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Abstract

In this work, we study the generalization of deep learning functions in relation to
the convex hull of their training sets. A trained image classifier basically partitions
its domain via decision boundaries, and assigns a class to each of those partitions.
The location of decision boundaries inside the convex hull of training set can be
investigated in relation to the training samples. However, our analysis shows that
in standard image classification datasets, most testing images are considerably
outside that convex hull. Therefore, the performance of a trained model partially
depends on how its decision boundaries are extended outside the convex hull of its
training data. From this perspective, over-parameterization of deep learning models
may be considered a necessity for shaping the extension of decision boundaries.
At the same time, over-parameterization should be accompanied by a specific
training regime, in order to yield a model that not only fits the training set, but
also its decision boundaries extend desirably outside the convex hull. To illustrate
this, we investigate the decision boundaries of a neural network, with various
degrees of over-parameterization, inside and outside the convex hull of its training
set. Moreover, we use a polynomial decision boundary to study the necessity of
over-parameterization and the influence of training regime in shaping its extensions
outside the convex hull of training set.

1 Introduction

A deep learning image classifier is a mathematical function that maps images to classes, i.e., a deep
learning function [Strang, 2019]. These models/functions have shown to be exceptionally useful in
real-world applications. However, generalization of these functions is considered a mystery by deep
learning researchers [Arora et al., 2019]. These models have orders of magnitude more parameters
than their training samples [Belkin et al., 2019, Neyshabur et al., 2019], and they can achieve perfect
accuracy on their training sets, even when the training images are randomly labeled, or the contents
of images are replaced with random noise [Zhang et al., 2017]. The training loss function of these
models has infinite number of minimizers, where only a small subset of those minimizers generalize
well [Neyshabur et al., 2017a]. If one succeeds in picking a good minimizer of training loss, the model
can classify the testing images correctly, nevertheless, for any correctly classified image, there are
infinite number of images that look the same, but models will classify them incorrectly (phenomenon
known as adversarial vulnerability) [Papernot et al., 2016, Shafahi et al., 2019, Tsipras et al., 2019].
Here, we study some geometric properties of standard training and testing sets to provide new insights
about what a model can learn from its training data, and how it can generalize.

Specifically, we study the convex hulls of image classification datasets (both in the pixel space and in
the wavelet space), and show that most of testing images fall outside the convex hull of training sets,
with various distances from the hull. We investigate the perturbation required to bring the testing
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images to the surface of convex hull and observe that such perturbation significantly affects the
contents of images. Therefore, the performance of a trained model partially depends on how well it
can extrapolate. We investigate this extrapolation in relation to the over-parameterization of neural
networks and the influence of training regimes in shaping the extensions of decision boundaries.

2 Geometry of testing data w.r.t the convex hull of training sets

First, we show that for standard datasets: MNIST [LeCun et al., 1998] and CIFAR-10 [Krizhevsky,
2009], most of their testing data are outside the convex hull of their training sets. We denote the
convex hull of a training set byHtr.

To verify whether an image/data point is inside its correspondingHtr or not, we can simply try to
fit a hyper-plane separating the point and the training set. If we find such hyper-plane, the point is
outside the convex hull, and vice versa. This is basically a linear regression problem and there are
many efficient and fast methods to perform it, e.g., [Goldstein et al., 2015]. For the MNIST dataset,
we see that about 95.1% of testing images are outside the Htr, in the pixel space. For CIFAR-10,
that percentage is more than 99.9%. When we transform the images with wavelets (an operation
analogous to convolutional neural nets), these percentages almost remain the same.

We can now investigate the testing data outside theHtr, to see how far they are located from it. One
can measure the distance of a testing image to theHtr using high-dimensional geometry algorithms.
There are also methods that aim to identify a coreset to approximate convex hulls of large datasets
[Blum et al., 2019]. Here, we approximate the distance to convex hull by first fitting a linear Support
Vector Machine (SVM) between the testing point and theHtr. Since an SVM maximizes its margin
from its supports, the total margin of the resulting SVM will closely approximate the distance between
the point and Htr1. Figure 1 shows the histogram of distance to Htr for the testing images of the
above datasets.

