to be “causally derived”:
the representation should not change under an intervention on concept.
Definition 2.1. (Concept-causal feature) A feature Zj ∈ Z (jth dimension of h(x)) at the repre-
sentation layer is defined to be causally derived from a concept (concept-causal for short) if upon
changing the value of the concept label, the corresponding change in the input’s value x will lead to a
change in the feature’s (Zj) value.

For simplicity, we assume that the non-concept-causal features are the main task features. Often,
the main task and the concept label are correlated; hence the learnt representation h(x) for the
main task may include concept-causal features too. A concept removal algorithm is said to be
successful if it produces a clean representation h′(x) to be used by the main-classifier that has no
concept-causal features and it does not corrupt or remove the main-task features. If the representation
does not contain such features, the main classifier cannot use them [13]. In practice, it is okay if the
concept-causal features are not completed removed, but our key criterion is that the removal process
should not remove the correlated main task features.

Existing concept removal methods. When the text input can be changed based on changing the
value of concept label, methods like data augmentation [24] have been proposed for concept removal.
However, for most sensitive or spurious concepts, it is not possible to know the correct change to
apply at the input level corresponding to a change in the concept’s value.

2



Instead, methods based on the representation layer have been proposed. To determine whether
features in a representation are causally derived by the concept, these methods train an auxiliary,
probing classifier cp : Z → Yp where yp ∈ Yp is the label of the concept we want to remove from
the latent space z ∈ Z. The accuracy of the classifier indicates the predictive information about the
concept embedded in the representation. This probing classifier is then used to remove the sensitive
concept from the latent representation which will ensure that the main-task classifier cannot use
them. Two kinds of feature removal methods have been proposed: 1) post-hoc methods such as null
space removal [34, 14, 26, 21], where removal is done after the main-task classifier is trained; 2)
adversarial methods that jointly train the main task with the probing classifier as the adversary (e.g.,
[16, 49, 35, 36]).

For adversarial removal, recent empirical results cast doubt on the method’s capability to fully remove
the sensitive concept from the model’s representation [13]. We extend those results with a rigorous
theoretical analysis and provide experiments for both adversarial and post-hoc removal methods.

3 Attribute removal using probing classifier can be counter-productive

As mentioned above, both removal methods internally use a probing classifier as a proxy for the
concept’s features. In §3.1, we start off by showing that for any classification task be it probing or
main-task classification, it is difficult to learn a clean classifier which doesn’t use any spuriously
correlated feature (Lemma 3.1 and Lemma B.5). Hence the key assumption driving the use of
predictive classifiers within both removal methods is incorrect. Next in §3.2 and 3.3, we will show
how these individual components’ failure leads to the failure of both removal methods. Finally, in
§3.4, we propose a practical spuriousness score to assess the output classifier from any of the removal
methods. Throughout this section, we assume that both the main task label ym and probing task label
yp are binary (∈ {−1, 1}) and there is a basic, fixed encoder h converting the text input to features in
the representation space (e.g., it can be a pre-trained model like BERT [11]).

3.1 Fundamental limits to learning a clean classifier: Probing and Main Classifier

Given z = h(x) and the concept label yp, the goal of the probing task is to learn a classifier cp(z)
such that it only uses the concept-causal features and the accuracy for yp is maximized. We assume
that the main task and concept labels are correlated, so it can be beneficial to use main-task features
to maximize accuracy for yp. As argued in the probing literature [20, 5], if there are features in z
outside concept-causal that help improve the accuracy of the classifier, a classifier trained on standard
losses such as cross-entropy or max-margin is expected to use those features too. Below we show a
stronger result: even when there is no accuracy benefit of using non concept-causal features, we find
that a probing classifier may still use those features.

Creating a favorable setup for the probing classifier. Specifically, we create a setting that is the
most favorable for a probing classifier to use only concept-causal features: 1) no accuracy gain
on using features outside of concept-causal because concept labels are linearly separable using
concept-causal features; and 2) disentangled representation so that no further representation learning
is required. Yet we find that a trained probing classifier would use non-concept-causal features.
Assumption 3.1 (Disentangled Latent Representation). The latent representation z is disentangled
and is of form [zm, zp], where zp ∈ Rdp are the concept-causal features and zm ∈ Rdm are
the features causally derived from the main task label along with rest of the features in latent
representation. Here dm and dp are the dimensions of zm and zp respectively.
Assumption 3.2 (Concept-causal Feature Linear Separability). The concept-causal features (zp)
of the latent representation (z) are linearly separable/fully predictive for the concept labels yp, i.e.,
yip · (ϵ̂p · zi

p + bp) > 0 for all datapoints (xi, yip) for some ϵ̂p ∈ Rdp .

The effect of spurious correlation between concept and label. Now we are ready to state the key
lemma which will show that if there is a spurious correlation between the main task and concept labels
such that the main-task features zmare predictive of the concept label for only a few special points,
then the probing classifier cp(z) will use those features. We operationalize spurious correlation as,
Assumption 3.3 (Spurious Correlation). For a subset of training points S ⊂ Dp in the training
dataset for a probing classifier, zm is linearly-separable with respect to concept label yp, i.e., yip ·
(ϵ̂m · zi

m + bm) > 0 ∀i ∈ S , where ϵ̂m ∈ Rdm and bm ∈ R.
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Figure 1: Failure mode of null space removal. Consider a main task (Profession) classifier where
Gender is the spurious concept to be removed. Assume a 2-dimensional latent representation z, where
one dimension corresponds to profession and the other to the gender feature. (a) A “clean” (fair) main
task classifier that only uses the Profession feature, shown by its vertical projection direction, that is
input to INLP for concept removal. Its decision boundary is orthogonal to the projection direction.
(b) From Lemma 3.1, INLP trains a probing classifier for gender with a slanted projection direction
(ideal gender classifier would have been horizontal). (c) For two points having the same profession
but different gender feature (marked ‘1’), projection to the null-space (‘2’) has their profession feature
reversed (‘3’), thus making the fair pretrained classifier become unfair (also see §3.2).

Note that even for points in S, there is no accuracy benefit of using zm features since zp already
provides 100% accuracy for all points in Dp. Without loss of generality, the lemma below assumes a
zero-centered latent space (bm and bp are zero). For simplicity, we assume that the encoder h(·) which
maps the input X to latent representation Z is frozen or non-trainable. Following [31], we assume
max-margin as training loss; under some mild conditions on separable data, a classifier trained using
logistic/exponential loss converges to max-margin classifier given infinite training time [44, 22].
Lemma 3.1. Let the latent representation be frozen and disentangled such that z = [zm, zp]
(Assm 3.1), and concept-causal features zp are fully predictive for the concept label yp (Assm 3.2).
Let c∗p(z) = wp · zp be the desired clean linear classifier trained using max-margin objective (§B.1)
that only uses zp for its prediction. Let zm be the main task features, spuriously correlated s.t. zm
are linearly-separable w.r.t. probing task label yp for the margin points of c∗p(z) (Assm 3.3). Then,
assuming a zero-centered latent space, a concept-probing classifier cp trained using max-margin
objective will use the spurious feature, i.e., cp(z) = wp · zp +wm · zm where wm ̸= 0.

Proof Sketch. We can perturb c∗p(z) to have wm ̸= 0 and show that there always exist a perturbed
classifier which have bigger margin than c∗p(z). For detailed proof see §B.2.

Our result shows that not just accuracy, even geometric skews in the dataset can yield an incorrect
probing classifier. In §B.3 we prove that the assumptions for Lemma 3.1 are both sufficient and
necessary for a classifier to use non-concept-features zm when zp is 1-dimensional. Lemma 3.1
generalizes a result from [31] by using fewer assumptions (we do not restrict zm to be binary, do
not assume that zm and zp are conditionally independent given y, and do not assume monotonicity
of classifier norm with dataset size). We present a similar result for the main task classifier: under
spurious correlation of concept and main task labels, the main task classifier would use concept-causal
features even when 100% accuracy can be achieved using only main task features (Lemma B.5, §B.4).

3.2 Failure mode of post-hoc removal methods: Null-space removal (INLP)

The null space method [34, 14], henceforth referred as INLP, removes a concept from latent space by
projecting the latent space to a subspace that is not discriminative of that concept. First, it estimates
the subspace in the latent space discriminative of the concept we want to remove by training a probing
classifier cp : Z → Yp, where Yp is the concept label. Then the projection is done on to the null-space
of this probing classifier which is expected to be non-discriminative of the concept. For instance,
[34] use a linear probing classifier cp(z) to ensure that the any linear classifier cannot recover the
removed concept from modified latent representation z′ and hence the main task classifier (cm(z′))
becomes invariant to removed concept. Also, they recommend running this removal step for multiple
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iterations to ensure the unwanted concept is removed completely (details are in §C.1). Below we state
the failure of the null-space method using zi(k) to denote the representation zi after k steps of INLP.
Theorem 3.2. Let cm(z) be a pre-trained main-task classifier where the latent representation z =
[zm, zp] satisfies Assm 3.1 and 3.2. Let cp(z) be the probing classifier used by INLP to remove the
unwanted features zp from the latent representation. Under Assm 3.3, Lemma 3.1 is satisfied for the
probing classifier cp(z) such that cp(z) = wp · zp +wm · zm and wm ̸= 0. Then,

1. Damage in the first step of INLP. The first step of INLP will corrupt the main-task features and
this corruption is non-invertible with subsequent projection steps of INLP.

(a) Mixing: If wp ̸= 0, the main task zm and concept-causal features zp will get mixed such
that zi(1) = [g(zi

m, z
i
p), f(z

i
p, z

i
m)] ̸= [g(zi

m), f(zi
p)]. Thus, the latent representation is no

longer disentangled and removal of concept-causal features will also lead to removal of main
task features.

(b) Removal: If wp = 0, then the first projection step of linear-INLP will do opposite of what is
intended, i.e., damage the main task features zm (in case zm ∈ R, it will completely remove
zm) but have no effect on the concept-causal features zp.

2. Removal in the long term: The L2-norm of the latent representation z decreases with every
projection step as long as the parameters of probing classifier at a step (wk) does not lie completely
in the space spanned by parameters of previous probing classifiers, i.e., span(w1, . . . ,wk−1),
zi(0) and zi(0) in direction of wk is not trivially zero. Thus, after sufficiently many steps, INLP
can destroy all information in the representation, zi(∞) = [0,0].

Proof Sketch. From Lemma 3.1, probing classifier will have non-zero weight on the spurious feature
zm. Hence, after projection operation they get mixed up and we show projection operator is non-
invertible. Then we show projection operation is lossy, i.e., removes some norm of z when null-space
of cp(z) is not orthogonal to z. For detailed proof see §C.2.

Failure Mode: Fig. 1a-1c demonstrate the mixing problem stated in Theorem 3.2, where a fair
classifier becomes unfair after the first step of projection. Note that after first step the main task
classifier’s accuracy will drop because of this mixing of features, affecting INLP-based probing
methods like Amnesic Probing [14] that interpret a drop in the main classifier’s accuracy after INLP
projection as evidence that the main classifier was using the sensitive concept.

3.3 Failure mode of adversarial removal methods

To remove the unwanted features zp from the latent representation, adversarial removal methods
jointly train the main classifier cm : Z → Ym and the probing classifier cp : Z → Yp by specifying
cp’s loss as an adversarial loss. For details refer to §D.1.

As in Lemma 3.1, we assume that the encoder h : X → Z mapping the input to the latent
representation Z is frozen. To allow training for the main task classifier, we introduce additional
representation layers after it. For simplicity in the proof, we assume a linear transformation to
the latent representation h2 : Z → ζ. This layer is followed by the linear main-task classifier
cm : ζ → Ym, as before. The probing classifier cp : ζ → Yp is trained adversarially to remove zp
from the latent representation ζ. Thus, the goal of the adversarial method can be stated as removing
the information of zp from ζ. Let the main-task classifier satisfy assumptions of the generalized
version of Lemma 3.1 (Lemma B.5, §B.4). We also need two assumptions on the hard-to-classify
margin points to ensure that main-task labels and concept labels are correlated on the margin points
of a clean main-task classifier.
Assumption 3.4 (Label Correlation on Margin Points). For the margin points of a clean classifier
for the main task, the adversarial-probing labels yp and the main task labels ym are correlated, i.e.,
w.l.o.g., yim = yip for all margins points of the clean main task classifier.

Theorem 3.3. Let the latent representation z satisfy Assm 3.1 and be frozen, h2(z) be a linear
transformation over Z s.t. h2 : Z → ζ, the main-task classifier be cm(ζ) = wcm · ζ, and the
adversarial classifier be cp(ζ) = wcp · ζ. Let all the assumptions of Lemma B.5 be satisfied for
main-classifier cm(·) when using Z directly as input and Assm 3.2 be satisfied on Z w.r.t. the
adversarial task. Let h∗2(z) be the desired encoder which is successful in removing zp from ζ. Then

5



ADV Projection Direction
Gender Accuracy = 50%

Desired Projection Direction
Gender Accuracy = 50%

 Gender1 Label
Gender2 Label
Positive Main Task Label
Negative Main Task Label

Profession

Gender 
(Sensitive)

(a) Probing (Gender) Accuracy

 Gender1 Label
Gender2 Label
Positive Main Task Label
Negative Main Task Label

Gender 
(Sensitive)

Profession
ADV Projection Direction

Main Task Accuracy = 100%

Desired Projection Direction
Main Task Accuracy = 100%

(b) Main-Task (Profession)
Accuracy

M
m

 Gender1 Label
Gender2 Label
Positive Main Task Label
Negative Main Task Label

Gender 
(Sensitive)

Profession
ADV Projection Direction
Margin for Main-Task = M > m

Desired Projection Direction
Margin for Main-Task = m < M

(c) Main-Task (Profession) Margin

Figure 2: Failure mode of adversarial removal. As in Fig. 1, the main task label is Profession and
Gender is the spurious concept, each corresponding to one of the dimensions of the 2-dimensional
feature representation z. Assume that the shared representation is a scalar value obtained by projecting
the two features in some direction. The adversarial goal is to find a projection direction such that the
concept (gender) classifier obtains a random-guess accuracy of 50% but has good accuracy on the
main task label (profession). (a) Two projection directions, shown by vertical and slanted lines, that
yield random-guess 50% accuracy on gender prediction, and (b) have the same 100% accuracy for
profession prediction. (c) However, the slanted projection direction has a bigger margin for the main
task and will be preferred, thus leading to a final classifier that uses the gender concept (see §3.3).

there exists an undesired/incorrect encoder h2(z) s.t. h2(z) is dependent on zp and the main-task
classifier cm(h2(z)) has bigger margin than cm(h∗2(z)) and has,

1. Accuracy(cp(h2(z)), yp) = Accuracy(cp(h
∗
2(z)), yp) when adversarial probing classifier cp(·)

is trained using any learning objective like max-margin or cross-entropy loss. Thus, the undesired
encoder h2(z) is indistinguishable from desired encoder h∗2(z) in terms of adversarial task
prediction accuracy but better for main-task in terms of max-margin objective.

2. Lh2

(
cm(h2(z)), cp(h2(z))

)
< Lh2

(
cm(h∗2(z)), cp(h

∗
2(z))

)
additionally under Assm 3.4, D.1

and given concept-causal feature zM
p of any margin point zM of cm(h∗2(z)) is more predictive of

main-task than zP
p of any margin-point zP of cp(h∗2(z)) for probing task (see Assm D.1). Here

Lh2
(·) = L(cm(·), ym) − L(cp(·), yp) is the combined adversarial loss w.r.t. to h2 and L(·) is

the max-margin loss for a classifier (see §D.1). Thus undesired encoder h2(z) is preferable over
desired encoder h∗2(z) for both main and combined adversarial objective.

Proof Sketch. First we show that w.l.o.g. ζ ∈ R. Then the main classifier is same as h2(ζ) and
adversarial classifier is α ·h2(ζ) for some α ∈ R. Then we can show that given a clean h∗2 such that ζ
dont contain sensitive zp, we can always perturb it to get h2 = wm · zm +wp · zp st. wp ̸= 0. Then
we show that this perturbed encoder has bigger margin for main classifier and equivalent accuracy or
larger loss for adversarial classifier. For detailed proof see §D.2.

