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Abstract

Despite enormous successful applications of graph neural networks (GNNs) re-1

cently, theoretical understandings of their generalization ability, especially for2

node-level tasks where data are not independent and identically-distributed (IID),3

have been sparse. The theoretical investigation of the generalization performance4

is beneficial for understanding fundamental issues (such as fairness) of GNN5

models and designing better learning methods. In this paper, we present a novel6

PAC-Bayesian analysis for GNNs under a non-IID semi-supervised learning setup.7

Moreover, we analyze the generalization performances on different subgroups of8

unlabeled nodes, which allows us to further study an accuracy-(dis)parity-style9

(un)fairness of GNNs from a theoretical perspective. Under reasonable assump-10

tions, we demonstrate that the distance between a test subgroup and the training11

set can be a key factor affecting the GNN performance on that subgroup, which12

calls special attention to the training node selection for fair learning. Experiments13

across multiple GNN models and datasets support our theoretical results.14

1 Introduction15

Graph Neural Networks (GNNs) [11, 30, 16] are a family of machine learning models that can be16

used to model non-Euclidean data as well as inter-related samples in a flexible way. Recent years have17

witnessed enormous successful applications of GNNs in various areas, such as drug discovery [14],18

computer vision [24], transportation forecasting [42], recommender systems [41], etc. Depending19

on the type of prediction target, the application tasks can be roughly categorized into node-level,20

edge-level, subgraph-level, and graph-level tasks [39].21

In contrast to the huge empirical success in practice, theoretical understandings of the generalization22

ability of GNNs have been rather limited. Among the existing literature, some studies [9, 10, 21]23

focus on the analysis of graph-level tasks where each sample is an entire graph and the training data24

are IID samples of graphs. A very limited number of studies [31, 36] explore GNN generalization25

for node-level tasks but they assume the training nodes (and their associated neighborhoods) are IID26

samples, which does not align with the commonly seen graph-based semi-supervised learning setups.27

Baranwal et al. [3] investigate GNN generalization under a specific data generating mechanism.28

In this work, our first contribution is to provide a novel PAC-Bayesian analysis for the generalization29

ability of GNNs on node-level tasks with non-IID assumptions about training nodes. In particular, we30

assume the node features are fixed and the node labels are independently sampled from distributions31

conditioned on the node features. We also assume the training set and the test set can be chosen as32

arbitrary subsets of nodes on the graph. We first prove two general PAC-Bayesian generalization33

bounds (Theorem 1 and Theorem 2) under this non-IID setup, and then derive a generalization bound34

for GNN (Theorem 3) in terms of characteristics of the GNN models and the node features.35
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Notably, the generalization error is influenced by the distance of the aggregated node features between36

the test nodes and the training nodes. This implies that, given a fixed training set, test nodes that are37

“far away” from all the training nodes may suffer from larger generalization errors, which leads to an38

accuracy-disparity unfairness. In reality, these nodes may reside in small isolated clusters, or they are39

on the boundaries of large communities. We conduct empirical experiments using multiple benchmark40

datasets and investigate the test accuracy of four popular GNN models on different subgroups. Results41

indicate there is indeed a significant disparity in test accuracy among these subgroups.42

We summarize the contributions of this work as follows. (1) We establish a novel PAC-Bayesian43

analysis for graph-based semi-supervised learning with non-IID training nodes. (2) We provide a44

subgroup generalization bound for GNNs under this setup. (3) As an implication of the derived45

generalization bound, we predict that there would be an accuracy disparity across different subgroups46

of test nodes. (4) We empirically verify the existence of accuracy-disparity unfairness of GNNs.47

2 Related Work48

2.1 Generalization of Graph Neural Networks49

The majority of existing literature that aim to develop theoretical understandings of GNNs have50

focused on the expressive power of GNNs (see Sato [29] for a survey along this line), while the51

number of studies trying to understand the generalizability of GNNs is rather limited. Among52

them, some [9, 10, 21] focus on graph-level tasks, the analyses of which cannot be easily applied53

to node-level tasks. As far as we know, Scarselli et al. [31], Verma and Zhang [36], Baranwal et al.54

