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ABSTRACT

Estimating the 3DoF rotation from a single RGB image is an important yet chal-
lenging problem. Probabilistic rotation regression has raised more and more at-
tention with the benefit of expressing uncertainty information along with the pre-
diction. Though modeling noise using Gaussian-resembling Bingham distribution
and matrix Fisher distribution is natural, they are shown to be sensitive to out-
liers for the nature of quadratic punishment to deviations. In this paper, we draw
inspiration from multivariate Laplace distribution and propose a novel Rotation
Laplace distribution on SO(3). Rotation Laplace distribution is robust to the dis-
turbance of outliers and enforces much gradient to the low-error region, resulting
in a better convergence. Our extensive experiments show that our proposed dis-
tribution achieves state-of-the-art performance for rotation regression tasks over
both probabilistic and non-probabilistic baselines.

1 INTRODUCTION

Incorporating neural networks to perform rotation regression is of great importance in the field of
computer vision, computer graphics and robotics (Wang et al., 2019b; |Yin et al., |2022; Dong et al.,
2021} [Breyer et al., 2021). To close the gap between the SO(3) manifold and the Euclidean space
where neural network outputs exist, one popular line of research discovers learning-friendly rotation
representations including 6D continuous representation (Zhou et al.,|2019)), 9D matrix representation
with SVD orthogonalization (Levinson et al.| [2020), etc. Recently, |Chen et al.| (2022) focuses on
the gradient backpropagating process and replaces the vanilla auto differentiation with a SO(3)
manifold-aware gradient layer, which sets the new state-of-the-art in rotation regression tasks.

Reasoning about the uncertainty information along with the predicted rotation is also attracting more
and more attention, which enables many applications in aerospace (Crassidis & Markley} 2003)), au-
tonomous driving (McAllister et al.,2017) and localization (Fang et al.;2020). On this front, recent
efforts have been developed to model the uncertainty of rotation regression via probabilistic model-
ing of rotation space. The most commonly used distributions are Bingham distribution (Bingham),
1974) on S* for unit quaternions and matrix Fisher distribution (Khatri & Mardial [1977) on SO(3)
for rotation matrices. These two distributions are equivalent to each other (Prentice, [1986) and
resemble the Gaussian distribution in Euclidean Space (Bingham, |1974; |Khatri & Mardial [1977).
While modeling noise using Gaussian-like distributions is well-motivated by the Central Limit The-
orem, Gaussian distribution is well-known to be sensitive to outliers in the probabilistic regression
models (Murphy, 2012)). This is because Gaussian distribution penalizes deviations quadratically, so
predictions with larger errors weigh much more heavily with the learning than low-error ones and
thus potentially result in suboptimal convergence when a certain amount of outliers exhibit.

Unfortunately, in certain rotation regression tasks, we fairly often come across large prediction er-
rors, e.g. 180° error, due to either the (near) symmetry nature of the objects or severe occlusions
(Murphy et al., 2021). In Fig. [I(left), using training on single image rotation regression as an ex-
ample, we show the statistics of predictions on training data after achieving convergence, assuming
matrix Fisher distribution (as done in Mohlin et al.[(2020)). The blue histogram shows the popula-
tion with different prediction errors and the red dots are the impacts of these predictions on learning,
evaluated by computing the sum of their gradient magnitudes ||0L/9(distribution param.)|| within
each bin and then normalizing them across bins. It is clear that the 180° outliers dominate the
gradient as well as the network training though their population is tiny, while the vast majority of
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Figure 1: Visualization of the results of matrix Fisher distribution and Rotation Laplace distribution
after convergence. The horizontal axis is the geodesic distance between the prediction and the ground truth.
The blue bins count the number of data points within corresponding errors (2° each bin). The red dots illustrate
the percentage of the sum of the gradient magnitude ||0L/d(dist. param.)|| within each bin. The experiment
is done on all categories of ModelNet10-SO3 dataset.

points with low error predictions are deprioritized. Arguably, at convergence, the gradient should
focus more on refining the low errors rather than fixing the inevitable large errors (e.g. arose from
symmetry). This motivates us to find a better probabilistic model for rotation.