3.4 Implications for real-world data: A metric for quantifying degree of spuriousness

Our theoretical analysis shows that probing-based removal methods fail to make the main task
classifier invariant to unwanted concepts. However, to verify whether the final classifier is using the
concept or not, the theorem statements require knowledge of the concept’s features zp. For practical
usage, we propose a metric that quantifies the degree of failure or spuriousness for both the main and
probing classifier. For simplicity, we define it assuming that both main task and concept are binary.

Let Dm,p be the dataset where for every input xi we have both the main task label ym and the concept
label yp. We define 2× 2 groups, one for each combination of (ym, yp). Without loss of generality,
assume that the main-task label ym = 1 is spuriously correlated with concept label yp = 1 and
similarly ym = 0 is correlated with yp = 0. Thus, (ym = 1, yp = 1) and (ym = 0, yp = 0) are the
majority group Smaj while groups (ym = 1, yp = 0) and (ym = 0, yp = 1) make up the minority
group (Smin). We expect the main classifier to exploit this correlation and hence perform badly
on Smin where the correlation breaks. Following [41], we posit that minority group accuracy i.e
Acc(Smin) can be a good metric to evaluate the degree of spuriousness. We bound the metric by
comparing it with the accuracy on Smin of a “clean” classifier that does not use the concept features.
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Definition 3.1 (Spuriousness Score (ψ)). Given a dataset, Dm,p = Smin ∪ Smaj containing binary
task label and binary concept, let Accf (Smin) be the accuracy of the given main-task classifier
(f ) on the minority group Smin and Acc∗(Smin) be the accuracy on the minority group of a clean
classifier that does not use the unwanted spurious concept. We define spuriousness score of “f” as:
ψ(f) =

∣∣∣1− Accf (Smin)
Acc∗(Smin)

∣∣∣.
To estimate Acc∗(Smin), we subsample the dataset such that yp takes a single value in the sample
and train the main classifier on it, as in [37]. Here the probing label yp no longer is correlated with
the main task label ym. There can be other ways to estimate Acc∗(Smin), e.g., by reweighting the
data or using the accuracy on Smaj . However, we found that the former had high variance and the
latter requires an equal-noise assumption, Acc(Smaj) = Acc(Smin), on a clean main task classifier.

4 Experimental Results

Theorems 3.2 and 3.3 show the failure of concept removal methods under a simplified setup and
max-margin loss. But current deep-learning models are not trained using max-margin objective
and might not satisfy the required assumptions (Assm 3.1,3.2,3.3,3.4). Thus, we now verify the
failure modes on three real-world datasets and one synthetic dataset, without making any restrictive
assumptions. We use RoBERTa [27] as default encoder and fine-tune it over each real-world dataset.
For Synthetic-Text dataset we use the sum of pre-trained GloVe embeddings [32] of words in sentence
as the default encoder. For details on the experimental setup, refer §E.

4.1 Datasets: Main task and spurious/sensitive concept

Real-world data. We use three datasets: MultiNLI [47], Twitter-PAN16 [33] and Twitter-AAE [7].
In MultiNLI, given two sentences—premise and hypothesis—the main task is to predict whether
hypothesis entails, contradicts or is neutral with respect to premise. We simplify to a binary
task of predicting whether a hypothesis contradicts the premise or not. Since negation words like
nobody,no,never and nothing have been reported to be spuriously correlated with the contradiction
label [18], we create a ‘negation’ concept denoting the presence of these words. The goal is to remove
the negation concept from a NLI model’s representation space. In Twitter-PAN16, the main task is to
detect whether a tweet mentions another user or not, as in [13]. The dataset contains gender label
for each tweet, which we consider as the sensitive concept to be removed from the main model’s
representation. In Twitter-AAE, again following [13], the main-task is to predict binary sentiment
labels from a tweet’s text. The tweets are associated with race of the author, the sensitive concept to
be removed from the main model’s representation.

Synthetic-Text. To understand the reasons for failure, we introduce a Synthetic-Text dataset where it
is possible to change the input text based on a change in concept (thus implementing Def. 2.1). Here
we can directly evaluate whether the concept is being used by the main-task classifier by intervening
on the concept (adding or removing) and observing the change in model’s prediction. The main-task
is to predict whether a sentence contains a numbered word (e.g., one, fifteen, etc.). We introduce a
spurious concept (length) by increasing the length of sentences that contain numbered words.

Predictive correlation. To assess robustness of removal methods, we create multiple datasets
with different predictive correlation between the two labels ym and yp. The predictive correlation
(κ) measures how informative one variable is for predicting the other, κ = Pr(ym · yp > 0) =∑N

i=1 1[ym·yp>0]

N , where N is the size of dataset and 1[·] is the indicator function that is 1 if the
argument is true otherwise 0. Predictive-correlation lies in κ ∈ [0.5, 1] where κ = 0.5 indicates no
correlation and κ = 1 indicates that the attributes are fully correlated. For more details on the datasets
and how we vary the predictive-correlation, refer to §E; and for additional results see §F.

4.2 Results: Null space removal

In general, for any model given as input to INLP, it may be difficult to verify whether INLP removed
the correct features. Hence, we construct a benchmark where the input classifier is clean, i.e., it
does not use the concept at all. We do so by training on a subset of data with one particular value of
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Figure 3: Null space removal failure. Top row corresponds to the Synthetic-Text dataset and bottom
row shows the failure on three real-world datasets. In each figure, the x-axis shows the INLP iteration
and y-axis shows different evaluation metrics. Colored lines correspond to the different levels of
predictive correlation (κ) in the datasets used by INLP. (a), (d), (e), (f) show that as INLP removal
progresses, main-task classifier is getting corrupted which leads to drop in its accuracy.

spurious concept label, as in [37]. Since the input classifier does not use the concept-causal features,
we expect that INLP should not have any effect on the main task classifier.

Eventually all task-relevant features are destroyed. We start with the Synthetic-Text dataset by
training a clean classifier on the main-task and input it to INLP for removing the spurious concept.
To keep the conditions favorable for INLP, both the main task and concept-probing task can achieve
100% accuracy using their causally derived features respectively. In Fig. 3a, colored lines show
datasets with different levels of predictive correlation κ that are provided to INLP and iterations 21-40
show individual steps of null-space removal. Since, the given pre-trained classifier was clean, i.e.,
not using the concept features, null-space removal shouldn’t have any effect on it. We observe that
for all value of κ, the main-task classifier’s accuracy eventually goes to 50% random guess accuracy
implying that the main-task related attribute has been removed by INLP, as predicted by Theorem 3.2.
Higher the value of correlation κ, faster the removal of main-task attribute happens. We obtain a
similar pattern over the real-world datasets. Fig. 3d,3e and 3f show a decrease in the main-task
accuracy even when the input classifier for each dataset is ensured to be clean: except for κ = 0.5
(no correlation), all values of κ yield a random-guess classifier after applying INLP on MultiNLI
while they yield classifiers with less than 60% accuracy for Twitter-PAN16 and Twitter-AAE.

Early stopping increases the reliance on spurious features. To avoid the full collapse of the
main-task features, a stopping criteria in INLP is to stop when the main-task classifier’s performance
drops [34]. In Fig. 3b we measure sensitivity of the Synthetic-Text main task classifier w.r.t. to the
spurious concept by changing the feature in input sentences corresponding to spurious concept and
measuring the change in main-task classifier prediction probability (∆Prob, see §E.8). At lower
iterations of INLP, the change in main-task output due to change in spurious concept’s value, ∆Prob,
is higher than that of the input classifier. For example, for κ = 0.8, the main-task classifier’s
performance drops for the first time at iteration 27, but it has a high ∆Prob ≈ 25% as shown in
Fig. 3b. Hence it is possible that stopping prematurely will lead us to a classifier which is more unfair
or reliant to spurious concept than it was before, consistent with the first statement in Theorem 3.2
stating that INLP will lead to mixing of features in latent space.

Failure of causally-inspired probing. Amnesic Probing [14] declares that a sensitive concept is
being used by the model if, after removal of the concept from from the latent representation using
INLP, there is a drop in the main-task performance. But Fig. 3a, 3d, 3e and 3f show that even
when the input classifier for its corresponding main task is clean, i.e., does not use the sensitive
concept, INLP leads to drop in performance of the main-classifier. Hence, removal-based methods
like Amnesic probing will falsely conclude that the sensitive concept is being used.
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Figure 4: Adversarial Removal Failure. Top row explains failure of the AR method on MultiNLI.
Bottom row shows the failure on Twitter-PAN16, Twitter-AAE and Synthetic-Text datasets. In each
figure, the x-axis shows different levels of predictive-correlation (κ) between the main task and
concept labels in the dataset used by AR and the y-axis shows different evaluation metrics. Orange
lines denote the ERM model and the blue lines denote the model trained using AR. (b), (d), (e), (f)
show that AR is unable to completely remove the spurious concept from the main task classifier.

4.3 Results: Adversarial removal

We now demonstrate failure of the adversarial-removal method (AR) in removing the spurious concept
from the main classifier. We train a separate main-task classifier without any adversarial objective
with standard cross-entropy loss objective (referred as ERM). Then we compare standard ERM
training of the main classifier with the AR method over the same number of epochs (20). We follow
the training procedure of [13] and conduct a hyper-parameter sweep on the adversarial training
strength to select the value which is most effective in removing the concept. For details, refer to §E.

Cannot remove the spurious concept fully. For MultiNLI, Fig. 4b shows the spuriousness score
(Def 3.1) of ERM and AR classifiers as we vary the predictive correlation (κ) between the main-task
label and sensitive concept label in the training dataset. While the spuriousness score for classifier
trained using AR (blue curve) is lower than that of ERM for all values of κ, it is substantially away
from zero. Thus, the AR method fails to completely remove the spurious concept completely from
the latent representation. By inspecting the concept probing classifier accuracy for ERM and AR
in Fig. 4c, we obtain a possible explanation. The probe accuracy after adversarial training doesn’t
decrease to 50% but stops at accuracy proportional to the predictive correlation κ. This is expected
since even if the AR would have been successful in removing the concept-causal features, the main-
task features would still be predictive of the concept label by κ due to the spurious correlation between
them. However, the converse is not true: an accuracy of κ does not imply that the concept is fully
removed. The results substantiate the first statement of Theorem 3.3: given two representations where
one (desired) does not have concept features while the other (undesired) contains the concept features,
the undesired one may be better for the main task accuracy even as both may have the same probing
accuracy. Fig. 4d, 4e and 4f show the spuriousness score of AR in comparison to classifier trained
with ERM on Twitter-PAN16, Twitter-AAE and Synthetic-Text datasets respectively. The failure of
AR is worse here: there is no significant reduction in spuriousness score for AR in comparison to
ERM. For the Synthetic-Text dataset, ERM has zero spuriousness score but AR has non-zero score.
We expand more on this observation and include additional results on adversarial removal in §F.3.

Comparison with previous work. If post-removal the latent representation used by the main-task
classifier is still predictive of the removed concept, [13] claimed it as a failure of the removal method.
However, this claim may not be correct since a feature could be present in the latent space and yet not
used by model [37].Therefore, we propose the spuriousness score for the main classifier as a metric
to verify if a feature is being used.
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Ablations. In Appendix, we report results on using BERT instead of RoBERTa as the input encoder
(§F.2, F.3), the effect of using different modeling choices like loss-function, regularization, e.t.c.
(§F.4), and the behavior of probing classifiers when concept is not present in latent space (§F.1).

5 Related work

Concept removal methods. When the removal of a concept can be simulated in input space (e.g.,
in tabular data or simpler concepts), removing a concept directly using data augmentation [24] or
gradient regularization [40, 23] can work. However, concept removal is non-trivial when change
in a concept cannot be propagated via change in input tokens. Combining the ideas of null space
and adversarial removal, methods like [35, 36] restrict the adversarial function to be a projection
operation and derive a closed form solution for concept removal. Other approaches use explanations
of the classifier’s prediction for concept removal [25]. Our work highlights the difficulty of building
an estimator for the features causally derived from a concept, as a general limitation for concept
removal.

Limitations of a probing classifier for model interpretability. We also contribute to the growing
literature on the limitations of a probing classifier’s accuracy in capturing whether the main classifier
is using a concept [5]. It is known that probing classifiers capture not just the concept but any other
features that may be correlated with it [41, 3, 24, 46]. As a result, many improvements have been
proposed to better estimate whether a concept is being used, including the use of control labels or
datasets [20, 37]. Parallely, new causality-inspired probing methods [14] compare the main task
accuracy on a representation without the concept that is constructed using the null space removal
method. The hope is that such improvements can make probing more robust. Our results question
this direction. To demonstrate the fundamental unreliability of a probing classifier, we construct
a setup that is most favorable for learning only the concept’s features and still find that learned
probing classifier includes a non-zero weight for other features, thus limiting the effectivenevss of
any interpretation method based on it.

6 Conclusion

Our theoretical and experimental evaluations show that it is difficult to create a probing-based removal
method due to the fundamental limitation of learning a “clean” probing classifier. We recommend
two tests for validating removal methods. First, we provide a sanity-check: any reasonable removal
method should not modify a “clean” classifier that does not use any spurious features to produce a
final classifier that uses those features. Second, we propose a spuriousness score that can be used to
evaluate the dependence of any classifier on spurious features. As a future direction, we encourage
the community to develop more such sanity-check tests to evaluate proposed removal methods.

Alternatively, we point attention to other approaches that may provide better guarantees for concept re-
moval. An example is extending data augmentation techniques like counterfactual data augmentation
([24, 10]) to non-trivial concepts. For a given training point that may include a spurious correlation, a
new data point is generated that breaks the correlation but keeps the semantics of the rest of the text
identical (hence the name, “counterfactual”). This can be done by human labeling or handcrafted
rules for modifying text (e.g., Checklists [39]). Then the main classifier is regularized to have the
same representation for such pairs of inputs ([4, 28]). By construction, with good quality pairs,
such a method will not remove task-relevant features and will satisfy the sanity checks listed above.
That said, a limitation is that the removal quality will depend on the diversity of the counterfactual
examples generated and whether they capture all aspects of the spurious concept. Another direction
is to take inspiration from the algorithmic fairness literature [19, 30] and focus on the predictions of
the classifier rather than the representation. Compared to removal in latent space, enforcing certain
fairness properties on model predictions is a more well-formed task, more interpretable, and definitely
more relevant if the final goal is fair decision making.

Limitations. A limitation of our theoretical work is assuming frozen or non-trainable latent
representation which makes the analysis of task-classifier trained on top of them relatively easier. We
address this limitation in our empirical work where we do not make such assumptions. Also, our
work addresses failure modes of two popular methods, null space removal and adversarial removal.
We conjecture that any other method based on probing classifiers will lead to similar failure modes.
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A Broader Impact and Ethical Consideration

Removal of spurious or sensitive concepts is an important problem to ensure that machine learning
classifiers generalize better to new data and are fair towards all groups. We found multiple limitations
with current removal methods and recommend caution against the use of these methods in practice.

B Probing and Main Classifier Failure Proofs

B.1 Notation and Setup: Max-margin Classifier

We assume that encoder h : X → Z, mapping the input to latent representation is frozen/non-
trainable. Thus for every input xi in the dataset D, we have a corresponding latent representation
zi which is fixed. Also, the latent representation Z is disentangled i.e z = [zm, zp] where zm are
the main task features, i.e., causally derived from the main task label and zp are the concept-causal
features, causally derived from the concept label. Let cp(z) = wp · zp + wm · zm be the linear
probing classifier which we train using max-margin objective. The hyperplane cp(z) = 0 is the
decision boundary of this linear classifier. The points which fall on one side of the decision boundary
(cp(z) > 0) are assigned one label (say positive label 1) and the rest are assigned another label (say
negative label -1). The margin Mcp of this probing classifier (cp(z)) is the distance of the closest
latent representation (z) from the decision boundary. The points which are closest to the decision
boundary are called the margin points. The distance of a given latent representation zi having class
label yi, where yi ∈ {−1, 1}, from the decision boundary is given by

Mcp(z
i) :=

mcp(z
i)

∥w∥
=
yi · cp(zi)

∥w∥
=
yi · (w · zi + b)

∥w∥
(1)

where ∥w∥ is the L2 norm of parameters w = [wp,wm] of the probing classifier cp(z).

Max-Margin (MM): Then the max-margin classifier is trained by optimizing the following objec-
tive:

argmax
w,b

{
min
i

Mcp(z
i)
}

(2)

For ease of exposition we convert this objective into multiple equivalent forms. To do this we observe
that scaling the parameters of cp(z) by a positive scalar γ i.e w → γw and b→ γb does not change
the distance of the point (Mcp(z

i)) from the decision boundary.