[3] are the only existing studies investigating the generalization of GNNs on node-level tasks, even55

though node-level tasks are more common in reality. Scarselli et al. [31] present an upper bound of56

the VC-dimension of GNNs; Verma and Zhang [36] derive a stability-based generalization bound for57

a single-layer GCN [16] model. Yet, both Scarselli et al. [31] and Verma and Zhang [36] (implicitly)58

assume that the training nodes are IID samples from a certain distribution, which does not align59

with the common practice of node-level semi-supervised learning. Baranwal et al. [3] investigate the60

generalization of graph convolution under a specific data generating mechanism, i.e., the contextual61

stochastic block model [8]. Our work presents the first generalization analysis of GNNs for non-IID62

node-level tasks without strong assumptions on the data generating mechanism.63

2.2 Fairness of Machine Learning on Graphs64

The fairness issues of machine learning on graphs start to receive research attention recently. Fol-65

lowing conventional machine learning fairness literature, the majority of previous work along this66

line [1, 5–7, 18, 27, 33, 43] concerns about fairness with respect to a given sensitive attribute, such as67

gender or race, which defines protected groups. In practice, the fairness issues of learning on graphs68

are much more complicated due to the asymmetric nature of the graph-structured data. However,69

only a few studies [15] investigate the unfairness caused by the graph structure without knowing a70

sensitive feature. Moreover, in a node-level semi-supervised learning task, the non-IID sampling of71

training nodes brings additional uncertainty to the fairness of the learned models. This work is the72

first to present a learning theoretic analysis under this setup, which in turn suggests how the graph73

structure and the selection of training nodes may influence the fairness of machine learning on graphs.74

2.3 PAC-Bayesian Analysis75

PAC-Bayesian analysis [22] has become one of the most powerful theoretical framework to analyze76

the generalization ability of machine learning models. We will briefly introduce the background in77

Section 3.2, and refer the readers to a recent tutorial [12] for a systematic overview of PAC-Bayesian78

analysis. We note that Liao et al. [21] recently present a PAC-Bayesian generalization bound for79

GNNs on IID graph-level tasks. Both Liao et al. [21] and this work utilize results from Neyshabur et al.80

[25], a PAC-Bayesian analysis for ReLU-activated neural networks, in part of our proofs. Compared81

to Neyshabur et al. [25], the key contribution of Liao et al. [21] is the derivation of perturbation82

bounds of two types of GNN architectures; while the key contribution of this work is the novel83

analysis under the setup of non-IID node-level tasks. There is also an existing work of PAC-Bayesian84

analysis for transductive semi-supervised learning [4]. But it is different from our problem setup and,85

in particular, it cannot be used to analyze the generalization on subgroups.86
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3 Preliminaries87

In this section, we first formulate the problem of node-level semi-supervised learning. We also88

provide a brief introduction of the PAC-Bayesian framework.89

3.1 The Problem Formulation and Notations90

Semi-supervised node classification. Let G = (V,E) ∈ GN be an undirected graph, with91

V = {1, 2, . . . , N} being the set of N nodes and E ⊆ V × V being the set of edges. And GN92

is the space of all undirected graphs with N nodes. The nodes are associated with node features93

X ∈ RN×D and node labels y ∈ {1, 2, . . . ,K}N .94

In this work, we focus on the transductive node classification setting [40], where the node features95

X and the graph G are observed prior to learning, and every quantity of interest in the analysis96

will be conditioned on X and G. Without loss of generality, we treat X and G as fixed throughout97

our analysis and the randomness comes from the labels y. In particular, we assume that for each98

node i ∈ V , its label yi is generated from an unknown conditional distribution Pr(yi | Zi), where99

Z = g(X,G) and g : RN×D × GN → RN×D′ is an aggregation function that aggregates the100

features over (multi-hop) local neighborhoods1. We also assume that the node labels are generated101

independently conditional on their respective aggregated features Zi’s.102

Given a small set of the labeled nodes, V0 ⊆ V , the task of node-level semi-supervised learning103

is to learn a classifier h : RN×D × GN → RN×K from a function family H and perform it on the104

remaining unlabeled nodes. Given a classifier h, the classification for a node i is obtained by105