As pointed out by Murphy| (2012}, Laplace distribution, with heavy tails, is a better option for robust
probabilistic modeling. Laplace distribution drops sharply around its mode and thus allocates most
of its probability density to a small region around the mode; meanwhile, it also tolerates and assigns
higher likelihoods to the outliers, compared to Gaussian distribution. Consequently, it encourages
predictions near its mode to be even closer, thus fitting sparse data well, most of whose data points
are close to their mean with the exception of several outliers(Mitianoudis| [2012), which makes
Laplace distribution to be favored in the context of deep learning(Goodfellow et al., 2016).

In this work, we propose a novel Laplace-inspired distribution on SO(3) for rotation matrices,
namely Rotation Laplace distribution, for probabilistic rotation regression. We devise Rotation
Laplace distribution to be an approximation of multivariate Laplace distribution in the tangent space
of its mode. As shown in the visualization in Fig. [T{right), our Rotation Laplace distribution is ro-
bust to the disturbance of outliers, with most of its gradient contributed by the low-error region, and
thus leads to a better convergence along with significantly higher accuracy. Moreover, our Rotation
Laplace distribution is simply parameterized by an unconstrained 3 x 3 matrix and thus accommo-
dates the Euclidean output of neural networks with ease. This network-friendly distribution requires
neither complex functions to fulfill the constraints of parameterization nor any normalization pro-
cess from Euclidean to rotation manifold which has been shown harmful for learning (Chen et al.,
2022).

For completeness of the derivations, we also propose the Laplace-inspired distribution on S for
quaternions. We show that Rotation Laplace distribution is equivalent to Quaternion Laplace distri-
bution, similar to the equivalence of matrix Fisher distribution and Bingham distribution.

We extensively compare our Rotation Laplace distributions to methods that parameterize distri-
butions on SO(3) for pose estimation, and also non-probabilistic approaches including multiple
rotation representations and recent SO(3)-aware gradient layer (Chen et al.| 2022). On common
benchmark datasets of rotation estimation from RGB images, we achieve a significant and consis-
tent performance improvement over all baselines.

2 RELATED WORK

Probabilistic regression [Nix & Weigend| (1994) first proposes to model the output of the neural
network as a Gaussian distribution and learn the Gaussian parameters by the negative log-likelihood
loss function, through which one obtains not only the target but also a measure of prediction un-
certainty. More recently, |Kendall & Gal| (2017) offers more understanding and analysis of the un-
derlying uncertainties. [Lakshminarayanan et al.|(2017) further improves the performance of uncer-
tainty estimation by network ensembling and adversarial training. Makansi et al.| (2019)) stabilizes
the training with the winner-takes-all and iterative grouping strategies. Probabilistic regression for
uncertainty prediction has been widely used in various applications, including optical flow estima-
tion(llg et al.,2018)), depth estimation (Poggi et al.,[2020), weather forecasting (Wang et al., 2019a),
etc.
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Among the literature of decades, the majority of probabilistic regression works model the network
output by a Gaussian-like distribution, while Laplace distribution is less discovered. |Li et al.| (2021}
empirically finds that assuming a Laplace distribution in the process of maximum likelihood es-
timation yields better performance than a Gaussian distribution, in the field of 3D human pose
estimation. Recent work (Nair et al.l 2022) makes use of Laplace distribution to improve the ro-
bustness of maximum likelihood-based uncertainty estimation. Due to the heavy-tailed property
of Laplace distribution, the outlier data produces comparatively less loss and have an insubstan-
tial impact on training. Other than in Euclidean space, Mitianoudis| (2012) develops Generalized
Directional Laplacian distribution in S¢ for the application of audio separation.

Probabilistic rotation regression Several works focus on utilizing probability distributions on
the rotation manifold for rotation uncertainty estimation. |Prokudin et al.| (2018)) uses the mixture
of von Mises distributions (Mardia et al.| 2000) over Euler angles using Biternion networks. In
Gilitschenski et al.| (2019) and [Deng et al.| (2022), Bingham distribution over unit quaternion is
used to jointly estimate a probability distribution over all axes. Mohlin et al.| (2020) leverages
matrix Fisher distribution (Khatri & Mardial|[1977) on SO(3) over rotation matrices for deep rotation
regression. Though both bear similar properties with Gaussian distribution in Euclidean space,
matrix Fisher distribution benefits from the continuous rotation representation and unconstrained
distribution parameters, which yields better performance (Murphy et al.,[2021). Recently, Murphy
et al.[(2021) introduces a non-parametric implicit pdf over SO(3), with the distribution properties
modeled by the neural network parameters. Implicit-pdf especially does good for modeling rotations
of symmetric objects.