MM-Denominator Version: We can use this freedom of scaling the parameters to set mcp(z
i) = 1

for the closest point of any given probing classifier cp(z) , thus all the data points will satisfy the
constraint,

mcp(z
i) = yi · cp(zi) ≥ 1 (3)

giving us the final max-margin objective:

argmax
w

{ 1

∥w∥

}
(4)

under the constraint mcp(z
i) ≥ 1 corresponding to all the points in the dataset.

MM-Numerator Version: Alternatively, one can choose γ such that ∥w∥ = c where c ∈ R is
some constant value. The the modified objective becomes:

argmax
w,b

{
mcp(z

i)
}

(5)

under constraint ∥w∥ = c which is usually set to 1.

We will use one of these formulations in our proofs based on the ease of exposition and give a clear
indication when we do so. One can refer to Chapter 7, Section 7.1 of [6] for furthur details about
max-margin classifiers and different formulations of the max-margin objective.
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B.2 Proof of Sufficient Condition: Lemma 3.1 and Lemma B.5

Lemma 3.1. Let the latent representation be frozen and disentangled such that z = [zm, zp]
(Assm 3.1), and concept-causal features zp are fully predictive for the concept label yp (Assm 3.2).
Let c∗p(z) = wp · zp be the desired clean linear classifier trained using max-margin objective (§B.1)
that only uses zp for its prediction. Let zm be the main task features, spuriously correlated s.t. zm
are linearly-separable w.r.t. probing task label yp for the margin points of c∗p(z) (Assm 3.3). Then,
assuming a zero-centered latent space, a concept-probing classifier cp trained using max-margin
objective will use the spurious feature, i.e., cp(z) = wp · zp +wm · zm where wm ̸= 0.

In this section we prove that, given the assumption in Lemma 3.1 is satisfied, they are sufficient
for a probing classifier cp(z) to use the spuriously correlated main-task feature zm. See §B.1 for
detailed setup and max-margin training objective. Also, we could use the same line of reasoning to
prove a similar result for the main-task classifier i.e. when conditions in Lemma B.5 is satisfied, the
main-task classifier will use the spuriously correlated concept-causal feature zp. To keep the proof
general for both the lemmas, we prove the result for a general classifier c(z) trained to predict a task
label y. Here the latent representation z be of form z = [zinv, zsp] where zinv are the features which
are causally-derived from the task-label y (“invariant” features) and zsp be the features spuriously
correlated to the task label y. With respect to probing classifier cp(z) in Lemma 3.1 zinv := zp and
zsp := zm. Similarly, for the main-task classifier in Lemma B.5, zinv := zm and zsp := zp. For
ease of exposition, we define two categories of classifiers based on which features they use:
Definition B.1 (Purely-Invariant Classifier). A linear classifier of form c(z) = winv · zinv +wsp ·
zsp + b is called "purely-invariant" if it does not use the spurious features zsp i.e., wsp = 0.
Definition B.2 (Spurious-Using Classifier). A linear classifier of form c(z) = winv · zinv +wsp ·
zsp+b is called "spurious-using" if it uses the spurious features zsp i.e., both wsp ̸= 0 and winv ̸= 0.

Proof of Lemma 3.1 and B.5. Let cinv(z) = winv · zinv be the clean/purely-invariant classifier
trained using the max-margin objective using the MM-Denominator formulation given in Eq. 4 such
that winv ̸= 0. The classifier cinv(z) is 100% predictive of the task labels y (from Assm 3.2 for the
probing task or Assm B.1 for the main-task). Here the bias term b = 0 since we assume the latent
representation z is zero-centered. The norm of this classifier (cinv(z)) is ∥winv∥ and the distance of
each input latent representation (zi) with class label yi (yi ∈ {−1, 1}) from the decision boundary
(cinv(z) = 0) is given by Eq. 1 i.e.:

Minv(z
i) =

minv(z
i)

∥winv∥
=
yi · cinv(zi)

∥winv∥
=
yi · (winv · zi

inv)

∥winv∥
(6)

Since we have used the MM-Denominator version of max-margin to train cinv(z), from Eq. 3 we have
minv(z

i) = 1 for the margin-points and greater than 1 for rest of the points. Next we will construct a
new classifier parameterized by α ∈ [0, 1] by perturbing the clean/purely-invariant classifier cinv(z)
such that:

cα(z) = α
(
winv · zinv

)
+ ∥winv∥

√
1− α2

(
ϵ̂sp · zsp

)
(7)

where ϵ̂sp ∈ Rdsp is a unit vector in spurious subspace of features, dsp is the dimension of the
spurious feature subspace (zsp). We observe that the norm of this perturbed classifier cα(z) is also
∥winv∥, which is same as the clean/purely-invariant classifier cinv(z). Thus from Eq. 1, the distance
of any input zi with class label yi from the decision boundary of this perturbed classifier cα(z) is
given by:

Mα(z
i) =

mα(zi)

∥winv∥
=
yi · cα(zi)

∥winv∥
(8)

The perturbed classifier will be spurious-using i.e use the spurious feature zsp when α ∈ [0, 1) since
wsp = (∥winv∥

√
1− α2) ̸= 0 for these setting of α. Thus to show that there exist a spurious-

using classifier which has a margin greater than the margin of the purely-invariant classifier, we
need to prove that there exist an α ∈ [0, 1) such that cα(z) has bigger margin than cinv(z) i.e.
minz Mα(z) > minz Minv(z). Since norm of parameters of both the classifier is same, substituting
the expression of Mα and Minv from Eq. 6 and 8, we need to show mα(z

i) > 1 for all zi. We
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have:

mα(z
i) = yi ·

(
α
(
winv · zi

inv

)
+ ∥winv∥

√
1− α2

(
ϵ̂sp · zi

sp

))
(9)

= α ·minv(z
i) + yi∥winv∥

√
1− α2

(
ϵ̂sp · zi

sp

)
(10)

Let Sm
y denote the set of margin-points of purely-invariant classifier cinv(z) with class label y having

minv(z) = 1 and Sr
y contain rest of points (non-margin points) having minv(z) > 1 with the class

label y. Here “m” stands for margin-point in superscript of S and “r” stands for rest of point with
label y. In rest of the proof, first we will show that for margin-points zm ∈ (Sm

y=1 ∪ Sm
y=−1), we

need the assumption that spurious feature (zm
sp) be linearly separable with respect to class label y

(Assm 3.3 for probing task or B.2 for main-task) for having mα(z
i) > 1. But for all non-margin

points zr ∈ (Sr
y=1 ∪ Sr

y=−1), we can always choose α ∈ [0, 1) such that mα(z
i) > 1. Below we

handle margin and non-margin of points separately.

Case 1 : Margin Points (Sm
y=1 ∪ Sm

y=−1): For the margin-points in latent space, zm ∈ Sm
y we

have minv(z
m) = 1 and we need to show that there exists α ∈ [0, 1) such that mα(z

m) > 1 for all
zm ∈ Sm

y . From Eq. 10 we have:

mα(z
m) = α · 1 + y∥winv∥

√
1− α2

(
ϵ̂sp · zm

sp

)
> 1 (11)(

∥winv∥
√

1− α2
)
y
(
ϵ̂sp · zm

sp

)
> 1− α (12)

From Assm 3.3 for probing task or B.2 for the main-task, we know that spurious-feature zm
sp of margin-

points zm are linearly-separable w.r.t to task label y. Thus there exist an unit vector ϵ̂sp ∈ Rdsp

such that y
(
ϵ̂sp · zm

sp

)
> 0 for all zm ∈ Sm

y . Also since α ∈ [0, 1] and ∥winv∥ > 0, we have
(∥winv∥

√
1− α2) > 0. Hence the left hand side of Eq. 12 is > 0 for such ϵ̂sp. If Assm 3.3 or

B.2 (corresponding to the task) wouldn’t have been satisfied then the above equation might have
been inconsistent since right hand side is always > 0; since we need to find a solution to Eq. 12
when α ∈ [0, 1) thus (1 − α) > 0, but left hand side wouldn’t have been always greater than 0.
This shows the motivation why we need Assm 3.3 or B.2 for proving this lemma. Continuing, let
β := (y

(
ϵ̂sp · zm

sp

)
), then squaring both sides and cancelling (1− α) since we need to find a solution

to Eq. 12 when α ∈ [0, 1) =⇒ (1− α) > 0, we get:

∥winv∥2����(1− α)(1 + α)

(
y
(
ϵ̂sp · zm

sp

))2

>����(1− α)(1− α) (13)

∥winv∥2(1 + α)β2 > (1− α) (14)

∥winv∥2β2 + α∥winv∥2β2 > 1− α (15)

α

(
1 + ∥winv∥2β2

)
>

(
1− ∥winv∥2β2

)
(16)

After substituting back the value of β and rearranging we get:

α >

1− ∥winv∥2 ·
(
y
(
ϵ̂sp · zm

sp

))2

1 + ∥winv∥2 ·
(
y
(
ϵ̂sp · zm

sp

))2 = αlb1
y (zm) (17)

Lets define αlb1
y := maxzm∈Sm

y
(αlb1

y (zm)). Since ∥winv∥2 ·
(
y
(
ϵ̂sp · zm

sp

))2

> 0, the right hand

side of above equation αlb1
y (zm) < 1 for all zm ∈ Sm

y =⇒ αlb1
y < 1, which sets a new lower

bound on allowed value of α for which Eq. 12 is satisfied. Thus when α ∈ (αlb1
y , 1), mp(z

m) > 1
for all zm ∈ Sm

y . That is, the perturbed probing classifier cα(z) has larger margin than purely-
invariant/clean classifier cinv(z) for the margin points zm ∈ Sm

y .
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Case 2: Non-Margin Points (Sr
y=1 ∪ Sr

y=−1): For the non-margin points zr ∈ Sr
y in the latent

space we have minv(z
r) > 1. Let γ := minzr∈Sr

y

(
minv(z

r)
)

thus we also have γ > 1. Let α ̸= 0
and we choose α such that:

1

α
< γ (18)

α >
1

γ
(19)

Substituting the value of γ we get:

α >
1

minzr∈Sr
y

(
minv(zr)

) = αlb2
y (20)

Since γ > 1, thus right hand side in above equation αlb2
y < 1, which sets a new lower bound on

allowed values of α. Since minv(z
r) ≥ γ > 1

α for all zr ∈ Sr
y for α ∈ (αlb2

y , 1) (Eq. 20), we can
write minv(z

r) = 1
α + η(zr) where η(zr) := (minv(z

r)− 1
α ) > 0 for all zr ∈ Sr

y . Now we need
to show that there exist an α ∈ (αlb2

y , 1) such that mα(z
r) > 1 for all zr ∈ Sr

y . Thus from Eq. 10
we need:

mα(z
r) = α ·minv(z

r) + ∥winv∥
√
1− α2

(
y
(
ϵ̂sp · zsp

))
> 1 (21)

α · ( 1
α
+ η(zr)) + ∥winv∥

√
1− α2

(
y
(
ϵ̂sp · zsp

))
> 1 (22)

∥winv∥
√
1− α2

(
y
(
ϵ̂sp · zsp

))
> −

(
α · η(zr)

)
(23)

Since α ∈ (α2
lb, 1), we have (α · η(zr)) > 0 and ∥winv∥

√
1− α2 > 0. Let’s define δ(zr) :=

y
(
ϵ̂sp · zsp

)
. Thus for the latent-points zr ∈ Sr

y which have δ(zr) ≥ 0, Eq. 23 is always satisfied
since left side of inequality is greater than or equal to zero and right side is always less than zero. For
the points for which δ(zr) < 0 we have:

∥winv∥
√

1− α2 · (−1) · |δ(zr)| > −
(
α · η(zr)

)
(24)

∥winv∥
√

1− α2|δ(zr)| <
(
α · η(zr)

)
(25)

∥winv∥2
(
1− α2

)
δ(zr)2 <

(
α · η(zr)

)2
(26)

∥winv∥2δ(zr)2 < α2 ·
(
η(zr)2 + ∥winv∥2δ(zr)2

)
(27)

α >

√
∥winv∥2δ(zr)2

η(zr)2 + ∥winv∥2δ(zr)2
= αlb3

y (zr) (28)

Now different zr will have different η(zr) which will give different lower bound of α. Since the
mα(z

r) > 1 has to be satisfied for every point in zr ∈ Sr
y , it has to be satisfied for the point

with maximum value of αlb3
y (zr) which will give tightest lower bound on value of α. Lets define

αlb3
y := maxzr∈Sr

y
(zr), then for mα(z

r) > 1, we need α > αlb3
y . Also, since for all zr ∈ Sr

y ,
η(zr) > 0 we have αlb3

y (zr) < 1 =⇒ αlb3
y < 1.

Finally, combining all the lower bound of α from Eq. 17, Eq. 20 and Eq. 28 let the overall lower
bound of α be αlb given by:

αlb = max{αlb1
y=1, α

lb1
y=−1, α

lb2
y=1, α

lb2
y=−1, α

lb3
y=1, α

lb3
y=−1, } (29)

This provides a way to construct a spurious-using classifier: given any purely-invariant classifier, we
can always choose α ∈ (αlb, 1) and construct a perturbed spurious-using classifier from Eq. 7 which
has a bigger margin than purely-invariant. Thus, given all the assumptions, there always exists a
spurious-using classifier which has greater margin than the purely-invariant classifier.
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B.3 Proof of necessary condition

In this section we will show that Assm 3.3 is also a necessary condition for the probing classifier to use
the spurious features (zm) when |zp| = 1. That is, the probing classifier will use the spurious features
if and only if spurious features satisfy Assm 3.3 for the margin points of the clean/purely-invariant
(Def B.1) probing classifier when the concept-feature is 1-dimensional. Also, same line of reasoning
will hold for the main-task classifier where we will show that main-task classifier will use the spurious
feature (zp) iff spurious feature satisfies Assm B.2 for the margin point of clean main-task classifier.
Formally:
Lemma B.1 (Necessary Condition for concept-Probing Classifier). Let the latent representation be
frozen and disentangled (Assm 3.1) such that z = [zm, zp] where zp is the concept-causal feature
which is 1-dimensional scalar and fully predictive (Assm 3.2) and zm ∈ Rdm . Let c∗p(z) = wp · zp
be the desired clean/purely-invariant probing classifier trained using max-margin objective which
only uses zp for prediction. Then the probing classifier trained using max-margin objective will be
spurious-using i.e. cp(z) = wp · zp +wm · zm where wm ̸= 0 iff the spurious feature zm is linearly
separable w.r.t to probing task label yp for the margin point of c∗p(z) (Assm 3.3).
Lemma B.2 (Necessary Condition for Main-task Classifier). Let the latent representation be frozen
and disentangled (Def 3.1) such that z = [zm, zp] where zm is the main-task feature which is
1-dimensional scalar and fully predictive (Assm B.1) and zp ∈ Rdp . Let c∗m(z) = wm · zm be the
desired clean/purely-invariant main-task classifier trained using max-margin objective which only
uses zm for prediction. Then the main-task classifier trained using max-margin objective will be
spurious-using i.e. cm(z) = wm · zm +wp · zp where wp ̸= 0 iff the spurious feature zp is linearly
separable w.r.t to main task label ym for the margin point of c∗m(z) (Assm B.2) .

Since proof of both Lemma B.1 and B.2 follows same line of reasoning, hence for brevity, following
§B.2, we will prove the lemma for a general classifier c(z) trained using max-margin objective to
predict the task-label y. Let the latent representation be of form z = [zinv, zsp] where zinv ∈ R is
the feature causally derived from the task-label y and zsp ∈ Rd

sp is the feature spuriously correlated
to task label y. With respect to probing classifier cp(z) in Lemma B.1 zinv := zp and zsp := zm.
Similarly, for the main-task classifier in Lemma B.2, zinv := zm and zsp := zp.

Proof of Lemma B.1 and B.2. Our goal is to show that Assm 3.3 for probing classifier or Assm B.2
for the main-task classifier is necessary for obtaining a spurious-using classifier for the case when
zinv is one-dimensional. We show this by assuming that optimal classifier is spurious-using even
when Assm 3.3 or B.2 breaks and then show that this will lead to contradiction.