ŷi = argmax
k∈{1,...,K}

hi(X,G)[k],

where hi(X,G) is the i-th row of the output of h(X,G) and hi(X,G)[k] refers to the k-th element106

of hi(X,G).107

Subgroups. In Section 4, we will present an analysis of the GNN generalization performance on any108

subgroup of the set of unlabeled nodes, V \ V0. Note that the analysis on any subgroup is a stronger109

result than that on the entire unlabeled set, as the entire set is a subset. Later we will show that the110

analysis on subgroups (rather than on the entire set) further allows us to investigate the accuracy111

disparity across subgroups. We denote a collection of subgroups of interest as V1, V2, . . . , VM ⊆112

V \ V0. In practice, a subgroup can be defined based on an attribute of the nodes (e.g., a gender113

group), certain graph-based properties, or an arbitrary partition of the nodes. We also define the size114

of each subgroup as Nm := |Vm|,m = 0, . . . ,M .115

Margin loss on each subgroup. Now we can define the empirical and expected margin loss of any116

classifier h ∈ H on each subgroup Vm,m = 0, 1, . . . ,M . Given a sample of observed node labels117

yi’s, the empirical margin loss of h on Vm for a margin γ ≥ 0 is defined as118

L̂γm(h) :=
1

Nm

∑
i∈Vm

1

[
hi(X,G)[yi] ≤ γ + max

k 6=yi
hi(X,G)[k]

]
, (1)

where 1 [·] is the indicator function. The expected margin loss is the expectation of Eq. (1), i.e.,119

Lγm(h) := Eyi∼Pr(y|Zi),i∈VmL̂
γ
m(h). (2)

To simplify the notation, we define ym := {yi}i∈Vm ,∀m = 0, . . . ,M , so that Eq. (2) can be written120

as Lγm(h) = EymL̂γm(h). We note that the classification risk and empirical risk of h on Vm are121

respectively equal to L0
m(h) and L̂0

m(h).122

3.2 The PAC-Bayesian Framework123

The PAC-Bayesian framework [22] is an approach to analyze the generalization ability of a stochastic124

predictor drawn from a distribution Q over the predictor familyH that is learned from the training125

1An example is gi(X,G) = 1
|N (i)|+1

(
Xi +

∑
j∈N (i) Xj

)
, where gi(X,G) is the i-th row of the output

of g(X,G) andN (i) := {j | (i, j) ∈ E} is the set of 1-hop neighbors of node i. The aggregation function g
can also be defined to aggregate over multiple-hop neighbors.
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data. For any stochastic classifier distributionQ andm = 0, . . . ,M , slightly overloading the notation,126

we denote the empirical margin loss of Q on Vm as L̂γm(Q), and the corresponding expected margin127

loss as Lγm(Q). And they are given by128

L̂γm(Q) := Eh∼QL̂γm(h), Lγm(Q) := Eh∼QLγm(h).

In general, a PAC-Bayesian analysis aims to bound the generalization gap between Lγm(Q) and129

L̂γm(Q). The analysis is usually done by first proving that, for any “prior” distribution2 P over H130

that is independent of the training data, the generalization gap can be controlled by the discrepancy131

between P and Q; the analysis is then followed by careful choices of P to get concrete upper bounds132

of the generalization gap. While the PAC-Bayesian framework is built on top of stochastic predictors,133

there exist standard techniques [19] that can be used to derive generalization bounds for deterministic134

predictors from PAC-Bayesian bounds.135

Finally, we introduce two divergence of distributions that will be used in the analysis. We denote the136

total variation (TV) divergence between two distributionsQ and P asDTV(Q‖P ) := 1
2