Non-probabilistic rotation regression The choice of rotation representation is one of the core
issues concerning rotation regression. The commonly used representations include Euler angles
(Kundu et al., 2018; [Tulsiani & Malik} 2015), unit quaternion (Kendall & Cipolla, 2017} |Kendall
et all 2015 Xiang et al., [2017) and axis-angle (Do et al., 2018} |Gao et al., |2018; [Ummenhofer
et al.,|2017), etc. However, Euler angles may suffer from gimbal lock, and unit quaternions doubly
cover the group of SO(3), which leads to two disconnected local minima. Moreover, Zhou et al.
(2019) points out that all representations in the real Euclidean spaces of four or fewer dimensions
are discontinuous and are not friendly for deep learning. To this end, the continuous 6D represen-
tation with Gram-Schmidt orthogonalization (Zhou et al., 2019) and 9D representation with SVD
orthogonalization (Levinson et al., |2020) have been proposed, respectively. More recently, (Chen
et al.| (2022) investigates the gradient backpropagation in the backward pass and proposes a SO(3)
manifold-aware gradient layer.

3 REVISIT MATRIX FISHER DISTRIBUTION

3.1 MATRIX FISHER DISTRIBUTION

Matrix Fisher distribution (or von Mises-Fisher matrix distribution) (Khatr1 & Mardial, [1977) is one
of the widely used distributions for probabilistic modeling of rotation matrices. It is defined as
follows.

Definition 1. Matrix Fisher distribution. The random variable R € SO(3) follows matrix Fisher
distribution with parameter A, if its probability density function is defined as

p(R;A) = ﬁ exp (tr(ATR)) (D

where A € R3*3 is an unconstrained matrix, and F(A) € R is the normalization constant. Without
further clarification, we denote F' as the normalization constant of the corresponding distribution
in the remaining of this paper. We also denote matrix Fisher distribution as R ~ MF(A).

Suppose the singular value decomposition of matrix A is given by A = U’S’(V')T, proper SVD
is defined as A = USV7 where
U = U'diag(1,1,det(U")) V= V'diag(1,1,det(V"))
S = diag(s1, s2, 53) = diag(s}, s5, det(U'V')s5)
The definition of U and 'V ensures that det(U) = det(V) = 1 and U,V € SO(3).
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The mode of matrix Fisher distribution is computed as UV . The columns of U specify the princi-
ple axes of rotations and the proper singular values S describe the concentration of the distribution
along the principle axes.

3.2 RELATIONSHIP BETWEEN MATRIX FISHER DISTRIBUTION IN SO(3) AND GAUSSIAN
DISTRIBUTION IN R3

It is shown that matrix Fisher distribution is highly relevant with zero-mean Gaussian distribution
near its mode (Lee, 2018atb). Denote Ry as the mode of matrix Fisher distribution, and define
R = R{'R, the relationship is shown as follows. Please refer to supplementary for the proof.

Proposition 1. Ler & = logR € s0(3) and ¢ = &Y € R3. For rotation matrix R € SO(3)
Sollowing matrix Fisher distribution, when |R — Rg|| — 0, ¢ follows zero-mean multivariate
Gaussian distribution.

4 PROBABILISTIC ROTATION ESTIMATION WITH ROTATION LAPLACE
DISTRIBUTION

4.1 ROTATION LAPLACE DISTRIBUTION

We get inspiration from multivariate Laplace distribution (Eltoft et al., |2006; |[Kozubowski et al.,
2013)), defined as follows.

Definition 2. Multivariate Laplace distribution. If means p = 0, the d-dimensional multivariate
Laplace distribution with covariance matrix X is defined as

P = £ (=) K (VTS )

where v = (2 — d) /2 and K, is modified Bessel function of the second kind.

We consider three dimensional Laplace distribution of x € R3, defined as
1 €xXp (f\/ 2XTE—1X)
xX; )= —
p(xE) = & n e

In this section, we first give the definition of our proposed Rotation Laplace distribution and then
shows its relationship with multivariate Laplace distribution.