Contradiction Assumption: Formally, let’s assume that Assm 3.3 or B.2 is not satisfied for probing or
main task respectively, and the optimal classifier for the given classification task is spurious-using
c∗(z), where:

c∗(z) = w∗
inv · zinv + ∥w∗

sp∥(ŵ∗
sp · zsp) (30)

where ∥w∗
sp∥ ≠ 0 and ŵ∗

sp ∈ Rdsp is a unit vector in spurious-feature subspace with dimension dsp.

Let cinv(z) = winv · zinv be the optimal purely-invariant classifier. Let both c∗(z) and cinv(z) be
trained using the max-margin objective using MM-Denominator formulation in Eq. 4. Thus from the
constraints of this formulation (Eq. 3) we have:

m∗(z) = y · c∗(z) = y · (w∗
inv · zinv + ∥w∗

sp∥(ŵ∗
sp · zsp)) ≥ 1 ,& (31)

minv(z) = y · cinv(z) = y · (winv · zinv) ≥ 1 (32)

From Assm 3.2 or B.1, the invariant feature zinv is 100% predictive and linearly separable w.r.t task
label y. Then without loss of generality let’s assume that:

zinv > 0, when y = +1 (33)
zinv < 0, when y = −1 (34)

From Eq. 33 and 34 we have y · zinv > 0 thus from Eq. 32 we get:

winv ≥ 0 (35)
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Also, from our contradiction-assumption the max-margin trained classifier is spurious-using, thus the
norm of parameters of c∗(z) is less or equal to cinv(z) (Eq. 4). Thus we have:√

(w∗
inv)

2 + (∥w∗
sp∥)2 ≤ |winv| (36)

=⇒ |w∗
inv| < |winv| (∥w∗

sp∥ ≠ 0) (37)

=⇒ |w∗
inv| < winv (winv ≥ 0, Eq. 35) (38)

=⇒ w∗
inv < winv (39)

Form our contradiction-assumption, Assm 3.3 for concept-probing task or Assm B.2 for the main-task
breaks by one of the following two ways:

1. Opposite Side Failure: This occurs when the spurious part of margin points (of cinv(z))
on opposite sides of decision-boundary of the optimal task classifier (c∗(z) = 0) are
not linearly-separable with respect to task label y. Formally, there exist two datapoints,
Pm+ := [zm+

inv , z
m+
sp ] and Pm− := [zm−

inv , z
m−
sp ] such that they are margin points of purely-

invariant classifier cinv(z) where Pm+ has class label y = +1 and Pm− has class label
y = −1 and ∀ϵ̂sp ∈ Rdsp , the spurious feature zsp of both the points lies on same side of
ϵ̂sp i.e: (

(ϵ̂sp · zm+
sp ) · (ϵ̂sp · zm−

sp )
)
≥ 0 (40)

2. Same Side Failure: This occurs when the spurious part of margin points (of cinv(z)) on
same side of decision-boundary (c∗(z) = 0) are linearly-separable. Formally, there exist
two datapoints, Pm1

y := [zm1
inv, z

m1
sp ] and Pm2

y := [zm2
inv, z

m2
sp ] such that they are margin

points of purely-invariant classifier cinv(z) and both points have same class label y and
∀ϵ̂sp ∈ Rdsp , w.l.o.g we have:(

(ϵ̂sp · zm1
sp ) · (ϵ̂sp · zm2

sp )
)
≤ 0. (41)

We will use the following two lemma to proceed with our proof:
Lemma B.3. If Assm 3.3 or B.2 breaks by opposite-side failure mode, it leads to contradiction.
Lemma B.4. If Assm 3.3 or B.2 breaks by same-side failure mode, it leads to contradiction.

This implies that our contradiction-assumption which said that the max-margin trained optimal
classifier is spurious-using even when Assm 3.3 or B.2 breaks, is wrong. Thus Assm 3.3 for concept-
probing task or Assm B.2 for main-task is necessary for the optimal max-margin classifier to be
spurious-using. This completes our proof.

Proof of Lemma B.3. We have two points, Pm+ := [zm+
inv , z

m+
sp ] and Pm− := [zm−

inv , z
m−
sp ], which

break the Assm 3.3 or B.2. From Eq. 33, zinv > 0 for all the points with label y = 1, thus we have
zm+
inv > 0 and using Eq. 39 (w∗

inv < winv) we get:

w∗
inv < winv (42)

w∗
inv · zm+

inv < winv · zm+
inv (43)

w∗
inv · zm+

inv < 1 (44)

where the right hand side winv · zm+
inv = 1 since Pm+ is the margin-point of cinv(z) (Eq. 32).

Similarly from Eq. 34, zinv < 0 for all the points with label y = −1, thus we have zm−
inv < 0 and

using Eq. 39 (w∗
inv < winv) we get:

w∗
inv < winv (45)

(−1) · w∗
inv · zm−

inv < (−1) · winv · zm−
inv (46)

(−1) · w∗
inv · zm−

inv < 1 (47)

where the right hand side (−1) · (wp
inv ·z

m−
inv ) = 1 since Pm− is the margin-point of cinv(z) (Eq. 32).
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Next from Eq. 31 we have m∗(z) ≥ 1 for all z hence it is also true for Pm+ with y = 1 and Pm−

with y = −1. Then:

m∗(P
m+) = y · c∗(Pm+) = 1 ·

{
w∗

invz
m+
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm+
sp

)}
≥ 1 (48)

=⇒ w∗
invz

m+
inv + ∥w∗

sp∥ · βm+ ≥ 1 (49)

=⇒ w∗
invz

m+
inv ≥ 1− ∥w∗

sp∥ · βm+ (50)

where βm+ =
(
ŵ∗

sp · zm+
sp

)
. Also we have:

m∗(P
m−) = y · c∗(Pm−) = −1 ·

{
w∗

invz
m−
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm−
sp

)}
≥ 1 (51)

=⇒ −w∗
invz

m−
inv − ∥w∗

sp∥ · βm− ≥ 1 (52)

=⇒ −w∗
invz

m−
inv ≥ 1 + ∥w∗

sp∥ · βm− (53)

where βm− =
(
ŵ∗

sp ·zm−
sp

)
. From Eq. 40 we have

(
(ϵ̂sp ·zm+

sp ) ·(ϵ̂sp ·zm−
sp )

)
≥ 0 for all ϵ̂sp ∈ Rdsp

which states the opposite-side failure of Assm 3.3 or B.2. Thus:

βm+ · βm− ≥ 0 (54)

Now we will show that Eq. 44, 47, 50 and 53 cannot be satisfied simultaneously for any allowed
value of βm+ and βm− (given by Eq. 54) which are:

1. βm+ > 0 and βm− > 0: From Eq. 53 we have −w∗
invz

m−
inv > 1 since ∥w∗

sp∥ ̸= 0 and
βm− > 0. But from Eq. 47 we have −w∗

invz
m−
inv < 1 which is a contradiction.

2. βm+ < 0 and βm− < 0: From Eq. 50 we have w∗
invz

m+
inv > 1 since ∥w∗

sp∥ ≠ 0 and
βm+ < 0. But from Eq. 44 we have w∗

invz
m+
inv < 1 which is a contradiction.

3. βm+ = 0 and βm− ∈ R: From Eq. 50 we have w∗
invz

m+
inv ≥ 1 but from Eq. 44 we have

w∗
invz

m+
inv < 1 which is a contradiction.

4. βm+ ∈ R and βm− = 0: From Eq. 53 we have −w∗
invz

m−
inv ≥ 1 but from Eq. 47 we have

−w∗
invz

m−
inv < 1 which is a contradiction.

Thus we have a contradiction for all the possible values βm+ and βm− could take, completing the
proof of this lemma.

Proof of Lemma B.4. We have two margin-points, Pm1
y := [zm1

inv, z
m1
sp ] and Pm2

y := [zm2
inv, z

m2
sp ],

which break Assm 3.3 or B.2. From Eq. 33 and Eq. 34 we have y · zm1
inv > 0 and y · zm2

inv > 0. Using
Eq. 39 (w∗

inv < winv) we get:

w∗
inv < winv (55)

w∗
inv · (y · z

mj
inv) < winv · (y · zmj

inv) (56)

y · (w∗
inv · z

mj
inv) < 1 (57)

where j ∈ {1, 2} and right hand side winv · (y · zmj
inv) = 1 since Pmj

y is the margin point of
purely-invariant classifier cinv(z) (Eq. 32).

From Eq. 31 we have m∗(z) ≥ 1 for all z thus also true for Pm1
y and Pm2

y . Then:

m∗(P
m1
y ) = y · c∗(Pm1

y ) = y ·
{
w∗

invz
m1
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm1
sp

)}
≥ 1 (58)

=⇒ y · (w∗
invz

m1
inv) + y · (∥w∗

sp∥ · βm1) ≥ 1 (59)

=⇒ y · (w∗
invz

m1
inv) ≥ 1− y · (∥w∗

sp∥ · βm1)
(60)
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where βm1 =
(
ŵ∗

sp · zm1
sp

)
. Also we have:

m∗(P
m2
y ) = y · c∗(Pm2

y ) = y ·
{
w∗

invz
m2
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm2
sp

)}
≥ 1 (61)

=⇒ y · (w∗
invz

m2
inv) + y · (∥w∗

sp∥ · βm2) ≥ 1 (62)

=⇒ y · (w∗
invz

m2
inv) ≥ 1− y · (∥w∗

sp∥ · βm2)
(63)

where βm2 =
(
ŵ∗

sp · zm2
sp

)
. Now from Eq. 41 we have

(
(ϵ̂sp · zm1

sp ) · (ϵ̂sp · zm2
sp )

)
≤ 0 for all unit

vectors ϵ̂sp ∈ Rdsp which states the same-side failure mode of Assm 3.3 or B.2. Thus we have:

βm1 · βm2 ≤ 0 (64)

Now we will show that for all allowed values of βm1 and βm2, Eq. 57, 60 and 63 will lead to a
contradiction. Following are the cases for different allowed values of βm1 and βm2:

1. βm1 = 0 and βm2 ∈ R: Substituting βm1 = 0 in Eq. 60 we get y · (w∗
invz

m1
inv) ≥ 1, but

from Eq. 57 we have y · (w∗
invz

m1
inv) < 1. Thus we have a contradiction.

2. βm1 ∈ R and βm2 = 0: Substituting βm2 = 0 in Eq. 63 we get y · (w∗
invz

m2
inv) ≥ 1, but

from Eq. 57 we have y · (w∗
invz

m2
inv) < 1. Thus we have a contradiction.

3. The only case which is left now is when both βm1 and βm2 is non-zero but of opposite sign.
Without loss of generality, let βm1 > 0, βm2 < 0 and y = (+1): Substituting βm2 < 0 and
y = (+1) in Eq. 63 we get y · (w∗

invz
m2
inv) ≥ 1, but from Eq. 57 we have y · (w∗

invz
m2
inv) < 1.

Thus we have a contradiction.

4. βm1 > 0, βm2 < 0 and y = (−1): Substituting βm1 > 0 and y = (−1) in Eq. 60 we
get y · (w∗

invz
m1
inv) ≥ 1, but from Eq. 57 we have y · (w∗

invz
m1
inv) < 1. Thus we have a

contradiction.

Thus we have a contradiction for all the possible values βm1, βm2 and y could take, completing the
proof of this lemma.

B.4 Problem with learning a clean main-task classifier

In this section we will restate the assumptions and results of Lemma 3.1 for the main-task classifier
(instead of the probing classifier) and show that the same results will hold.

Assm 3.1 remains the same since it is made on the latent-representation being disentangled and
frozen/non-trainable. Next, parallel to Assm 3.2 show that even when main-task feature is 100%
predictive of main-task and a linearly separable, the trained main-task classifier will also use the
concept-causal features. Formally,
Assumption B.1 (main-task feature Linear Separability). The main-task features (zm) of the latent
representation (z) for every point are linearly separable/fully predictive for the main-task labels
ym, i.e yim · (ϵ̂m · zi

m + bm) > 0 for all datapoints (xi, yim) for some ϵ̂m ∈ Rdp . For the case of
zero-centered latent space, we have bm = 0.

Next similar to Assm 3.3, we define the spurious correlation between main-task and concept label: a
function using only zp may also be able to classify correctly on some non-empty subset of points
w.r.t. main-task label (ym).
Assumption B.2 (Main-Task Spurious Correlation). For a subset of training points S ⊂ Dm, main-
task label ym is linearly separable using zp i.e yim · (ϵ̂p ·zi

p+ bp) > 0 for some ϵ̂p ∈ Rdp and bp ∈ R.
For the case of zero-centered latent space we have bp = 0.

Next we rephrase Lemma 3.1 which shows that for only a few special points if the concept-features
zp are linearly-separable w.r.t. to main task classifier ym (Assm B.2), then the main-task classifier
cm(z) will use those features.
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Lemma B.5 (Sufficient Condition for Main-task Classifier). Let the latent representation be frozen
and disentangled such that z = [zm, zp] (Assm 3.1), where main-task-features zm be fully predictive
(Assm B.1). Let c∗m(z) = wm · zm be the desired/clean linear main-task classifier trained using
max-margin objective (§B.1) which only uses zm for its prediction. Let zp be the spurious feature
s.t. for the margin points of c∗m(z), zp be linearly-separable w.r.t. task label ym (Assm B.2). Then,
assuming the latent space is centered around 0, the main-task classifier trained using max-margin
objective will be of form cm(z) = wm · zm +wp · zp where wp ̸= 0.

The proof of Lemma B.5 is identical to Lemma 3.1 and is provided in §B.2.

C Null-Space Removal Failure: Setup and Proof of Theorem 3.2

C.1 Null-Space Setup

As described in §3, the given main-task classifier has an encoder h : X → Z mapping the input X
to latent representation Z. Post that, the main-task classifier cm : Z → Ym is used to predict the
main-task label yim from latent representation zi for every input xi. Given this (pre) trained main-task
classifier the goal of a post-hoc removal method is to remove any undesired/sensitive/spurious concept
from the latent representation Z without retraining the encoder h or main-task classifier cm(z).

The null space method [34, 14], henceforth referred as INLP, is one such post-hoc removal method
which removes a concept from latent space by projecting the latent space to a subspace that is not
discriminative of that attribute. First, it estimates the subspace in the latent space discriminative
of the concept we want to remove by training a probing classifier cp(z) → yp, where yp is the
concept label. [34] used a linear probing classifier (cp(z)) to ensure that the any linear classifier
cannot recover the removed concept from modified latent representation z′ and hence the main task
classifier (cm(z′)), which is also a linear layer, become invariant to removed attribute. Let linear
probing classifier cp(z) be parametrized by a matrix W , and null-space of matrix W is defined as
space N(W ) = {z|Wz = 0}. Give the basis vectors for the N(W ) we can construct the projection
matrix PN(W ) such that W (PN(W )z) = 0 for all z. This projection matrix is defined as the guarding
operator g := PN(W) (estimated by cp(z)), when applied on the z will remove the features which
are discriminative of undesired concept from z. For the setting when Yp is binary we have:

PN(W ) = I − ŵŵT (65)

where I is the identity matrix and ŵ is the unit vector in the direction of parameters of classifier cp(z)
([34]). Also, the authors recommend running this removal step for multiple iterations to ensure the
unwanted concept is removed completely. Thus after S steps of removal, the final guarding function
is:

g :=

S∏
i=1

P i
N(W ) (66)

where P i
N(W ) is the projection matrix at ith removal step. Amnesic Probing ([14]) builds upon this

idea for testing whether concept is being used by a given pre-trained classifier or not. The core
idea is to remove the concept we want to test from the latent representation. If the prediction of the
given classifier is influenced by this removal then the concept was being used by the given classifier
otherwise not.

C.2 Null-Space Removal Failure : Proof of Theorem 3.2

Theorem 3.2. Let cm(z) be a pre-trained main-task classifier where the latent representation z =
[zm, zp] satisfies Assm 3.1 and 3.2. Let cp(z) be the probing classifier used by INLP to remove the
unwanted features zp from the latent representation. Under Assm 3.3, Lemma 3.1 is satisfied for the
probing classifier cp(z) such that cp(z) = wp · zp +wm · zm and wm ̸= 0. Then,

1. Damage in the first step of INLP. The first step of INLP will corrupt the main-task features and
this corruption is non-invertible with subsequent projection steps of INLP.