∫
|dQdP −1|dP ,137

and the Kullback-Leibler (KL) divergence as DKL(Q‖P ) :=
∫

ln dQ
dP dQ.138

4 Analysis139

As we mentioned in Section 2.3, existing PAC-Bayesian analyses cannot be directly applied to the140

non-IID semi-supervised learning setup where we care about the generalization (disparity) across141

different subgroups of the unlabeled samples. In this section, we first present general PAC-Bayesian142

theorems for subgroup generalization under our problem setup; then we derive a generalization bound143

for GNNs and discuss implications of the bounds.144

4.1 General PAC-Bayesian Theorems for Subgroup Generalization145

Stochastic classifier bound. We first present the general PAC-Bayesian theorem (Theorem 1) for146

subgroup generalization of stochastic classifiers. The generalization bound depends on a notion of147

expected loss discrepancy between two subgroups as defined below.148

Definition 1 (Expected Loss Discrepancy). Given a distribution P overH, for any λ > 0 and γ ≥ 0,149

for any two subgroups Vm and Vm′ (0 ≤ m,m′ ≤M ), define the expected loss discrepancy between150

Vm and V0 with respect to (P, γ, λ) as151

Dγ
m,m′(P ;λ) := lnEh∼P eλφ(Lγ/2m (h)−Lγ

m′ (h)),

where Lγ/2m (h) and Lγm′(h) follow the definition of Eq. (2), and we define φ(x) := max(0, x).152

Intuitively, Dγ
m,m′(P ;λ) captures the difference of the expected loss between Vm and Vm′ in an153

average sense (over P ). Note that Dγ
m,m′(P ;λ) is asymmetric in terms of Vm and Vm′ , and can be154

negative if the loss on Vm is mostly smaller than that on Vm′ .155

For stochastic classifiers, we have the following Theorem 1. Proof can be found in Appendix A.1.156

Theorem 1 (Subgroup Generalization of Stochastic Classifiers). For any 0 < m ≤M , for any λ > 0157

and γ ≥ 0, for any “prior” distribution P onH that is independent of the training data on V0, with158

probability at least 1− δ over the sample of ym, for any Q onH, we have3159

Lγ/2m (Q) ≤ L̂γ0(Q) +
1

λ

(
DTV(Q‖P ) + ln

2

δ
+

λ2

4N0
+Dγ

m,0(P ;λ)

)
. (3)

Theorem 1 can be viewed as an adaptation of a result by Alquier et al. [2] from the IID super-160

vised setting to our non-IID semi-supervised setting. The terms DTV(Q‖P ), ln 2
δ , and λ2

4N0
are161

2The distribution is called “prior” in the sense that it doesn’t depend on training data. “Prior” and “posterior”
in PAC-Bayesian are different with those in conventional Bayesian statistics. See Guedj [12] for details.

3Theorem 1 also holds when we substitute Lγ/2m (h) and Lγ/2m (Q) as Lγm(h) and Lγm(Q) respectively. But
we state the theorem in this form to ease the development of the later analysis.
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commonly seen in PAC-Bayesian analysis for IID supervised setting. In particular, when setting162

λ = Θ(
√
N0), 1

λ

(
ln 2

δ + λ2

4N0

)
vanishes as the training size N0 grows. The divergence between Q163

and P , DTV(Q‖P ), is usually considered as a measurement of the model complexity [12]. And there164

will be a trade-off between the training loss, L̂γ0(Q), and the complexity (how far can the learned165

“posterior” Q go from the “prior” P ).166

Uniquely for the non-IID semi-supervised setting, there is an extra term Dγ
m,0(P ;λ), which is the167

expected loss discrepancy between the target test subgroup Vm and the training set V0. Note that this168

quantity is independent of the training labels y0. Not surprisingly, it is difficult to give generalization169

guarantees if the expected loss on Vm is much larger than that on V0 for any stochastic classifier P170

independent of training data. We have to make some assumptions about the relationship between Vm171

and V0 to obtain a meaningful bound on 1
λD

γ
m,0(P ;λ), which we will discuss in details in Section 4.2.172

Deterministic classifier bound. Utilizing standard techniques in PAC-Bayesian analysis [19, 22,173

25], we can convert the bound for stochastic classifiers in Theorem 1 to a bound for deterministic174

classifiers as stated in Theorem 2 below (see Appendix A.2 for the proof).175

Theorem 2 (Subgroup Generalization of Deterministic Classifiers). Let h̃ be any classifier in176

H. For any 0 < m ≤ M , for any λ > 0 and γ ≥ 0, for any “prior” distribution P on177

H that is independent of the training data on V0, with probability at least 1 − δ over the sam-178

ple of ym, with probability at least 1 − δ over the sample of ym, for any Q on H such that179