Definition 3. Rotation Laplace distribution. The random variable R € SO(3) follows Rotation
Laplace distribution with parameter A, if its probability density function is defined as

1 ©xp (f tr (S — ATR))
F(A) tr(S— ATR)

p(R;A) = )
where A € R3*3 is an unconstrained matrix, and S is the diagonal matrix composed of the proper
singular values of matrix A, i.e., A = USVT. We also denote Rotation Laplace distribution as

R ~ RL(A).

Denote R as the mode of Rotation Laplace distribution and define R = R!R, the relationship
between Rotation Laplace distribution and multivariate Laplace distribution is shown as follows.

Proposition 2. Let & = logR € 50(3) and ¢ = ®V € R>. For rotation matrix R € SO(3)
following Rotation Laplace distribution, when |R — Rg|| — 0, ¢ follows zero-mean multivariate
Laplace distribution.

Proof. Apply proper SVD to matrix A as A = USV”. For R ~ RL(A) , we have

op (VESATR)) e (M)

p(R)dR. o dR = dR 3

Vir(S-ATR) \/tr(S-SVTRV)
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With ¢ = (logR)" € R3, R can be parameterized as
nll¢ll ;  1—cos|®] ;o
R = ex =1
(¢) = exp($) =T+ > H¢|l &+ 17
We follow the common practice (Mohlin et al.l [2020; |Lee, 2018a) that the Haar measure dR is

scaled such that | 50(3) dR = 1 and thus the Haar measure is given by

=1 cos|g]
an? ]

Also, R expanded at ¢ = 0 is computed as R = T+ ¢ + 1 ¢ + O(||¢]|*), We have

~ “ 1 N — 1 ——2
VIRV =14+ V7oV + - VTV +0(|]°) = 1+ VT + VT +0(l#]°)

19 = (55 + OUII)*) a0 @

1— 23+ u3) 2#1#2*#3 2u1u3+u2 s 5)
= Lpape +ps 1= 33 +ud) 2.“’2/137:“'1 +O(llell*),
TH1ps — fi2 2M2M3+M1 1—3(uf +43)

where (11, pi2, p3)” = VI, and

aSSVIRV) = 3 (s, + st +O(16])
(i,4,k)el

(6)
= %¢TV

Considering Eq. 3] f]and[6] we have

exp ( tr(S-ATR)) L Lo (—\/2¢Tzfl¢)

J/ir(S-ATR) T 82 ogTzm-1g
When |[R—Rg| — 0, wehave |[R—1I|| — 0 and ¢ — 0, so Eq.[7 Ifollows the multlvarlate Laplace
distribution with the covariance matrix as 33, where 3 = 4V diag( A O

sg+s3 .
[*7 e VTe 081
s1+s2

p(R)AR o (1+oau¢1*) do @

€2+€3 ’ 51+€3 ’ 91+Sz

Rotation Laplace distribution bears similar properties with matrix Fisher distribution. Its mode is
computed as UVT. The columns of U and the proper singular values S describe the orientation and
the strength of dispersions, respectively.

4.2 NEGATIVE LOG-LIKELIHOOD LOSS

Given a collection of observations X = {;} and the associated ground truth rotations R = {R;},
we aim at training the network to best estimate the parameter A of Rotation Laplace distribution.
This is achieved by maximizing a likelihood function so that, under our probabilistic model, the
observed data is most probable, which is known as maximum likelihood estimation (MLE). We use
the negative log-likelihood of R, as the loss function:

,C(ar:, Rm) = —logp (Rw§ Aw)

4.3 DISCRETE APPROXIMATION OF THE NORMALIZING CONSTANT

Efficiently and accurately estimating the normalization constant for distributions over SO(3) is non-
trivial. Inspired by Murphy et al. (2021), we approximate the normalization constant of Rotation
Laplace distribution through equivolumetric discretization over SO(3) manifold. We employ the
discretization method introduced in|Yershova et al.|(2010), which starts with the equal area grids on
the 2-sphere (Gorski et al., 2005) and covers SO(3) by threading a great circle through each point
on the surface of a 2-sphere with Hopf fibration.