(a) Mixing: If wp ̸= 0, the main task zm and concept-causal features zp will get mixed such
that zi(1) = [g(zi

m, z
i
p), f(z

i
p, z

i
m)] ̸= [g(zi

m), f(zi
p)]. Thus, the latent representation is no
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longer disentangled and removal of concept-causal features will also lead to removal of main
task features.

(b) Removal: If wp = 0, then the first projection step of linear-INLP will do opposite of what is
intended, i.e., damage the main task features zm (in case zm ∈ R, it will completely remove
zm) but have no effect on the concept-causal features zp.

2. Removal in the long term: The L2-norm of the latent representation z decreases with every
projection step as long as the parameters of probing classifier at a step (wk) does not lie completely
in the space spanned by parameters of previous probing classifiers, i.e., span(w1, . . . ,wk−1),
zi(0) and zi(0) in direction of wk is not trivially zero. Thus, after sufficiently many steps, INLP
can destroy all information in the representation, zi(∞) = [0,0].

The proof of Theorem 3.2 proceeds in following steps:

1. First using Lemma 3.1 we show that even under very favourable conditions probing classifier
will not be clean i.e will also use other features in addition to concept-causal feature for it’s
prediction. Then, for the more likely case when probing classifier uses both main-task and
concept-causal feature, we show that after first step of null-space projection (INLP), both
the main-task features and concept-causal features get mixed.

2. Next, for the extreme case when probing classifier uses only main-task feature, the first step
of INLP will do opposite of what is intended. It will damage the main-task feature but will
have no effect on the concept-causal feature which we wanted to remove from latent space
representation.

3. In addition, we also show that the damage or mixing of latent space after first step of
INLP projection cannot be corrected in subsequent step since the projection operation is
non-invertible.

4. Next, we show that the projection operation is lossy, i.e removes the norm of latent repre-
sentation under some conditions. Hence after sufficient steps, INLP could destroy all the
information in latent representation.

Proof of Theorem 3.2. First Claim (1a). Let cp(z) = wpzp+wmzm be the linear probing classifier
trained to predict the concept label yp from the latent representation z. Since all the assumptions of
Lemma 3.1 are satisfied for the probing classifier cp(z), it is spurious using, i.e., wm ̸= 0 and for the
claim 1(a) we have wp ̸= 0. Since the concept label yp is binary, the projection matrix for the first
step of INLP removal is defined as P 1

N(W ) = I − ŵŵT where ŵT = [ŵm, ŵp], ŵm and ŵp are the
unit norm parameters of cp(z) i.e wm and wp respectively. On applying this projection on the latent
space representation zi we get new projected representation zi(1) s.t.:[

z
i(1)
m

z
i(1)
p

]
=

(
I −

[
ŵm

ŵp

]
[ŵm ŵp]

)[
zi
m

zi
p

]
(67)

=

[
zi
m

zi
p

]
− ĉp(z

i) ·
[
ŵm

ŵp

]
define ĉp(zi) := ŵm · zi

m + ŵp · zi
p (68)

=

[
zi
m − ĉp(z

i)ŵm

zi
p − ĉp(z

i)ŵp

]
(69)

=

[
g(zi

m, z
i
p)

f(zi
m, z

i
p)

]
(70)

Next we will show that main task features and probing features get mixed after projection. To do
so, we first show that g(zi

m, z
i
p) ̸= g(zi

m) for some function g i.e projected main task features

z
i(1)
m = g(zi

m, z
i
p) are not independent of probing features zi

p. From Eq. 69, we have:

zi(1)
m = g(zi

m, z
i
p) (71)

= zi
m − (ŵm · zi

m + ŵp · zi
p)ŵm (72)

= (I − ŵmŵT
m)zi

m − (ŵp · zi
p)ŵm (73)
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Since wp ̸= 0 and wm ̸= 0, we have (ŵp · zi
p)ŵm ̸= 0. Thus g(zi

m, z
i
p) is not independent of zi

p.

Next, we will show that f(zi
m, z

i
p) ̸= f(zi

p) for some function f i.e projected probing feature

z
i(1)
p = f(zi

m, z
i
p) is not independent of the main task feature zi

m. From Eq. 69, we have:

zi(1)
p = f(zi

m, z
i
p) (74)

= zi
p − (ŵm · zi

m + ŵp · zi
p)ŵp (75)

= (I − ŵpŵ
T
p )z

i
p − (ŵm · zi

m)ŵp (76)

Since wp ̸= 0 and wm ̸= 0, we have (ŵm · zi
m)ŵp ̸= 0. Thus f(zi

m, z
i
p) is not independent of

zi
m. Hence both concept-feature zp and the main-task feature zm got mixed after the first step of

projection.

Next, we will show that this mixing of main task and concept-causal feature cannot be corrected in
subsequent steps of null-space projection. Formally, the following Lemma C.1 proves that the above
projection matrix (P 1

N(W )) which resulted in mixing of features is non-invertible. The subsequent
steps of INLP applies projection transformation which can be combined into one single matrix
P>1
N(W ) =

∏
j>1 P

j
N(W ). In order for mixing to be reversed, we need P>1

N(W ) × P 1
N(W ) = I , thus

we need P>1
N(W ) = (P 1

N(W ))
−1 which is not possible from Lemma C.1. Hence the mixing of main-

task feature and the concept-causal feature which happened after first step of projection cannot be
corrected in the subsequent steps of INLP thus completing the first claim of our proof.
Lemma C.1. The projection matrix P j

N(W ) at any projection step of INLP is non invertible.

Proof of Lemma C.1. The projection matrix for binary target case is defined as P := P j
N(W ) = I−A

where A = ŵŵT be a n × n matrix and w is the parameter vector of the probing classifier cp(z)
trained at jth-step of INLP. We can see that A is a symmetric matrix. Every symmetric matrix
is diagonalizable (Equation W.9 in [12]), hence we can write A = QΛQT , where Q is a some
orthonormal matrix such that QQT = I and Λ = diag(λ1, . . . , λn) be a n × n diagonal matrix
where the diagonal entries (λ1 . . . λn) are the eigen-values of A. Since QQT = I we can write
P = I − A = QQT −QΛQT = Q(I − Λ)QT . Next, for the projection matrix P to be invertible
P−1 should exist. We have:

P−1 =
(
Q(I − Λ)QT

)−1

(77)

= (QT )−1(I − Λ)−1Q−1 (78)

= Q(I − Λ)−1QT (79)

So projection matrix is only invertible when (I − Λ) is invertible. We will show next that (I − Λ) is
not invertible thus completing our proof. We have I − Λ = diag(1− λ1, . . . , 1− λn), hence:

(I − Λ)−1 = diag(
1

1− λ1
, . . . ,

1

1− λ2
) (80)

Now, if one of the eigen values of A is 1, then the diagonal matrix (I − Λ) is not invertible. If one of
the eigen values of A is 1, then there exist an eigen-vector x such that Ax = ŵŵT × x = 1× x.
The vector x = ŵ is the eigen vector of A with eigen-value 1: Aŵ = ŵŵT × ŵ = 1 × ŵ since
ŵT × ŵ = 1 as it is a unit vector. Hence the projection matrix is not invertible.

First Claim (1b). For a probing classifier of form c
(1)
p (z) = wp · zp +wm · zm for the first step of

INLP projection —denoted by superscript (1)— trained to predict concept label yp and Assm 3.1,3.2
and 3.3 of Lemma 3.1 is satisfied then we have wm ̸= 0 i.e main task feature zm will be used by
probing classifier along with the concept feature zp. For this second case, we are given that wp = 0
i.e probing classifier will not use concept feature at all. This is only possible when the main-task
feature is fully predictive of the concept label i.e Assm 3.3 is satisfied for all the points in the dataset,
otherwise optimal probing classifier will use the concept-causal feature to achieve better margin and
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accuracy. Moreover, even though Assm 3.3 is satisfied, in order to have wp = 0, margin achieved by
probing classifier, using only main task feature, should be bigger than any other classifier i.e using
both main-task feature and probing feature or probing feature alone. Thus, it is very unlikely that
optimal probing classifier will have wp = 0.

Having said this, even in the case when we have wp = 0, we show that first projection step of
INLP will do something unintended, i.e., damage the main-task features while having no effect on
concept-causal features which we intended to remove. First we will show that main-task features will
get damaged. From Eq. 73 we have:

zi(1)
m = (I − ŵmŵT

m)zi
m − (ŵp · zi

p)ŵm (81)

= zi
m − (ŵm · zi

m)ŵm − 0 (since wp = 0) (82)

Since wm ̸= 0, we see that projected main-task feature z
i(1)
m ̸= zi

m. In case zm ∈ R, we have
ŵm = ẑi

m, thus (ŵm · zi
m)ŵm = zi

m. Consequently, zi(1)
m = zi

m − zi
m = 0. Thus, first projection

step of INLP leads to complete removal of main-task feature zm when zm ∈ R. Also, from
Lemma C.1, this projection step is non-invertible and hence the main-task feature cannot be recovered
back in subsequent projection step.

Next, we will show the the first projection step has no effect on the concept-causal features which we
wanted to remove in first place. From Eq. 76, we have:

zi(1)
p = (I − ŵpŵ

T
p )z

i
p − (ŵm · zi

m)ŵp (83)

= zi
p − 0− 0 (since wp = 0) (84)

Thus the first step of projection have no effect on the concept-causal feature we wanted to remove. In
the next step of projection, if we again have wp = 0, then this same case will repeat. Otherwise if
Assm 3.3 still holds for main-task feature for the margin points of optimal probing classifier c∗(2)p (z)
for this second step of projection, then we will have both wm ̸= 0 and wp ̸= 0 and the first case of
this theorem will apply.

Second Claim. Now for proving the second statement, we will make use of the following lemma.
The proof of the lemma is given below the proof of this theorem.
Lemma C.2. After every projection step of INLP, the norm of every latent representation zi

decreases, i.e., ∥zi(k)∥ < ∥zi(k−1)∥ for step k and k − 1, if (1) zi(k−1) ̸= 0, (2) zi(0)

ŵk ̸= 0 and (3)
the parameters of probing classifier in step “k” i.e ŵk don’t lie in the space spanned by parameters of
previous probing classifier, span(ŵ1, . . . , ŵk−1).

Next we will show that, starting from first step, at every kth-step of projection either we will have
zi(k) = 0 or the norm will decrease after projection. Once we reach a step when zi(k) = 0, then
after every subsequent projection we will have zi(k+1) = 0 =⇒ ∥zi(k+1)∥ = 0 since:

zi(k+1) = PN(wk)z
i(k) = PN(wk)0 = 0 (85)

where PN(wk) is the projection matrix at step "k". Since ∥·∥ ≥ 0 and ∥zi(k)∥ is decreasing with
every stey, thus with large number of zi(∞) → 0.

We will start with first step of projection. In the second statement of this Theorem 3.2, we are
given that zi(0) is not trivially zero in direction of w0 i.e z

i(0)
w0 ̸= 0 (satisfying Assm(2) of above

Lemma C.2). We are also given that zi(0) ̸= 0 (satisfying Assm(1) of above lemma) and since this is
the first step of projection Assm(3) of above Lemma C.2) is also satisfied. Thus from Lemma C.2,
we have ∥zi(1)∥ < ∥zi(0)∥. Now, either zi(1) = 0, which will imply that ∥zi(1)∥ = 0 and will
remain 0 for all subsequent step (from Eq. 85). Otherwise if zi(1) ̸= 0, it satisfies the Assm(1) of
Lemma C.2, for next step of projection. Since Assm (2) and (3) are already satisfied, again we will
have ∥zi(2)∥ < ∥zi(1)∥ and the same idea will repeat eventually making zi(k) = 0 at some step-k,
thus completing our proof.

Proof of Lemma C.2. After (k − 1)-steps of INLP let the latent space representation zi be denoted
as zi(k−1). Let ŵk be the parameters of classifier cp(zk−1) trained to predict the concept label yp
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which we want to remove at step k. Then prior to the projection step in the kth iteration of the INLP,
we can write zi(k−1) as:

z
i(k−1)
B = z

i(k−1)

ŵk ŵk + z
i(k−1)

N(ŵk)
N(ŵk) (86)

where B = {ŵk, N(ŵk)} is the basis set and N(ŵk) is the null-space of ŵk . The parameter ŵk in
this new basis is:

ŵk
B = Iŵkŵk + 0N(ŵk) (87)

where Iŵk is identity matrix with dimension dŵk × dŵk . Now, in the new basis when we project the
zk−1 to the null space of ŵi(k) we have:

zi(k) = PN(ŵk)z
i(k−1) (88)

z
i(k)
B =

(
I − ŵk

B(ŵ
k
B)

T )
)
z
i(k−1)
B (89)

=

(
I −

[
Iŵk

0

]
[Iŵk 0]

)[
z
i(k−1)

ŵk

z
i(k−1)

N(ŵk)

]
(90)

=

[
z
i(k−1)

ŵk

z
i(k−1)

N(ŵk)

]
−
[
z
i(k−1)

ŵk

0

]
(91)

=

[
0

z
i(k−1)

N(ŵk)

]
(92)

Thus the norm of ∥zi(k)∥ =
√
∥zi(k−1)

N(ŵk)
∥+ 0 is less that ∥zk−1∥ =

√
∥zi(k−1)

ŵk ∥2 + ∥zi(k−1)

N(ŵk)
∥2 if

z
i(k−1)

ŵk ̸= 0. Next we will show that zi(k−1)

ŵk cannot be zero. From assumption (2) in C.2 z
i(0)

wk ̸= 0

i.e z
i(0)

wk is not trivially zero in the given latent representation zi(0) before any projection from INLP,

thus zi(k−1)

ŵk is not trivially zero from beginning. Also, from Eq. 92, we observe that at any step “k”

INLP removes the part of the representation from zi(k−1) which is in the direction of ŵk i.e. zi(k−1)

ŵk .
Consequently, a sequence of removal steps with parameters ŵ1, . . . , ŵk−1 will remove the part of
z which lies in the span(ŵ1, . . . , ŵk−1). Thus zi(k−1)

ŵk = 0 if ŵk lies in the span of parameters of
previous classifier i.e span(ŵ1, . . . , ŵk−1) which violates the assumption (3) in Lemma C.2. Thus
z
i(k−1)

ŵk is neither trivially zero from the beginning nor it could have been removed in the previous
steps of projection as long as the assumption in Lemma C.2 is satisfied, which completes our proof of
the lemma.

Remark. The following lemma from [34] tells us some of the sufficient conditions when the
parameters of the probing classifier at current iteration will not be same as previous step.
Lemma C.3 (Lemma A.1 from [34]). If the concept-probing classifier is being trained using SGD
(stochastic gradient descent) and the loss function is convex, then parameters of the probing classifier
at step k, wk, are orthogonal to parameters at step k − 1, wk−1.

We conjecture that Lemma C.3 will be true for any loss since after k − 1 steps of projection, the
component of z in the direction of span(w1, . . . ,wk−1) will be removed. Hence the concept-probing
classifier at step k should be orthogonal to span(w1, . . . ,wk−1) in order to have non-random guess
accuracy on probing task.