Prh∼Q

(
maxi∈V0∪Vm |hi(X,G)− h̃i(X,G)|∞ < γ

8

)
> 1

2 , we have180

L0
m(h̃) ≤ L̂γ0(h̃) +

1

λ

(
2
√
DKL(Q‖P ) + 1 + ln

2

δ
+

λ2

4N0
+D

γ/2
m,0(P ;λ)

)
. (4)

Theorem 1 and 2 are not specific to GNNs and hold for any (respectively stochastic and deterministic)181

classifier under the semi-supervised setup. In Section 4.2, we will apply Theorem 2 to obtain a182

subgroup generalization bound that explicitly depends on the characteristics of GNNs and the data.183

4.2 Subgroup Generalization Bound for Graph Neural Networks184

The GNN model. We consider GNNs where the node feature aggregation step and the prediction185

step are separate. In particular, we assume the GNN classifier takes the form of hi(X,G) =186

f(gi(X,G);W1,W2, . . . ,WL), where g is an aggregation function as we described in Section 3.1187

and f is a ReLU-activated L-layer Multi-Layer Perceptron (MLP) with W1, . . . ,WL as parameters188

for each layer4. Denote the largest width of all the hidden layers as b.189

Upper-bounding Dγ
m,0(P ;λ). To derive the generalization guarantee, we first upper-bound the190

expected loss discrepancy Dγ
m,0(P ;λ) by making two assumptions on the data. We first assume that191

the label distributions conditional on aggregated features are smooth (Assumption 1).192

Assumption 1 (Smoothness of Data Distribution). Assume there exist c-Lipschitz continuous func-193

tions η1, η2, . . . , ηK : RD′ → [0, 1], such that, for any node i ∈ V ,194

Pr(yi = k | gi(X,G)) = ηk(gi(X,G)),∀k = 1, . . . ,K.

We also need to characterize the relationship between a target subgroup Vm and the training set V0.195

For this purpose, we define the distance from Vm to V0 and the concept of near set below.196

Definition 2 (Distance To Training Set and Near Set). For each 0 < m ≤ M , define the distance197

from the subgroup Vm to the training set V0 as198

εm := max
j∈Vm

min
i∈V0

‖gi(X,G)− gj(X,G)‖2.

Further, for each i ∈ V0, define the near set of i with respect to Vm as199

V (i)
m := {j ∈ Vm | ‖gi(X,G)− gj(X,G)‖2 ≤ εm}.

Clearly,200

Vm = ∪i∈V0
V (i)
m .

4SGC [38] and APPNP [17] are special cases of GNNs in this form.
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Then, with the Assumption 2 below, we can bound the expected loss discrepancy Dγ
m,0(P ;λ) with201

the following Lemma 1 (see the proof in Appendix A.3).202

Assumption 2 (Equal-Sized and Disjoint Near Sets). For any 0 < m ≤M , assume the near sets of203

each i ∈ V0 with respect to Vm are disjoint and have the same size sm ∈ N+.204

Lemma 1 (Bound for Dγ
m,0(P ;λ)). Under Assumption 1 and 2, for any 0 < m ≤ M , any λ > 0205

and γ ≥ 0, assume the prior P on H is defined by sampling the vectorized MLP parameters from206

N (0, σ2I) for some σ2 ≤ (γ/4εm)2/L

2b(ln 2bL+λ) . we have207

Dγ
m,0(P ;λ) ≤ ln 2 + λcKεm. (5)

Intuitively, what we need to bound Dγ
m,0(P ;λ) is that the training set V0 is “representative” for Vm.208

This is reasonable in practice as it’s natural to select the training samples according to the distribution209

of the population. Specifically, Assumption 2 assumes that Vm can be split into equal-sized partitions210

indexed by the training samples. The elements of each partition V (i)
m are close to the corresponding211

training sample i but not so close to training samples other than i. This assumption is stronger than212

needed to obtain a meaningful bound on Dγ
m,0(P ;λ), and we can relax it by only assuming that most213

samples in Vm have proportional “close representatives” in V0. But we keep Assumption 2 in this214

work, as it is intuitively clear and significantly eases the analysis and notations.215