Concretely, we discretize SO(3) space into a finite set of equivolumetric grids G =
{R|R € SO(3)}, the normalization constant of Laplace Rotation distribution is computed as
exp (—/tr (S — ATR) exp tr (S — ATR;)
F(A):/ ( )dRz > ( )pr

SO(3) Vir (S — ATR) R,c0 Vitr (S — ATR,;)

R
where AR,; = fml%‘( |g‘ Similar to matrix Fisher distribution, the normalization constant of
Rotation Laplace distribution is only determined by the proper singular values S’ of the parameter
A, ie., F(A) is merely a function of three parameters, which motivates us, for computational and
memory efficiency, to further compute a lookup table wrt. the proper singular values for both the
forward and backward pass. Experiments show that our approximation works well for rotation
regression tasks.
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4.4 QUATERNION LAPLACE DISTRIBUTION

In this section, we introduce our extension of Laplace-inspired distribution for quaternions, namely,
Quaternion Laplace distribution.

Definition 4. Quaternion Laplace distribution. The random variable q € S* follows Quaternion
Laplace distribution with parameter M and Z, if its probability density function is defined as

1 exp (f\/quMZMTq)
F(Z) \/-qTMZMTq

where M € O(4) is a 4 x 4 orthogonal matrix, and Z. = diag(0, z1, 2o, z3) is a 4 x 4 diagonal
matrix with 0 > z1 > zo > z3. We also denote Quaternion Laplace distribution as q ~ QL(M, Z).

p(q;M,Z) = ®)

Proposition 3. Denote qg as the mode of Quaternion Laplace distribution. Let 7 be the tangent
space of S* at qo, and m(x) € R* be the projection of x € R* on w. For quaternion q € S*
following Bingham distribution / Quaternion Laplace distribution, when q — qo, 7(q) follows
zero-mean multivariate Gaussian distribution / zero-mean multivariate Laplace distribution.

Both Bingham distribution and Quaternion Laplace distribution exhibit antipodal symmetry on S3,
i.e., p(q) = p(—q), which captures the nature that the quaternions q and —q represent the same ro-
tation on SO(3). For each distribution, the mode of the distribution is indicated by the first column of
the matrix M, and the remaining columns describe the orientation of dispersions. The corresponding
z;(i = 1,2, 3) describe the strength of dispersions.

Proposition 4. Denote v as the standard transformation from unit quaternions to corresponding
rotation matrices. For rotation matrix R € SO(3) following Rotation Laplace distribution, q =
7~ 1(R) € S? follows Quaternion Laplace distribution.

Prop. ] shows that our proposed Rotation Laplace distribution is equivalent to Quaternion Laplace
distribution, similar to the equivalence of matrix Fisher distribution and Bingham distribution (Pren-
tice, [1986)), demonstrating the consistency of our derivations. Please see supplementary for the
proofs to the above propositions.

The normalization constant of Quaternion Laplace distribution is also approximated by dense dis-
cretization and accelerated by the pre-computed lookup table.

exp (7\/7qTMZMTq) exp (*\/ *CI;TMZMTCL)
F(Z) :7{ dg~
s3 V—q'MZM”q = \/—afMZMTg;

Adq;

where Gq = {q|q € 8%} denotes the set of equivolumetric grids and Aq; = % = %
a a

5 EXPERIMENT

Following the previous state-of-the-arts (Murphy et al.l 2021} [Mohlin et al.| [2020), we evaluate our
method on the task of object rotation estimation from single RGB images, where object rotation is
the relative rotation between the input object and the object in the canonical pose. Concerning this
task, we find two kinds of independent research tracks with slightly different evaluation settings.
One line of research focuses on probabilistic rotation regression with different parametric or non-
parametric distributions on SO(3) (Prokudin et al., [2018}; [Gilitschenski et al., 2019; |Deng et al.,
2022; Mohlin et al., [2020; [Murphy et al., 2021}, and the other non-probabilistic track proposes
multiple rotation representations (Zhou et al.,2019; [Levinson et al., 2020j [Peretroukhin et al.| [2020)
or improves the gradient of backpropagation (Chen et al.| 2022). To fully demonstrate the capacity
of our Rotation Laplace distribution, we leave the baselines in their original optimal states and adapt
our method to follow the common experimental settings in each track, respectively.

5.1 DATASETS & EVALUATION METRICS

Datasets ModelNet10-SO3 (Liao et al., |2019) is a commonly used synthetic dataset for single
image rotation estimation containing 10 object classes. It is synthesized by rendering the CAD
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Table 1: Numerical comparisons with probabilistic baselines on ModelNet10-SO3 dataset averaged on all cat-
egories. Numbers in parentheses (-) are our reproduced results. Please refer to supplementary for comparisons
with each category.