D Adversarial Removal: Setup and Proof

D.1 Adversarial Setup

As described in §3.3, let h : X → z be an encoder mapping the input xi to latent representation
zi. The main task classifier cm : Z → Ym is applied on top of zi to predict the main task label
yim for every input xi. As described in §3.3, the goal of adversarial-removal method, henceforth
referred as AR, is to remove any undesired/sensitive/spurious concept from the latent representation
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Z. Once the concept is removed from latent representation any (main-task) classifier using the latent
representation Z will not be able to use them [16, 49, 13]. These methods jointly train the main-task
classifier cm(z) and the probing classifier cp : Z → Yp. The probing classifier is adversarially
trained to predict the concept label yip from latent representation zi. Hence, AR methods optimize
the following two objectives simultaneously:

argmin
cp

L(cp(h(z)), yp) (93)

argmin
h,cm

{
L(cm(h(z), ym)− L(cp(h(z), yp)

}
(94)

Here L(·) is the loss function which estimates the error given the ground truth ym/yp and correspond-
ing prediction cm(z)/cp(z). The desired solution and the same time a valid equilibrium point of the
above min-max objective is an encoder h such that it removes all the features from latent space useful
for prediction of yp while keeping intact other features causally-derived from the main-task prediction.
In practice, the optimization to above combined objective is performed using gradient-reversal (GRL)
layer ([16]). It introduces an additional layer gλ between the latent representation h(z) and the
adversarial classifier cp(z). The gλ layer acts as an identity layer (i.e., has no effect) during the
forward pass but scales the gradient by (−λ) when back-propagating it during the backward pass.
Thus resulting combined objective is:

arg min
h,cm,cp

{
L(cm(h(z)), ym) + L(cp(gλ(h(z))), yp)

}
(95)

Setup for theoretical result: As stated in Theorem 3.3, for our theoretical result showing the
failure mode of adversarial removal, we assume that the encoder is divided into two sub-parts. The
first encoder i.e h1 : X → Z is frozen (non-trainable) and maps the input xi to intermediate latent
representation zi which is frozen and disentangled (Assm 3.1). The second encoder h2 : Z → ζ is
linear transformation mapping the intermediate latent representation zi to final latent representation
ζi and is trainable. On top of this final latent representation ζi, we train the main task classifier
cm(ζi) and probing classifier cp(ζi). Thus the training objective from Eq. 93 and 94 becomes:

argmin
cp

L(cp(h2(z)), yp) (96)

arg min
h2,cm

{
L(cm(h2(z), ym)− L(cp(h2(z), yp)

}
(97)

D.2 Adversarial Proof

For detailed discussion of adversarial training objective and specific setup for our theoretical result
refer §D.1.
Assumption D.1 (Strength of Correlation). Let ŵp ∈ Rdp be the unit vector s.t. zp is linearly
separable for concept-label yp (see Assm 3.2). Then, concept-causal feature zM

p of any margin point
zM of cm(h∗2(z)) is more predictive of main-task than concept-causal feature zP

p of any margin-point
zP of cp(h∗2(z)) for probing task by a factor of |β| ∈ R where |β| is norm of parameter probing
classifier cp i.e ym(ŵp · zM

p ) > |β|yp(ŵp · zP
p ).

Theorem 3.3. Let the latent representation z satisfy Assm 3.1 and be frozen, h2(z) be a linear
transformation over Z s.t. h2 : Z → ζ, the main-task classifier be cm(ζ) = wcm · ζ, and the
adversarial classifier be cp(ζ) = wcp · ζ. Let all the assumptions of Lemma B.5 be satisfied for
main-classifier cm(·) when using Z directly as input and Assm 3.2 be satisfied on Z w.r.t. the
adversarial task. Let h∗2(z) be the desired encoder which is successful in removing zp from ζ. Then
there exists an undesired/incorrect encoder h2(z) s.t. h2(z) is dependent on zp and the main-task
classifier cm(h2(z)) has bigger margin than cm(h∗2(z)) and has,

1. Accuracy(cp(h2(z)), yp) = Accuracy(cp(h
∗
2(z)), yp) when adversarial probing classifier cp(·)

is trained using any learning objective like max-margin or cross-entropy loss. Thus, the undesired
encoder h2(z) is indistinguishable from desired encoder h∗2(z) in terms of adversarial task
prediction accuracy but better for main-task in terms of max-margin objective.

2. Lh2

(
cm(h2(z)), cp(h2(z))

)
< Lh2

(
cm(h∗2(z)), cp(h

∗
2(z))

)
additionally under Assm 3.4, D.1

and given concept-causal feature zM
p of any margin point zM of cm(h∗2(z)) is more predictive of
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main-task than zP
p of any margin-point zP of cp(h∗2(z)) for probing task (see Assm D.1). Here

Lh2(·) = L(cm(·), ym) − L(cp(·), yp) is the combined adversarial loss w.r.t. to h2 and L(·) is
the max-margin loss for a classifier (see §D.1). Thus undesired encoder h2(z) is preferable over
desired encoder h∗2(z) for both main and combined adversarial objective.

Proof of Theorem 3.3. Let the main classifier be of form cm(ζ) = wcm · ζ where wcm and ζ are
dζ dimensional vectors. Since both parameters wcm and ζ are learnable, for ease of exposition we
constrain wcm to be [1, 0, . . . , 0]. This constraint on wcm is w.l.o.g. since wcm makes the prediction
for main-task by projecting ζ into one specific direction to get a scalar (wcm · ζ). We constrain
that direction to be the first dimension of ζ. Since the encoder h2(z) : z → ζ is trainable it could
learn to encode the scalar (wcm · ζ) in the first dimension of ζ. Thus, effectively a single dimension
of the representation ζ encodes the main-task information. Thus the main classifier is effectively
of form cm(ζ) = w

(0)
cm × ζ(0) = 1 × ζ(0) where w

(0)
cm and ζ(0) are the first element of wcm and ζ

respectively and w
(0)
cm = 1. We can now write the goal of the adversarial method as removing the

information of zp from ζ(0) , because the other dimensions are not used by the main classifier. Thus
the adversarial classifier can be written effectively as cp(ζ) = β × ζ(0) where β ∈ R is a trainable
parameter. Since both the main and adversarial classifier are using only ζ(0), the second encoder, with
a slight abuse of notation, can be simplified as ζ := ζ(0) := h2(z) = wm · zm +wp · zp , where
ζ ∈ R and wm and wp are the weights that determine the first dimension of ζ. Also, let the desired
(correct) second encoder which is successful in removing the concept-causal feature zp from ζ be
ζ∗ := ζ∗(0) := h∗2(z) = w∗

m · zm. Thus using Eq. 96 and 97, our overall objective for adversarial
removal method becomes:

argmin
β
L(cp(h2(z)), yp) (98)

argmin
h2

{
L(cm(h2(z), ym)− L(cp(h(z), yp)

}
(99)

1. First claim. The ideal main-classifier with desired encoder can be written as, cm(ζ∗) =
1 × h∗2(z) = w∗

m · zm. Therefore, it can be trained using same MM-Denominator formulation of
max-margin objective and would satisfy the constraint in Eq. 3:

m(cm(ζ∗i)) = m(h∗2(z
i)) = yim · h∗2(zi) ≥ 1 (100)

for all the points xi with latent representation zi and m(·) is the numerator of the distance of point
from the decision boundary of classifier (Eq. 1).

However, the main-task classifier which does not use the desired encoder is of the form, cm(ζ) =
1×h2(z) = wm ·zm+wp ·zp. Since this main-task classifier is trained using max-margin objective
by MM-Denominator formulation, it would satisfy the constraint in Eq. 3:

m(cm(ζi)) = m(h2(z
i)) = yim · h2(zi) ≥ 1 (101)

Since in our case, main-task classifier is same as the encoder i.e cm(ζ) = 1× h2(z) = wm · zm +
wp · zp, and the latent representation z satisfies the Assm 3.1, B.1 and B.2, from Lemma B.5 the
main-task classifier is spurious-using i.e zp ̸= 0. Hence there exists an undesired/incorrect encoder
h2(z) such that the main classifier cm(ζ) = h2(z) has bigger margin than cm(ζ∗) = h∗2(z).

Next we show that the accuracy of the adversarial classifier remains the same irrespective of whether
the desired (h∗2(z)) or undesired encoder h2(z) is used. The accuracy of the adversarial classifier
cp(ζ) = β × ζ, using the desired/correct encoder ζ = h∗2(z) is given by:

Accuracy(cp(ζ
∗), yp) =

∑N
i=1 1

(
sign

(
β · h∗2(zi)

)
== yip

)
N

(102)

where 1(·) is an indicator function which takes the value 1 if the argument is true otherwise 0, and
sign(γ) = +1 if γ ≥ 0 and −1 otherwise. Combining Eq. 100 and Eq. 101, since yim ∈ {−1, 1},
we see that whenever h2(zi) > 1 we also have h∗2(z

i) > 1 and similarly whenever h2(zi) < −1,
we have h∗2(z

i) < −1. Thus,
h2(z) · h∗2(z) > 0 (103)
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From Eq. 103, h∗2(z
i) and h2(zi) has the same sign for every input zi =⇒ sign(β · h∗2(zi)) =

sign(β · h2(zi)). Thus we can replace h∗2(z
i) with h2(zi) in the above equation and we have:

Accuracy(cp(ζ
∗), yp) =

∑N
i=1 1

(
sign

(
β · h2(zi)

)
== yip

)
N

= Accuracy(cp(ζ), yp)

thus completing the first part our proof.

2. Second claim. Since we are training both main-task and probing classifier with max-margin
objective (see MM-Numerator version at Eq. 5), we can effectively write the adversarial objective
(from 98 and 99) as:

argmax
β

(P (β)) := argmax
β

{
min
zi

mcp(h2(z
i))
}

(104)

argmax
h2

(E(h2)) := argmax
h2

{
min
zi

mcm(h2(z
i))−min

zi
mcp(h2(z

i))
}

(105)

where mcm(h2(z)) and mcp(h2(z)) are the numerator of margin of a point (Eq. 1). Next our goal is
to show that the desired encoder h∗2 is not an equilibrium point of the above adversarial objective. To
do so, we will create an undesired/incorrect encoder h2(z) by perturbing h∗2 by small amount and
showing that the combined encoder objective E(h2) > E(h∗2) (Eq. 105) irrespective of choice of β
chosen by the probing objective P (β) (Eq. 104).

Construction of the undesired/incorrect encoder. We have h∗2(z) = ∥wm∥(ŵ∗
m · zm). We will

perturb this desired encoder by parameterizing with α ∈ [0, 1) s.t.:

hα2 (z) = α∥w∗
m∥(ŵ∗

m · zm) +
√

1− α2∥w∗
m∥(ϵ̂p · zp) (106)

where ϵ̂pRdp is a unit vector. The clean main-task classifier is defined as c∗m(z) = h∗2(z). The
main-task classifier cm when using the incorrect encoder takes form cm(h2(z)) = h2(z). As stated
in theorem statement, all the assumption of Lemma B.5 is satisfied. Since Assm B.2 (one of the
assumption of Lemma B.5) is satisfied, there exist an unit-vector in Rd

p such that margin point
of main-task classifier using encoder h∗2 is linearly separable w.r.t main-task label. Let ϵ̂p in our
constructed undesired encoder (Eq. 106) be set to that unit vector such that:

yMm · (ϵ̂p · zM
p ) > 0 (107)

where zM
p is the concept-causal feature of margin point zM of the main-task classifier when using

encoder h∗2. Now since all the assumption of Lemma B.5 is satisfied, the margin of main-task
classifier when using undesired encoder hα2 (z) is bigger than when desired encoder h∗2 is used for
some α ∈ (α1

lb, 1) s.t.:

mcm(hα2 (z
M )) > mcm(h∗2(z

M )) (108)

where zM is the margin point of cm(h∗2) and mcm(h∗2(z
M )) = 1. From Assm 3.2, we have a fully

predictive concept-feature zp for prediction of adversarial label yp such that for some unit vector
ŵp ∈ Rdp we have:

yip
(
ŵp · zi

p

)
> 0 ∀(zi, yip) (109)

Next, from Assm 3.4, we have yip = yim for every margin point of the desired/correct main-task
classifier using the desired/correct encoder h∗2(z). Thus we can assign ϵ̂p := ŵp which satisfies the
inequality in Eq. 107. Thus our incorrect encoder hα2 (z) take the following form:

hα2 (z) = α∥w∗
m∥
(
ŵ∗

m · zm
)
+
√
1− α2∥w∗

m∥
(
ŵp · zp

)
(110)

Note that when α = 1, we recover back the correct encoder h∗2. Thus to perturb the h∗2, we set α
close but less than 1.
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Showing h∗2 is not the equilibrium point. From Eq. 105, we want to show that for some α ∈ [0, 1),
the undesired encoder hα2 has bigger combined objective than desired encoder h∗2. Let zM be the
margin point of main-task classifier cm and zP be the margin point of probing classifier cp when
using the correct encoder h∗2. Thus we want to show that for some α close but less than 1 we have:

E(hα2 ) > E(h∗2) (111)

mcm(hα2 (z
M ))−mcp(h

α
2 (z

P )) > mcm(h∗2(z
M ))−mcp(h

∗
2(z

P )) (112)

mcm(hα2 (z
M ))−mcm(h∗2(z

M )) > mcp(h
α
2 (z

P ))−mcp(h
∗
2(z

P )) (113)

Next we will make use of following lemma to show that we only need to show Eq. 113 when β > 0
is chosen by the probing objective in Eq. 104. For β < 0, Eq. 113 is always satisfied.
Lemma D.1. There exist an α2

lb ∈ [0, 1) s.t. when α > α2
lb, we have yphα2 (z) > yph

∗
2(z) for all z.

Proof of Lemma D.1. We solve for α to get:

α���∥w∗
m∥yp(ŵ∗

m · zm) +
√
1− α2���∥w∗

m∥yp(ŵp · zp) >���∥w∗
m∥yp(ŵ∗

m · zm) (114)√
1− α2yp(ŵp · zp) > (1− α)yp(ŵ

∗
m · zm) (115)

Since Assm 3.2 is satisfied we have yp(ŵm · zp) > 0. Also, since α ∈ [0, 1) by construction,√
1− α2 > 0. Thus the LHS in above equation is greater than 0. Since Assm B.1 is satisfied

(part of Lemma B.5), we have ym(ŵ∗
m · zm) > 0 for all z and ym ∈ {−1, 1}. Thus we have

(ŵ∗
m · zm) ̸= 0 =⇒ yp(ŵ

∗
m · zm) ̸= 0 since yp ∈ {−1, 1} and (1− α) < 0 since α ∈ [0, 1). Now

there are two possible cases for the RHS. If, yp(ŵ∗
m · zm) < 0, the the above equation is trivially

satisfied without for all values of α, since LHS is positive and RHS is negative. For the case when
yp(ŵ

∗
m · zm) > 0 we solve for α:

yp(ŵp · zp)
yp(ŵ∗

m · zm)
>

1− α√
1− α2

(116)

γ2(z) >
����(1− α)(1− α)

����(1− α)(1 + α)
(117)

γ2(z) + αγ2(z) > 1− α (118)

α(1 + γ2(z)) > 1− γ2(z) (119)

α >
1− γ2(z)

1 + γ2(z)
:= α2

lb(z) (120)

where γ =
yp(ŵp·zp)
yp(ŵ∗

m·zm) > 0. Thus α2
lb(z) < 1 for all z. Let’s define α2

lb = maxz(α
2
lb(z)) < 1,

which gives us the tightest lower bound on α for which this lemma is true. Thus, for α ∈ (α2
lb, 1), we

have yphα2 (z) > yph
∗
2(z) for all z.

For β < 0 . If the probing objective in Eq. 104 had chosen β < 0 then from Lemma D.1 for all z
we have:

yph
α
2 (z) > yph

∗
2(z) (121)

yp(β · hα2 (z)) < yp(β · h∗2(z)) (122)
mcp(h

α
2 (z)) < mcp(h

∗
2(z)) (123)

We have mcp(h
α
2 (z))−mcp(h

∗
2(z)) < 0 for all z (including zP ) from above equation. Thus, the

RHS of Eq. 113 is less than zero. Also, from Eq. 108, for α ∈ (α1
lb, 1) we have mcm(hα2 (z

M ))−
mcm(h∗2(z

M )) > 0 where value of α1
lb is given by Lemma B.5. Thus the LHS of Eq. 113 is greater

than 0. Thus the inequality in 113 is always satisfied and hence when β < 0, we have shown
that h∗2 is not the equilibrium point since there exist perturbed undesired encoder h∗2 such that the
combined encoder objective is greater in Eq. 105 and consequently the optimizer will try to move
away from/change h∗2.
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For β > 0 . Next we have to show that we want to show that there exist α ∈ [0, 1), we have Eq. 113
satisfied. Thus we solve for allowed values of α:{

mcm(hα2 (z
M ))−mcm(h∗2(z

M ))
}
>
{
mcp(h

α
2 (z

P ))−mcp(h
∗
2(z

P ))
}

(124){
ymh

α
2 (z

M )− ymh
∗
2(z

M )
}
>
{
yp(β · hα2 (zP ))− yp(β · h∗2(zP ))

}
(125)

Substituting hα2 , h∗2 and rearranging we get:√
1− α2

{
ym(ŵp · zM

p )− ypβ(ŵp · zP
p )
}
> (1− α)

{
ym(ŵ∗

m · zM
m )− ypβ(ŵ

∗
m · zP

m)
}

(126)

Now, since Assm B.1 is satisfied, the main task feature zm is linearly separable w.r.t main-task label
ym. Thus we have ym(ŵ∗

m · zM
m ) > 0. . Now we have two cases:

Case 1: Main-task feature is not fully predictive of probing label (∃z s.t. yp(ŵ∗
m · zm) < 0).