The bound (5) suggests that the closer between Vm and V0 (smaller εm), the smaller the expected216

loss discrepancy.217

Bound for GNNs. Finally, with an additional assumption (Assumption 3) that the maximum L2218

norm of aggregated node features does not grow too fast in terms of the number of training samples,219

we obtain a subgroup generalization bound for GNNs in Theorem 3. The proof of Theorem 3 can be220

found in Appendix A.4.221

Assumption 3. Define Bm := maxi∈V0∪Vm ‖gi(X,G)‖2, and assume Bm = o(N
1/4
0 ).222

Theorem 3 (Subgroup Generalization Bound for GNNs). Let h̃ be any classifier inH with parameters223

{W̃l}Ll=1. Under Assumptions 1, 2, and 3, for any 0 < m ≤M , γ ≥ 0 and large enough N0, with224

probability at least 1− δ over the sample of ym, we have225

L0
m(h̃) ≤ L̂γ0(h̃) +O

cKεm +
2

√
b
∑L
l=1 ‖W̃l‖2F

N
1/4
0 (γ/8)1/L

(εm)1/L +
1

N
1/2
0

ln
N0

δ

 . (6)

Next, we investigate the qualitative implications of our theoretical results.226

4.3 Implications for Fairness of Graph Neural Networks227

Accuracy-disparity style of unfairness. One merit of our analysis is that we can apply Theorem 3228

on different subgroups of the unlabeled nodes and compare the subgroup generalization bounds. This229

allows us to study the accuracy disparity across subgroups from a theoretical perspective.230

A major factor that affects the generalization bound (6) is εm, the distance from the target subgroup231

Vm to the training set V0. The generalization bound (6) suggests that there is a better generalization232

guarantee for subgroups that are closer to the training set. In other words, it is unfair for subgroups233

that are far away from the training set. While our theoretical analysis only provides an upper bound234

for the generalization error, in Section 5, we empirically verify that the test performances of GNN235

models do present accuracy disparity across subgroups with varying distances to the training set.236

Moreover, when more domain knowledge about the particular learning task and data is available,237

we can further investigate the factors that affect εm and identify potential fairness issues. As an238

example, the geodesic distance (length of shortest-path on the graph) between two nodes may be a239

good indicator for the similarity of their aggregated features. Below we discuss two such scenarios.240

Smoothing effect of feature aggregation in GNNs. Many existing GNN models are known to have a241

smoothing effect on the aggregated node features [20]. As a result, nodes with a shorter geodesic242

distance are likely to have more similar aggregated features.243
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Figure 1: Test accuracy disparity across subgroups by aggregated-feature distance. Each figure
corresponds to a dataset, and each bar cluster corresponds to a model. Bars labeled 1 to 5 represent
subgroups with increasing distance to training set. Results are averaged over 40 independent trials
with different random splits of the data, and the error bar represents the standard error of the mean.

123
GCN

45 123
GAT

45 123
SGC

45 123
APPNP

45 123
MLP

450.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

AC
C

(a) Cora.

123
GCN

45 123
GAT

45 123
SGC

45 123
APPNP

45 123
MLP

45
0.50

0.55

0.60

0.65

0.70

0.75
AC

C

(b) Citeseer.

123
GCN

45 123
GAT

45 123
SGC

45 123
APPNP

45 123
MLP

45

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850

AC
C

(c) Pubmed.
Figure 2: Test accuracy disparity across subgroups by geodesic distance. The experiment and plot
settings are the same as Figure 1, except for the bars labeled from 1 to 5 here represent subgroups
with increasing shortest-path distance to training set.