Acc@3°1  Acc@5°1 Acc@10°7 Acc@15°1 Acc@30°1 Med.(°))

Liao et al) (2019) - - - 0.496 0.658 28.7
Prokudin et al. (2018) - - - 0.456 0.528 493
Deng et al] (2022) (0.138) (0.301) (0.502) 0.562 (0.584)  0.694 (0.673)  32.6 (31.6)
Monhlin et al.| (2020) (0.164) (0.389) (0.615) 0.693 (0.684)  0.757 (0.751)  17.1 (17.9)
Murphy et al| (2021) (0.294) (0.534) (0.680) 0719 (0.714) 0735 (0.730)  21.5 (20.3)
Rotation Laplace 0.446 0.613 0.714 0.741 0.770 12.2

models of ModelNet-10 dataset (Wu et al.| [2015) that are rotated by uniformly sampled rotations
in SO(3). Pascal3D+ (Xiang et al. [2014) is a popular benchmark on real-world images for pose
estimation. It covers 12 common daily object categories. The images in Pascal3D+ dataset are
sourced from Pascal VOC and ImageNet datasets, and are split into ImageNet_train, ImageNet_val,
PascalVOC _train, and PascalVOC _val sets.

Evaluation metrics We evaluate our experiments with the geodesic distance of the network pre-
diction and the ground truth. This metric returns the angular error and we measure it in degrees. In
addition, we report the prediction accuracy within the given error threshold.

5.2 COMPARISONS WITH PROBABILISTIC METHODS
5.2.1 EVALUATION SETUP

Settings In this section, we follow the experiment settings of the latest work (Murphy et al., [2021)
and quote its reported numbers for baselines. Specifically, we train one single model for all cat-
egories of each dataset. For Pascal3D+ dataset, we follow Murphy et al.| (2021) to use (the more
challenging) PascalVOC_val as test set. Note that Murphy et al.| (2021) only measure the coarse-
scale accuracy (e.g., Acc@30°) which may not adequately satisfy the downstream tasks (Wang et al.,
2019b; [Fang et al.l [2020). To facilitate finer-scale comparisons (e.g., Acc@5°), we further re-run
several recent baselines and report the reproduced results in parentheses (-).

Baselines We compare our method to recent works which utilize probabilistic distributions on
SO(3) for the purpose of pose estimation. In concrete, [Prokudin et al. (2018) models rotations in
the form of Euler angle with the mixture of von Mises distributions. |Gilitschenski et al.| (2019)
and |Deng et al.| (2022) incorporate Bingham distribution over unit quaternions as the probabilistic
modeling of rotations. Mohlin et al.| (2020) uses matrix Fisher distribution over rotation matrices.
It is benefited from continuous representation and unconstrained parameterization. Recently, Mur-
phy et al.[(2021) proposes an implicit representation for non-parametric distributions. With dense
sampling on SO(3), implicit-PDF better expresses arbitrary distributions. We also compare to the
spherical regression work of |Liao et al.| (2019) to highlight the advantages of distribution-based
methods, asMurphy et al.|(2021) does.

5.2.2 RESULTS

Table [I] shows the quantitative comparisons of our method and baselines on ModelNet10-SO3
dataset. From the multiple evaluation metrics, we can see that maximum likelihood estimation
with the assumption of Rotation Laplace distribution significantly outperforms the other distribu-
tions for rotation, including matrix Fisher distribution (Mohlin et al., |2020)), Bingham distribution
(Do et al.,|2018) and von-Mises distribution (Prokudin et al., |2018)). Our method also gets superior
performance than the non-parametric implicit-PDF (Murphy et al., [2021)). Especially, our method
improves the fine-scale Acc@3° and Acc@5° accuracy by a large margin, showing its capacity to
precisely model the target distribution.

The experiments on Pascal3D+ dataset are shown in Table[2] where our Rotation Laplace distribution
outperforms all the baselines. While our method gets reasonably good performance on the median
error and coarser-scale accuracy, we do not find a similar impressive improvement on fine-scale
metrics as in ModelNet10-SO3 dataset. We suspect it is because the imperfect human annotations
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Table 2: Numerical comparisons with probabilistic baselines on Pascal3D+ dataset averaged on all categories.
Numbers in parentheses (-) are our reproduced results. Please refer to supplementary for comparisons with
each category.