Since main-task feature is not fully predictive of the probing label yp, there will be some points
which will be misclassified (will be on the opposite side of decision boundary) when probing
classifier uses desired encoder cp(h∗2(z)) = βh∗2(z) = w∗

m · zm. Thus margin for those points
will be negative and one of them will be the margin point zP of the probing classifier. Thus
mcp(h

∗
2(z

P )) = ypβ(ŵ
∗
m · zP

m) < 0. Then the term
(
ym(ŵ∗

m · zM
m )− ypβ(ŵ

∗
m · zP

m)
)
> 0 in the

above Eq. 126. Thus, rewriting the above equation we have:{
ym(ŵp · zM

p )− ypβ(ŵp · zP
p )
}

{
ym(ŵ∗

m · zM
m )− ypβ(ŵ∗

m · zP
m)
} >

1− α√
1− α2

(127)

Next, since Assm D.1 is satisfied the numerator in LHS of above equation
(
ym(ŵp ·zM

p )− ypβ(ŵp ·
zP
p )
)
> 0. Thus whole LHS in above equation is greater than zero. Setting the LHS to γ(zM , zP )

gives us:

γ(zM , zP ) >
1− α√
1− α2

(128)

γ2(zM , zP ) >
����(1− α)(1− α)

����(1− α)(1 + α)
(129)

γ2(zM , zP ) + αγ2(zM , zP ) > 1− α (130)(
1 + γ2(zM , zP )

)
α > 1− γ2(zM , zP ) (131)

α >
1− γ2(zM , zP )

1 + γ2(zM , zP )
= α3

lb(z
M , zP )) (132)

Since γ2(zM , zP ) > 0, α3
lb(z

M , zP )) < 1. Let α3
lb = max(zM ,zP )(α

3
lb(z

M , zP ))) < 1, which
gives us the tight lower-bound on α such that Eq. 113 is satisfied for any pair of margin point zM

and zP .

Case 2: Main-task is fully predictive of probing label. (∀z, yp(ŵ∗
m · zm) > 0). Since Assm B.1

(from Lemma B.5) is satisfied, we have main-task feature fully predictive of main-task label i.e
ym(ŵ∗

m·zm) > 0 for all z. Thus for this case ym(ŵ∗
m·zm) > 0 and yp(ŵ∗

m·zm) > 0 =⇒ ym = yp
for all z. Also, for this case there will be no misclassified points for the probing classifier when using
the desired encoder h∗2. Thus the margin point for both main and the probing classifier is same i.e
zM = zP . Since Assm D.1 is satisfied, ym = yp for all z, yp(ŵp · z) > 0 for all z from Assm 3.2
and zP = zM we have:

ym(ŵp · zM
p ) > ypβ(ŵp · zP

p ) (133)

1 ·
�������
(yp(ŵp · zM

p )) > β
�������
(yp(ŵp · zM

p )) (134)

β < 1 (135)

Thus, in this case the RHS in Eq. 126, could be simplified to : ym(ŵ∗
m · zM

m )− ypβ(ŵ
∗
m · zP

m) =
ym(ŵ∗

m ·zM
m )−βym(ŵ∗

m ·zM
m ) = (1−β)ym(ŵ∗

m ·zM
m ) > 0 since 0 < β < 1 from above Eq. 135
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and yp(ŵ∗
m · zM

m ) > 0 from Assm B.1. Thus we can rewrite Eq. 126 as:{
ym(ŵp · zM

p )− ypβ(ŵp · zP
p )
}

{
ym(ŵ∗

m · zM
m )− ypβ(ŵ∗

m · zP
m)
} >

1− α√
1− α2

(136)

Again, from Assm D.1, we have numerator of LHS in above equation greater than 0, thus we can
follow the same steps from Eq. 128 to 132 to get the α3

lb for this case.

So far we have three lower bounds on α needed for this proof, so lets define αlb = max{α1
lb, α

2
lb, α3},

where α1
lb is the enforced by Lemma B.5 on undesired encoder hα2 construction, α2

lb is enforced by
Lemma D.1 and α3

lb is enforced by Eq. 113. Thus, when α ∈ (αlb, 1] we have bigger combined
objective (Eq. 105) for hα2 than h∗2. Thus, we can always perturb the desired encoder hα2 by choosing
α ∈ (αlb, 1] close but less than 1 to create hα2 which will have better combined encoder objective.
Hence any optimizer will prefer to change the desired encoder h∗2, hence it is not an equilibrium
solution to overall adversarial objective.

E Experimental Setup

E.1 Dataset Description

As described in §4, we demonstrate the failure of Null-Space Removal (§4.2) and Adversarial
Removal (§4.3) in removing the undesired concept from the latent representation on three real
world datasets: MultiNLI [47], Twitter-PAN16 [33] and Twitter-AAE [7]; and a synthetic dataset,
Synthetic-Text. The detailed generation and evaluation strategies for each dataset are given below.

MultiNLI Dataset. In MultiNLI dataset, given two sentences—premise and hypothesis—the
main-task is to predict whether the hypothesis entails, contradicts or is neutral to the premise. As
described in §4, we simplify it to a binary task of predicting whether a hypothesis contradicts the
premise. The binary main-task label, ym = 1 when a given hypothesis contradicts the premise
otherwise it is -1. That is, we relabel the MNLI dataset by assigning label ym = 1 to examples
with contradiction labels and ym = −1 to the example with neutral or entailment label. It has been
reported that the contradiction label is spuriously correlated with the negation words like nobody, no,
never and nothing[18]. Thus, we created a ‘negation’ concept denoting the presence of these words
in the hypothesis of a given (hypothesis, premise) pair. The concept-label yp = 1 when the negation
concept is present in the hypothesis otherwise it is −1.

The standard MultiNLI dataset 1 has approximately 90% of data points in the training set, 5% as
publicly available development set and the rest of 5% in a separate held out validation set accessible
through online competition leader-board not accessible to the public. Thus, we create our own train
and test split by subsamping 10k examples from the initial training set, converting it into binary
contradiction vs. non-contradiction labels, labelling the negation-concept label, and splitting them
into 80-20 train and test split. For pre-training a clean classifier that does not use the spurious-concept,
we create a special training set following the method described in §E.2. For evaluating the robustness
of both null-space and adversarial removal methods, we create multiple datasets with different
predictive-correlation as described in §E.3 .

Twitter-PAN16 Dataset. In Twitter-PAN16 dataset [33], following [13], given a tweet, the main
task is to predict whether it contains a mention to another user or not. The dataset contains manually
annotated binary Gender information (i.e Male or Female) of 436 Twitter user with atleast 1k tweets
each. The Gender annotation was done by assessing the name and photograph of the LinkedIn profile
of each user [13]. The unclear cases were discarded in this process. We consider “Gender” as a
sensitive concept that should not be used for main-task prediction. The dataset contains 160k tweets
tweets for training and 10k tweets for test. We merged the full dataset, subsampled 10k examples, and
created a 80-20 train and test split. For pre-training a clean classifier, we create a special training set

1MultiNLI dataset and it’s licence could be found online at: https://cims.nyu.edu/~sbowman/
multinli/
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following the method described in §E.2. To generate datasets with different predictive correlation, we
follow the method from E.3. The dataset is acquired and processed using the code2 made available by
the [13]. According to Twitter’s policy the one has to download tweets from a personal account using
Twitter Academic Research access and cannot be released to public or used for commercial purpose.
We also adhere to this policy and don’t release any data to public or use it elsewhere.

Twitter-AAE Dataset. In Twitter-AAE dataset [7], again following [13], the main-task is to
predict a binary sentiment (Positive or Negative) from a given tweet. The dataset contain 59.2 million
tweets by 2.8 million users. Each tweet is associated with “race” information of the user which is
labelled based on both words in the tweet and geo-location of the user. We consider “race” as the
sensitive concept which should not be used for the main task of sentiment prediction. We use the
AAE (African America English) and SAE (Standard American English) as a proxy for non-Hispanic
blacks and non-Hispanic whites automatically labelled using code made available by [13]. Again,
we subsampled 10k examples with 80-20 split from the dataset and followed the method described
in §E.2 and E.3 to generate a clean dataset for pre-training a clean classifier and datasets with
different predictive correlation respectively. The dataset is made publicly available online3 only for
research-purpose.

Synthetic Dataset. To accurately evaluate the whether a classifier is using the spurious concept
or not, we introduce a Synthetic-Text dataset where it is possible to change the text input based on
the change in concept (thus implementing Def 2.1). The main-task is to predict whether a sentence
contains a numbered word (e.g. one, fifteen etc) or not, and the spurious concept is the length of the
sentence which is correlated with the main task label. To create a sentence with numbered words, we
randomly sample 10 words from the following set and combine them to form the sentence.

Numbered Words = one, two, three, four, five, six, seven, eight,
nine, ten, eleven, twelve, thirteen, fourteen,
fifteen, sixteen, seventeen, eighteen, twenty,
thirty, forty, fifty, sixty, seventy, eighty,
ninety, hundred, thousand

Otherwise, a sentence is created by adding 10 non-numbered words randomly sampled from the
following set.

Non-Numbered Words = nice, device, try, picture, signature, trailer,
harry, potter, malfoy, john, switch, taste,
glove, balloon, dog, horse, switch, watch,
sun, cloud, river, town, cow, shadow,
pencil, eraser

Next, we introduce the spurious concept (length) by increasing the length of the sentences which
contain numbered words. We do so by adding a special word “pad” 10 times. In our experiments,
we use 1k examples created using the above method and create 80-20 split for train and test set.
Again, we follow the method described in §E.2 and E.3 to generate a clean dataset for training a clean
classifier and to generate datasets with different predictive correlations respectively.

E.2 Creating a “clean” dataset with no spurious correlation with main-label

To construct a new dataset with no spurious correlation between the main-task and the concept
label, we subsample only those examples from the the given dataset which have a fixed value of the

2The code for Twitter-PAN16 and Twitter-AAE dataset acquisition is available at: https://github.com/
yanaiela/demog-text-removal

3TwitterAAE dataset could be found online at: http://slanglab.cs.umass.edu/TwitterAAE/
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spurious-concept label (yp). Thus, if we train main-task classifier using this dataset, it cannot use the
spurious-concept since they are not discriminative of the main task label [37].

In MultiNLI dataset, we select only those examples which have no negation words in the sentence for
creating a clean dataset. Similarly, for Twitter-PAN16 dataset, we only select those examples which
have gender label yp = −1 (Female) in the processed dataset. And for Twitter-AAE dataset, we only
select those examples which have non-Hispanic whites race label.

E.3 Creating datasets with spurious correlated main and concept label

In our experimental setup, both the main-task label (ym) and concept label (yp) are binary (−1
or 1). This creates 2 × 2 subgroups for each combination of (ym, yp). In MultiNLI dataset, the
contradiction label (ym = 1) is correlated with the presence of negation words yp = 1, this implies
that the not-contradiction label ym = −1 is also correlated with absence of negation words in the
sentence yp = −1. Thus, the input example with (ym = 1, yp = 1) and (ym = −1, yp = −1)
form the majority group, henceforth referred as Smaj while groups (ym = 1, yp = −1) and
(ym = −1, yp = 1) forms the minority group Smin. To evaluate the robustness of the removal
methods, we create multiple datasets with different predictive correlation (κ) between the two labels
ym and yp where κ = P (ym · yp) > 0 as defined in §4. In other words, to create a dataset with a
particular predictive correlation κ, we vary the size of Smaj and Smin. More precisely, the predictive
correlation can be equivalently defined in terms of the size of the these groups as:

κ =
|Smaj |

|Smaj |+ |Smin|
(137)

Similarly for Twitter-PAN16, Twitter-AAE and Synthetic-Text dataset, we create datasets with
different levels of spurious correlation between ym and yp by creating the Smaj and Smin to have
the desired predictive correlation (κ).

E.4 Encoder for real datasets

For all the experiments on real datasets in §4 we used RoBERTa as default encoder h. In §F, we
report the results when using BERT instead of RoBERTa as input encoder.

RoBERTa We use the Hugging Face[48] transformers implementation of RoBERTa[27] roberta-
base model, starting with pretrained weights for encoding the text-input to latent representation. We
use default tokenizer and model configuration in our experiment.

BERT We use the Hugging Face[48] transformers implementation of BERT[11] bert-base-uncased
model, starting with pretrained weights for encoding the text-input to latent representation. We use
default tokenizer and model configuration in our experiment.

For both BERT and RoBERTa, the parameters of the encoder were fine-tuned as a part of training the
main-task classifier for null-space removal and then frozen. For adversarial removal, the encoder,
main-task classifier and the adversarial probing classifier are trained jointly. For both BERT and
RoBERTa, we use the pooled output ([CLS] token for BERT) from the the model, as the latent
representation and is given to main-task and probing classifier.

E.5 Encoder for synthetic Dataset

nBOW: neural Bag of Word. For Synthetic-Text dataset, we use sum of pretrained-GloVe
embedding[32] of the words in the sentence to encode the sentence into latent representation. We used
Gensim [38] library for acquiring the 100-dimensional GloVe embedding (glove-wiki-gigaword-100).
Throughout all our experiments, the word embedding was not trained. Post encoding, the latent
representation were further passed through hidden layers consisting of a linear transformation layer
followed by relu [2] non-linearity. We will specify how many such hidden layers were used when
discussing specific experiments in §F. The hidden layer dimensions were fixed to 50 dimensional
space.
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E.6 Null-Space Removal Experiment Setup

For null-space removal (INLP) experiment on both real and synthetic dataset the following procedure
is followed:

1. Pretraining Phase: A clean pretrained main-task classifier is trained using the clean dataset
obtained by method described in §E.2. This is to ensure that the main-task classifier does not
use the spurious feature, so that the INLP method doesn’t have any effect on the main-task
classifier. The main-task classifier is a linear-transformation on the latent-representation
provided by encoder followed by softmax layer for prediction. Both the encoder and
main-task classifier is fine-tuned during this process.

2. Removal Phase: Both the encoder and main-task classifier is frozen (made non-trainable).
Next, a probing classifier is trained from the latent representation of the encoder (refer §E.4
and E.5 for more details about encoder). The probing classifier is also a linear transformation
layer followed by softmax layer for prediction.

The main-task classifier and encoder in the pretraining phase and the probing classifier in the removal
phase is trained using cross-entropy loss for both real and synthetic datasets. For the real dataset, a
fixed learning rate of 1× 10−5 is used when RoBERTa is used as encoder and 5× 10−5 when using
BERT as encoder. For synthetic experiments, a fixed learning rate of 5× 10−3 is used when training
both the nBOW encoder and main-task classifier in the pretraining stage and probing classifier in
removal stage.

E.7 Adversarial Removal Experiment Setup

For adversarial removal (AR) experiment, for both real and synthetic datasets, first the input text is
encoded to latent representation using the encoder (§E.4 and E.5). Then for the main-task classifier
a linear transformation layer followed by softmax layer is applied for the main-task prediction.
The same latent representation output from encoder is given to the probing classifier which is a
separate linear transformation layer followed by softmax layer. All components of the model, encoder,
main-task classifier and probing classifier are trained using the following modified objective from
Eq. 95:

arg min
h,cm,cp

{
L(cm(h(z)), ym) + λL(cp(g−1(h(z))), yp)

}
where h is the encoder, cm is the main task classifier, cp is the probing classifier, g−1 is the gradient
reversal layer with fixed reversal strength of −1. The first term in the objective is for training
the main task classifier and the second term is the adversarial objective for training the probing
classifier using gradient reversal method [16, 13] . The hyperparameter λ controls the strength of the
adversarial objetive. In our experiment we very λ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 2.0}.
When describing the experimental results in §F.3 we choose the λ which performs the best for all
datasets with different predictive correlation κ in removing the undesired concept from the latent
representation.

E.8 Metrics Description

For simplicity, in all our experiments we assume that both the main and the correlated attribute label
are binary. We measure the degree of spuriousness using the following two metrics:

1. Spuriousness Score: As defined in §3.4, this metric help us quantify, how much a classifier
is using the spurious feature.