Homophily. Many real-world graph-structured data present a homophily property [23], i.e., connected244

nodes tend to share similar attributes. In this case, again, nodes with a shorter distance on the graph245

tend to have more similar aggregated features.246

Impact of training data selection. Another implication of the theoretical results is that the selection247

of the training set plays an important role on the fairness of the learned GNN models. First, at a248

population level, if the training set of choice leaves part of the unlabeled set far away, there will249

likely be a large accuracy disparity. Second, a key ingredient in the proof of Lemma 1 is that the250

predictions of the model on two nodes are more likely to be the same if they are close in terms of the251

aggregated node features. This suggests that, when the shortest-path distance is a good indicator for252

the similarity of the aggregated features, training nodes with higher closeness centrality5 may have a253

higher impact on the behaviour of the learned model. More generally, the influence of training nodes254

on the learned model may be relevant to their positions on the graph.255

5 Experiments256

In this section, we empirically verify the accuracy disparity suggested by our theoretical results.257

General setup. We experiment on 4 popular GNN models, GCN [16], GAT [35], SGC [38], and258

APPNP [17], as well as a MLP model for reference. For all the models, we use the implementations259

in Deep Graph Library [37]. 40 independent trails are carried out for each experiment.260

5.1 Accuracy Disparity Across Subgroups261

Subgroups. We examine the accuracy disparity with three types of subgroups as described below.262

Subgroup by aggregated-feature distance. In order to directly investigate the effect of εm on the263

generalization bound (6), we first split the test nodes into subgroups by their distance to the training set264

in terms of the aggregated features. As the GCN and GAT models are all two-layer GNNs, we use the265

two-step aggregated features to calculate the distance. In particular, denote the adjacency matrix of the266

graphG asA ∈ {0, 1}N×N and the corresponding degree matrix asD, whereD is aN×N diagonal267

5Closeness centrality of node i is defined as 1/
∑
j∈V \{i} d(i, j), where d(·, ·) is the shortest-path distance.
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(b) GAT on Cora.
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(c) APPNP on Cora.
Figure 3: Test accuracy disparity across subgroups by node centrality. Each figure corresponds to
the results of a pair of model and dataset, and each bar cluster corresponds to the subgroups defined
by a certain centrality metric. In each cluster, the bars labeled from 1 to 5 represent subgroups with
decreasing node centrality. Other settings are the same as Figure 1.

matrix with Dii =
∑N
j=1Aij ,∀i = 1, . . . , N . Given the feature matrix X ∈ RN×D, The two-step268

aggregated features are obtained by Z = (D+ I)−1(A+ I)(D+ I)−1(A+ I)X . For each test node269

i, we define its aggregated-feature distance to the training set V0 as di = minj∈V0
‖Zi − Zj‖2. Then270

we sort the test nodes according to this distance and split them into 5 equal-sized subgroups.271

Subgroup by geodesic distance. As we discussed in Section 4.3, the geodesic distance on the graph272

may correlate with the aggregated-feature distance. So we also define subgroups based on the geodesic273

distance. We split the subgroups similarly by replacing Si of each test node i as the minimum of the274

geodesic distances from i to each training node on the graph.275

Subgroup by node centrality. Lastly, we also define subgroups based on 4 types of node centrality276

scores (degree, closeness, betweenness, and PageRank) of the test nodes. We split the subgroups by277

replacing Si of each test node i as the centrality score of i. The purpose of this setup is to rule out a278

potential confounding factor that test nodes close to the training set may have high centrality scores.279

Experiment setup. Following common GNN experiment setup [32], we randomly select 20 nodes280

in each class for training, 500 nodes for validation, and 1,000 nodes for testing. Once training is done,281

we report the test accuracy on subgroups defined by aggregated-feature distance, geodesic distance,282

and node centrality in Figure 1, 2, and 3 respectively6.283

Experiment results. First, as shown in Figure 1, there is a clear trend that the accuracy of a test284

subgroup decreases as the aggregated-feature distance between the test subgroup and the training set285

increases. And the trend is consistent for all 4 GNN models on all the datasets we test on (except for286

APPNP on Cora). This result verifies the existence of accuracy disparity suggested by Theorem 3.287

Second, we observe in Figure 2 that there is a similar trend when we split subgroups by the geodesic288

distance. This suggests that the geodesic distance on the graph can be used as a simpler indicator in289

practice for machine learning fairness on real-world graph-structured data. Using such a classical290

network metric as an indicator also helps us connect graph-based machine learning to network theory,291

especially to understandings about social networks, to better analyze fairness issues of machine292

learning on social networks, where high-stake decisions related to human subjects may be involved.293