Acc@3°1  Acc@5°1 Acc@10°t  Acc@15°1 Acc@30°1 Med.(°),

Tulsiani & Malik|(2015) - - - - 0.808 13.6
Mahendran et al.|(2018) - - - - 0.859 10.1
Liao et al.[{(2019) - - - - 0.819 13.0
Prokudin et al.|(2018) - - - - 0.838 12.2
Mohlin et al.|(2020) (0.089) (0.215) (0.484) (0.650) 0.825(0.827) 11.5(11.9)
Murphy et al.|(2021) (0.102) (0.242) (0.524) (0.672) 0.837 (0.838)  10.3(10.2)
Rotation Laplace 0.150 0.298 0.566 0.711 0.876 9.4

Table 3: Numerical comparisons with non-probabilistic baselines on ModelNet10-SO3 dataset. One model is
trained for each category.

Methods ‘ Chair ‘ Sofa ‘ Toilet ‘ Bed
| Mean] Med.] Acc@57 | Mean| Med.] Acc@5t | Mean| Med.] Acc@5t | Mean] Med.] Acc@57

Euler angles 21.5 10.9 0.10 27.5 12.0 0.09 14.9 8.5 0.19 27.6 9.6 0.17
Axis-angle 25.7 14.3 0.07 30.3 14.6 0.06 20.3 13.0 0.08 36.3 16.7 0.04
Quaternion 25.8 15.0 0.06 30.0 15.7 0.06 20.6 13.0 0.08 34.1 15.5 0.05
6D 19.6 9.1 0.19 17.5 7.3 0.27 10.9 6.2 0.37 323 11.7 0.11
9D 17.5 8.3 0.23 19.8 7.6 0.25 11.8 6.5 0.34 304 11.1 0.13
9D-Inf 12.1 5.1 0.49 12.5 3.5 0.70 7.6 3.7 0.67 22.5 4.5 0.56
10D 18.4 9.0 0.20 20.9 8.7 0.20 11.5 59 0.39 29.9 11.5 0.11
RPMG-Quat 13.0 59 0.40 13.0 3.6 0.67 8.6 4.2 0.61 232 4.9 0.51
RPMG-6D 12.9 4.7 0.53 11.5 2.8 0.77 7.8 34 0.71 20.3 3.6 0.67
RPMG-9D 11.9 4.4 0.58 10.5 24 0.82 7.5 32 0.75 20.0 2.9 0.76
RPMG-10D 12.8 4.5 0.55 11.2 2.4 0.82 7.2 3.0 0.76 19.2 2.9 0.75
Rot Laplace | 97 35 068 | 88 21 084 | 53 26 083 | 155 23 082

of real-world images may lead to comparatively noisy ground truths, increasing the difficulty for
networks to get rather close predictions with GT labels. Nevertheless, our method still manages to
obtain superior performance, which illustrates the robustness of our Rotation Laplace distribution.

5.3 COMPARISONS WITH NON-PROBABILISTIC METHODS
5.3.1 EVALUATION SETUP

Settings For comparisons with non-probabilistic methods, we follow the latest work of |Chen et al.
(2022) to learn a network for each category. For Pascal3D+ dataset, we follow (Chen et al.[ (2022) to
use ImageNet_val as our test set. We use the same evaluation metrics as in |Chen et al.| (2022) and
quote its reported numbers for baselines.

Baselines We compare to multiple baselines that leverage different rotation representations to di-
rectly regress the prediction given input images, including traditional Euler angles, axis-angle,
Quaternion and later introduced 6D (Zhou et al., 2019), 9D / 9D-Inf (Levinson et al., [2020) and
10D (Peretroukhin et al., [2020). We also include regularized projective manifold gradient series of
methods, RPMG-Quat, RPMG-6D, RPMG-9D and RPMG-10D (Chen et al.| [2022).