2. ∆ Probability: In Synthetic-Text dataset as described in E.1, we have the ability to change
the input corresponding to the change in concept label (thus implementing Def 2.1) . Thus
we could measure if the main-classifier is using the spurious-concept by changing the
concept in the input and measuring the corresponding change in the main-task classifier’s
prediction probability. Higher the change in prediction probability higher the main-task
classifier is dependent on spurious-concept.
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Figure 5: Failure Modes of Probing classifier: The first row in Fig. 5a and 5b shows that even when
the latent representation doesn’t contain the probing concept-causal feature, the probing classifier
is still has >50% accuracy when other correlated feature is present. The accuracy increases as the
correlation κ between the probing concept-causal feature and other correlated feature increases. The
first row Fig. 5c shows, that presence of correlated feature could increase the probing classifier’s
accuracy thus increasing the confidence in the presence of concept-causal feature in latent representa-
tion. The second row of all the figures shows that the probing classifier is getting more spurious as
the κ increases thus implying that the probing classifier is using some other correlated feature than
concept-causal feature. For more discussion see §F.1.

E.9 Compute and Resources

We used an internal cluster of Nvidia P40 and P100 GPUs for all our experiment. Each experiment
setting was run on three random seed and mean results with variance are reported in all the experiment.

F Additional Results

F.1 Probing classifier Quality

Fig. 5 shows different failure modes of the probing classifier. In Fig. 5a and 5b, a clean main-task
classifier which doesn’t use the concept feature is trained on Synthetic-Text and MultiNLI dataset
respectively using the method described in §E.2. Thus the latent representation doesn’t have the
concept feature. Then, to test the presence of concept-causal feature in the latent representation we
train a probing classifier to predict concept-label. The first row show the accuracy of the probing
classifier for testing the presence of concept in latent space. When κ = 0.5 i.e no correlation between
the main-task and the concept label, the probing accuracy is approximately 50% which correctly
shows the absence of the concept-causal feature in the latent representation. The accuracy increases
as the correlation κ between the main and concept-causal feature increases in dataset. This shows that
even when concept-causal feature is not present in the latent representation, probing classifier will still
claim presence of concept-causal feature if any correlated feature (main-task feature in this case) is
present in the latent space. In Fig. 5c, the latent space contains the concept-causal feature as shown by
accuracy of approximately 94.5% when κ = 0.5. But as κ increases the probing classifier’s accuracy
increases in the presence of correlated main-task feature which falsely increases the confidence of
presence of the concept-causal feature. The second row shows the spuriousness-score of concept-
probing classifier is increasing as the correlation between the main-task and concept-causal feature
increases which implies that the probing classifier is using relatively large amount of correlated
main-task feature for concept-label prediction in all settings.

F.2 Extended Null-Space Removal Results

Fig. 6 and 7, shows the failure mode of null-space removal (INLP) in the real dataset when using
RoBERTa and BERT as encoder respectively. Different columns of the figure are for three different
real datasets — MultiNLI, Twitter-PAN16, and Twitter-AAE respectively. The x-axis from step 8-26
are different INLP removal steps. The y-axis shows different metrics to evaluate the main-task and
probing classifier. Different colored lines shows the spurious correlation (κ) in the probing dataset
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Figure 6: Failure of Null Space Removal when using RoBERTa as encoder: Different columns
of the figure are for three different real datasets — MultiNLI, Twitter-PAN16, and Twitter-AAE
respectively. The x-axis from steps 8-26 are different INLP removal steps. The y-axis shows different
metrics to evaluate the main-task and probing classifier. Different colored lines shows the spurious
correlation (κ) in the probing dataset used by INLP for removal of spurious-concept. The pretrained
classifier is clean i.e. doesn’t uses the spurious concept-causal feature, hence INLP shouldn’t have
any effect on main-classifier when removing concept-causal feature from the latent space. Against our
expectation, the second row shows that the main-task classifier’s accuracy is decreasing even when it
is not using the concept-feature. The main reason for this failure to learn a clean concept-probing
classifier. This can be verified from the last row which shows that the concept-probing classifier
has high spuriousness score thus implying that it is using the main-task feature for concept label
prediction and hence during removal step, wrongly removing the main-task feature which leads to
drop in main-task accuracy. For more discussion see §F.2.

used by INLP for removal of spurious-concept. The pretrained classifier is clean, i.e., does not use
the spurious concept-causal feature; hence INLP shouldn’t have any effect on main-classifier when
removing concept-causal feature from the latent space. The first row shows that as the INLP iteration
progresses, the norm of latent representation, which is being cleaned of concept-causal feature,
decreases. This indicates that some features are being removed. However, the results are against our
expectation from the second statement of Theorem 3.2, which states that the norm of classifier will
tend to zero as the INLP removal progresses. The possible reason is that, from Theorem 3.2 the norm
of latent representation will go to zero when the the latent representation only contains the spurious
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concept-causal feature and the other features correlated to it. But, the encoder representation could
have other features which are not correlated with concept-label and hence not removed. Since, the
pretrained classifier given for INLP was clean (using method described in §E.2), we do not expect
the INLP to have any effect on the main-task classifier.

The second row in Fig. 6 and 7 shows that the main-classifier accuracy drops to random guess i.e
50% except for the case when probing dataset have κ = 0.5 i.e no correlation between the main and
concept label. Thus INLP method corrupted a clean-classifier and made it useless. The reason behind
this could be observed from the fourth and fifth row. The fourth row show the accuracy of the probing
classifier before the projection step. We can see that at step 8 on x-axis κ = 0.5, the probing classifier
correctly has accuracy of 50% showing that the concept-causal feature is not present in the latent
representation. But for other value of κ, the probing classifier accuracy is proportional to value of κ
implying that the probing classifier is using the main-task feature for its prediction. Hence at the time
of removal, it removes the main-task feature which leads drop in the main-task accuracy. This can
also be verified form the last row of Fig. 6 and 7, which shows that the spuriousness score of probing
classifier is high; thus it is using the main-task feature for its prediction. We observe similar results
for Synthetic-Text dataset when using INLP in Fig. 8. For all the INLP experiment on Synthetic-Text
dataset, there were no hidden layers after the nBOW encoder (see §E.5).

F.3 Extended Adversarial Removal Results

Adversarial removal failure in real-world datasets. Fig. 9 shows the failure mode of adversarial
removal AR on real-world datasets. In x-axis we vary the predictive correlation κ between the main
and the concept-label in different datasets and measure the performance of AR on different metrics
on the y-axis. The second row shows the spuriousness score of the main-task classifier after AR as
we vary κ on the x-axis. When using RoBERTa as the encoder, the orange curve in second row shows
the spuriousness score of the main-task classifier when trained using the ERM loss. The spuriousness
score describes how much unwanted concept-causal feature the main-task classifier is using. The blue
curve shows that the AR method reduces the spuriousness of main-task though cannot completely
remove it. The reason for this failure can be attributed to probing classifier. Even when AR has
successfully removed the unwanted concept feature, the accuracy of concept-probing classifier will
be proportion to κ due to presence of correlated main-task feature in the latent space. This can be
seen in the third row of the of Fig. 9. Thus we cannot be sure if the unwanted concept-causal feature
has been completely removed from the latent space or just became noisy enough to have accuracy
proportional to κ after AR converges. In Fig. 9, for each dataset and encoder, we manually choose
the hyperparameter described λ described in §E.7 which reduces the spuriousness score most for the
main-task classifier while not hampering the main-task classifier accuracy. In Fig. 10, we show the
trend in spuriousness score is similar for all choices of hyperparameter λ in our search. No value of λ
is able to completely reduce the spuriousness score to zero.

Adversarial removal makes a classifier unfair. Fig. 11 shows that when the adversarial classifier
is initialized with a clean main-task classifier which doesn’t use unwanted-concept causal features,
it makes matters worse by making the main-task classifier use the unwanted-concept feature. For
the Synthetic-Text dataset, since the word embedding are non-trainable, one single hidden layer is
applied after the nBOW encoder so that AR methods could remove the unwanted-concept feature
from the new latent representation.

F.4 Synthetic-Text dataset Ablations

Adversarial Removal Failure in Synthetic-Text dataset: Figure 12 shows the failure of AR on
the synthetic dataset as we vary the noise in the main-task label and unwanted concept-label. For the
experiment, since the words embedding are non-trainable, one single hidden layer is applied after the
nBOW encoder so that AR methods could remove the unwanted-concept feature from the new latent
representation.

Dropout Regularization Helps AR method: Continuing on observation from Fig. 13a, 13b and
13c shows the ∆-Prob of the main-task classifier after we apply the AR on Synthetic-Text dataset and
how they changes as we increase the dropout regularization. As we increase the dropout (drate in the
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Table 1: Correlation between Spuriousness Score and ∆Prob on Synthetic-Text dataset: Pearson-
correlation between Spuriousness score and ∆Prob; the two metrics for quantifying the dependence
of a classifier on a spurious feature. We measure the correlation for adversarial-removal experiment
over two different noise setting on Synthetic-Text dataset. For more details, see §F.4. The first column
shows different experimental settings and the second column shows the Pearson correlation between
the two metrics. The third column shows the p-value under the null hypothesis that the two metrics
are uncorrelated. Both correlations are statistically significant since p-value for both the case is <
0.05.

Pearson Correlation p-value
Synthetic-Text + n=0.1 0.83 0.0403
Synthetic-Text + n=0.3 0.95 0.0033

figure), the ∆-Prob of the main classifier decreases showing that the regularization methods could
help improve the the removal methods.

G Comparison between Spuriousness Score and ∆Prob

In this section we compare the Spuriousness Score proposed in §3.4 for measuring a classifier’s
use of a binary spurious feature with the ideal, ground-truth metric, ∆Probability (∆Prob for short)
defined in §E.8. ∆Prob measures the reliance on a spurious feature by changing the spurious feature
in the input space (when possible) and measuring the change in the prediction probability of the given
classifier. Hence ∆Prob is a direct and intuitive measure of spuriousness in a given classifier. But
changing the spurious feature is difficult in the input space for real-world data, thus we only evaluate
this metric on the Synthetic-Text dataset.

To do so, we use the result from Fig. 12 that showed failure of the adversarial removal method on
the Synthetic-Text dataset under various noise settings (refer §F.4 for details). For the setting with
noise n = 0.0, both Spuriousness Score and ∆Prob curve for Adversarial Removal (marked as
ADV in Fig. 12) are identical (close to 0 for all values of κ with mean = 0.0 and standard-deviation
= 0.0). For the other settings with non-zero noise, we compute the Pearson correlation between
the Spuriousness score and ∆Prob for the ADV curve. As Table 1 shows, we observe high Pearson
correlation of 0.83 and 0.95 for the noise setting, n = 0.1 and n = 0.3 respectively. The third column
in the table shows p-value (< 0.05) assuming a null hypothesis that the two metrics are uncorrelated.
These results suggest that Spuriousness-Score can be a good approximation for the ideal ∆Prob
metric.
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Figure 7: Failure of Null Space Removal when using BERT as encoder: The observation is similar
to the case when RoBERTa was used as encoder (see Fig. 6) . Different columns of the figure are
for three different real datasets — MultiNLI, Twitter-PAN16, and Twitter-AAE respectively. The
x-axis from steps 8-26 are different INLP removal steps. The y-axis shows different metrics to
evaluate the main-task and probing classifier. Different colored lines shows the spurious correlation
(κ) in the probing dataset used by INLP for removal of spurious-concept. The pretrained classifier is
clean i.e. doesn’t uses the spurious concept-causal feature, hence INLP shouldn’t have any effect on
main-classifier when removing concept-causal feature from the latent space. Against our expectation,
the second row shows that the main-task classifier’s accuracy is decreasing even when it is not using
the concept-feature. The main reason for this failure to learn a clean concept-probing classifier.
This can be verified from the last row which shows that the concept-probing classifier has high
spuriousness score thus implying that it is using the main-task feature for concept label prediction and
hence during removal step, wrongly removing the main-task feature which leads to drop in main-task
accuracy. For more discussion see §F.2.
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Figure 8: Failure Mode of INLP in Synthetic-Text dataset: Different columns of the figure are
Synthetic-Text dataset with different level of noise in the main-task and probing task label. The
x-axis from step 22-40 are different INLP removal steps. The y-axis shows different metrics to
evaluate the main-task and probing classifier. Different colored lines shows the spurious correlation
(κ) in the probing dataset used by INLP for removal of spurious-concept. The pretrained classifier is
clean i.e. doesn’t uses the spurious concept-causal feature, hence INLP shouldn’t have any effect
on main-classifier when removing concept-causal feature from the latent space. Contrary to our
expectation, the first row shows main-task classifier accuracy drops as the INLP progresses. Higher
the correlation between the main-task and concept label, faster is the drop in the main-task accuracy.
The last row shows the change in prediction probability (∆-Prob) of main-task classifier when we
change the input corresponding to concept-label. This shows, how much sensitive the main-task
classifier is wrt. to concept feature. We observe that the ∆-Prob increases in the middle of INLP
showing that the main-classifier which was not using the concept initially (as in iteration 21), started
using the sensitive concept because of INLP removal. Thus stopping INLP prematurely could lead to
a more unclean classifier than before whereas running INLP longer removes all the correlated feature
and could make the classifier useless. For more discussion see §F.2.
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Figure 9: Failure Mode of Adversarial removal on real-dataset: Different column shows the
result on three different real datasets —MultiNLI, Twitter-PAN16 and Twitter-AAE respectively. The
second row shows that accuracy of spuriousness score of the main-task classifier after AR, when the
dataset contains different level of spurious correlation between the main-task and unwanted-concept
label, denoted by κ in the x-axis. When using RoBERTa as the encoder, the orange curve in second
row shows the spuriousness score of the main-task classifier when trained using the ERM loss. The
spuriousness score describes how much unwanted concept-causal feature the main-task classifier
is using. The blue curve shows that the AR method reduces the spuriousness of main-task though
cannot completely remove it. When using BERT as encoder, the observation is same i.e green curve
in second row shows AR is able to reduce the spuriousness of main classifier than the red curve which
is trained using ERM, but not able to complete remove the spurious feature. For more discussion see
§F.3.
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Figure 10: Choice of Adversarial Strength Parameter λ: The second plot shows that trend in
spuriousness score after AR is similar for all the choice of hyperparameter λ we have taken in our
search. None of the setting of λ is able to completely reduce the spuriosuness score to zero. For more
discussion see §F.3.
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Figure 11: Adversarial Removal Makes a classifier unfair: We test if the AR method increases the
spuriousness of a main-task classifier if initialized with a clean classifier. In 11a, from iteration 1-20
in x-axis, a clean classifier is trained on Synthetic-Text datset such that it doesn’t uses the unwanted
concept-causal feature using method described in §E.2. Then the classifier is given to AR method
for removing the the unwanted concept feature which make the initially clean classifier unlean. This
can be seen from the second row of the 11a which shows the spuriousness score of main-classifier
is 0 during 1-20 iteration but increases after the AR starts from 21-40. Also the last row shows the
δ-Prob of the main-task classifier on changing the unwanted-concept in input which increases for
large dataset which have large κ i.e correlation between the main and concept label. Similar result
can be seen for the MultiNLI dataset where a clean classifier is trained in iteration 1-6 which is made
unclean by AR. Second row again show that spuriousness score of main-task classifier increases after
AR starts in iteration 7-12. For more discussion see §F.3.
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(c) Synthetic-Text + n=0.3

Figure 12: Failure of Adversarial Removal method on Synthetic-Text dataset: Different columns
show the adversarial removal method on Synthetic-Text dataset with different level of noise in the
main-task and concept label. When there is no noise, from the second row in Fig. 12a, we see that
both the classifier trained by ERM and AR has zero-spuriousness score. But as we increase the
noise to 10% in Fig. 12b, we observe that the the spuriousness score increases when AR is applied
in contrast to classifier trained by ERM which stays at 0. Also, higher the predictive correlation κ,
higher is the increase in spuriousness. This observation augments to the the observation in Fig. 11
which shows that using AR makes a clean classifier unclean. Similarly in Fig. 12c when we increase
the noise to 30% we observe in second row, AR is increase the spuriousness unlike ERM which is at
0. For discussion see §F.4
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(a) Synthetic-Text + drate=0.0
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(b) Synthetic-Text + drate=0.5
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(c) Synthetic-Text + drate=0.9

Figure 13: Dropout Regularization helps in Adversarial Removal: ∆-Prob of the main-task
classifier after we apply the AR on Synthetic-Text dataset decreases as we increase the dropout
regularization from 0.0 to 0.9. For discussion see §F.4.
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