Furthermore, as in Figure 3, there is no monotonic trend for test accuracy when we split subgroups by294

node centrality. This suggests that it is indeed the distance between the test subgroup and the training295

nodes, rather than the centrality of the test nodes alone, that influences the generalization error.296

Finally, it is intriguing that, in both Figure 1 and 2, the test accuracy of MLP (which does not use the297

graph structure) also decreases as the distance of a subgroup to the training set increases. This result298

is perhaps not surprising if the subgroups were defined by distance on the original node features, as299

MLP can be viewed as a special GNN where the feature aggregation function is an identity mapping,300

so the “aggregated features” for MLP essentially equal to the original features. Our theoretical301

analysis can then be similarly applied to MLP. The question is why there is also an accuracy disparity302

w.r.t. the aggregated-feature distance and the geodesic distance. We suspect this is because these303

datasets present homophily, i.e., original (non-aggregated) features of geodesically closer nodes tend304

to be more similar. As a result, a subgroup with smaller geodesic distance may also have closer node305

features to the training set. To verify this hypothesis, we repeat the experiments in Figure 1, but with306

6The main paper reports the results on selected datasets (Cora, Citeseer, and Pubmed for subgroups by
aggregated-feature & geodesic distance, and Cora for node centrality. Results on more datasets are in Appendix C.
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(b) Citeseer.
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(c) Pubmed.
Figure 4: Test accuracy disparity across subgroups by aggregated-feature distance, experimented
with noisy features. The experiment and plot settings are the same as Figure 1, except for the node
features are perturbed by independent noises such that they are less homophilious.
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(c) MLP on Cora.
Figure 5: Relative ratio between the FPR under biased training node selection and the FPR under
uniform training node selection. Each bar in each cluster corresponds to a class (there are 7 classes
in total). The red shaded bar indicates the class with high centrality training nodes under the biased
setup. Each cluster corresponds to a centrality metric being used for the biased node selection.

independent noises added to node features such that they become less homophilious. As in Figure 4,307

the decreasing pattern of test accuracy across subgroups remains for the 4 GNNs on all datasets;308

while for MLP, the pattern disappears on Cora and Pubmed and becomes less sharp on Citeseer.309

5.2 Impact of Biased Training Node Selection310

In all the previous experiments, we follow the standard GNN training setup where 20 training nodes311

are uniformly sampled for each class. Next we investigate the impact if the selection of training312

nodes is biased, verifying our discussions in Section 4.3. We will demonstrate that the node centrality313

scores of the training nodes play an important role in the learned GNN model.314

We choose a “dominant class” and construct a manipulated training set. For each class, we still315

sample 20 training nodes but in a biased way. For the dominant class, the sample is biased towards316

nodes of high centrality; while for other classes, the sample is biased towards nodes of low centrality.317

We evaluate the relative ratio of False Positive Rate (FPR) for each class between the setup using318

manipulated training set and the setup using uniformly sampled training set.319

As shown in Figure 5, compared to MLP, the GNN models have significantly worse FPR for the320

dominant class when the training nodes are biased. This is because, after feature aggregation, there321

will be a larger proportion of test nodes that are closer to the training nodes of higher centrality. And322

the learned GNN model will be heavily biased towards the training labels of these nodes.323

6 Discussion and Conclusion324

We present a novel PAC-Bayesian analysis for the generalization ability of GNNs on node-level325

semi-supervised learning tasks. As far as we know, this is the first generalization bound for GNNs326

for non-IID node-level tasks without strong assumptions on the data generating mechanism. One327

advantage of our analysis is that it can be applied to arbitrary subgroups of the test nodes, which328

allows us to investigate an accuracy-disparity style of fairness for GNNs. Both the theoretical and329

empirical results suggest that there is an accuracy disparity across subgroups of test nodes that have330

varying distance to the training set, and nodes with larger geodesic distance to the training nodes suffer331

from a lower classification accuracy. In reality, these nodes are likely to reside in underrepresented332

marginalized communities or on the boundaries of large communities. In the future, we would like to333

utilize our theoretical results to analyze other potential factors of the fairness of GNNs.334
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