5.3.2 RESULTS

We report the numerical results of our method and on-probabilistic baselines on ModelNet10-SO3
dataset in Table [3] Our method obtains a clear superior performance to the best competitor under
all the metrics among all the categories. Note that we train a model for each category (so do all the
baselines), thus our performance in Table E] is better than Table E] where one model is trained for
the whole dataset. The results on Pascal3D+ dataset are shown in Table @] where our method with
Rotation Laplace distribution achieves state-of-the-art performance.
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Table 4: Numerical comparisons with non-probabilistic baselines on Pascal3D+ dataset. One model is trained
for each category.

| Bicycle | Sofa

Methods | Acc@10t  Acc@I5t  Acc@20t  Med) | Acc@I0T  Acc@I5T  Acc@20t  Med.|
Euler angles 0.282 0.481 0.627 15.7 0.602 0.809 0.906 8.3
Axis-angle 0.053 0.081 0.101 79.7 0.450 0.709 0.851 11.0
Quaternion 0.208 0.388 0.546 18.7 0.343 0.608 0.735 13.2
6D 0.218 0.390 0.553 18.1 0.508 0.767 0.890 9.9
9D 0.206 0.376 0.569 18.0 0.524 0.796 0.903 9.2
9D-Inf 0.380 0.533 0.699 134 0.709 0.880 0.935 6.7
10D 0.239 0.423 0.567 17.9 0.502 0.770 0.896 9.8
RPMG-Quat 0.323 0.500 0.656 15.0 0.566 0.796 0.909 8.9
RPMG-6D 0.354 0.572 0.706 13.5 0.696 0.861 0.922 6.7
RPMG-9D 0.368 0.574 0.718 12.5 0.725 0.880 0.958 6.7
RPMG-10D 0.400 0.577 0.713 12.9 0.693 0.871 0.939 7.0
Rot. Laplace ‘ 0.435 0.641 0.744 11.2 ‘ 0.735 0.900 0.964 6.3

Table 5: Numerical comparisons with our proposed Quaternion & Rotation Laplace distribution and baselines
on ModelNet10-SO3 dataset. One model is trained for each category. Quaternion Laplace distribution clearly
outperforms Bingham distribution (Deng et al., [2022)).

| Chair | Sofa | Toilet | Bed
| Mean| Med.] Acc@57|Mean] Med.| Acc@57|Mean| Med.l Acc@5t|Mean| Med.| Acc@57

Deng et al.|(2022) 16.5 72 0.31 16.5 49 0.52 9.6 42 0.59 22.0 5.1 0.49
Mohlin et al.|(2020) | 10.8 4.6 0.55 11.1 35 0.70 6.4 3.5 0.70 16.0 3.8 0.66

Quat. Laplace 12.6 5.2 0.49 13.1 3.7 0.67 59 3.4 0.69 17.7 34 0.69
Rot. Laplace 9.7 35 0.68 8.8 2.1 0.84 53 2.6 0.83 155 2.3 0.82

5.4 IMPLEMENTATION DETAILS

For fair comparisons, we follow the implementation designs of [Mohlin et al.| (2020) and merely
change the distribution from matrix Fisher distribution to our Rotation Laplace distribution. For
numerical stability, we clip tr(S — ATR) by max(le — 8,tr(S — ATR)) for Eq

Specifically, we use pretrained ResNet-101 as our backbone, and encode the object class information
(for single-model-all-category experiments) by an embedding layer that produces a 32-dim vector.
We apply a 512-512-9 MLP as the output layer. The batch size is set as 32. We use the SGD
optimizer and start with the learning rate of 0.01. For ModelNet10-SO3 dataset, we train 50 epochs
with learning rate decaying by a factor of 10 at epochs 30, 40, and 45. For Pascal3D+ dataset, we
train 120 epochs with the same learning rate decay at epochs 30, 60 and 90.

5.5 COMPARISONS OF ROTATION LAPLACE DISTRIBUTION AND QUATERNION LAPLACE
DISTRIBUTION

For the completeness of experiments, we also compare our proposed Quaternion Laplace distribution
and Bingham distribution and report the performance in Table[5] As shown in the table, Quaternion
Laplace distribution consistently achieves superior performance than its competitor, which validates
the effectiveness of our Laplace-inspired derivations. However, its rotation error is in general larger
than Rotation Laplace distribution, since its rotation representation, quaternion, is not a continuous
representation, as pointed in|Zhou et al.|(2019), thus leading to inferior performance.

6 CONCLUSION

In this paper, we draw inspiration from multivariant Laplace distribution and derive two novel dis-
tributions for probabilistic rotation regression, namely, Rotation Laplace distribution for rotation
matrices on SO(3) and Quaternion Laplace distribution for quaternions on S®. Extensive compar-
isons with both probabilistic and non-probabilistic baselines on ModelNet10-SO3 and Pascal3D+
datasets demonstrate the effectiveness and advantages of our proposed distributions.
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