(a) MNIST (pixel space) (b) CIFAR-10 (pixel space)

Figure 1: Variations of distance toHtr for testing images that fall outsideHtr.

To get a better sense of how far these distances are, consider theHtrof CIFAR-10 dataset. Its diameter,
the largest distance between any pair of vertices inHtr, is 13,621 (measured by Frobenius norm in
pixel space). On the other hand, the distance of farthest testing image from the Htris about 1,800
(about 13% of the diameter ofHtr). Moreover, the average distance between pairs of images in the
training set of CIFAR-10 is 4,838, while the closest pair of images are only 701 apart.

Hence, the distance of testing data toHtris not negligible and we cannot dismiss it as a small noise.
However, it is not very large either. Overall, we can say that in order to classify most of the testing
images in the above datasets, a model has to extrapolate, to some degree, outside itsHtr.

2.1 What it takes to bring an image inside theHtr

For each image that is outside the Htr, there is some minimum perturbation that would bring that
image to theHtr. Figures 2 and 3 show the perturbation for some images in the testing set of CIFAR-
10 and MNIST that can bring them to their correspondingHtr. We note that due to our approximation
method, there is no guarantee that images in the middle column are exactly the minimum required
perturbation, but we expect it to be sufficiently close to that minimum.

1In our experiments, we observe that in most cases, our computed SVMs are equidistant (or almost equidistant)
from the testing points and the closest point of Htr . We note that this approximation of distance (i.e., using a
linear SVM) does not overestimate the distance to Htr . In fact, the actual distances can be larger than the ones
we report.
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The perturbations required to bring testing images to the Htrspecifically relate to the objects of
interest depicted in images and they appear to impact the images significantly. Therefore, the
extrapolation required to classify those images can be considered significant, too.

(original) - = (onHtr)

(original) - = (onHtr)

(original) - = (onHtr)

Figure 2: Perturbation (close to minimum) that can bring a testing image toHtrof all classes. (left
image) original testing image from CIFAR-10, (middle image) what should be removed from the
original image, (right image) the resulting image on theHtr.
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Figure 3: Perturbation that can bring a testing image of MNIST on theHtr.

2.2 Related work about geometry of data and deep learning

To the best of our knowledge, convex hulls of training sets are not commonly considered in deep
learning studies, especially the ones focused on their generalization. Recently, Yousefzadeh and
Huang [2020] reported that in the wavelet space, distance of testing images to the convex hull for each
training class can predict the label for more than 98% of MNIST testing data. Previously, Haffner
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[2002] considered the convex hull of MNIST data for Support Vector Machines. Similarly, Vincent
and Bengio [2002] considered the convex hulls for K-Nearest Neighbor (KNN) algorithms. However,
those methods do not generalize to deep learning functions.

Some researchers have studied other geometrical aspects of deep learning models, e.g., [Cohen
et al., 2020, Fawzi et al., 2018, Cooper, 2018, Kanbak et al., 2018, Neyshabur et al., 2017b]. To our
knowledge, those studies do not investigate the generalization of deep neural networks in relation to
the convex hull of training sets. Most recently, Xu et al. [2020] studied the extrapolation behavior
of ReLU perceptrons and concluded that such models cannot extrapolate most non-linear tasks.
However, they do not connect their analysis to the fact that a considerable portion of testing samples
of standard image datasets fall outside the convex hull of their training sets.

3 Learning outside the convex hull: A polynomial decision boundary
In the previous section, we showed that most of the testing data of MNIST and almost all of the
testing data of CIFAR-10 are outside the convex hull of their corresponding training sets, while
the distance to the Htr has noticeable variations. Hence, a trained deep learning model somehow
manages to define its decision boundaries accurately enough outside the boundaries of what it has
observed during training. But how does a model achieve that, or more precisely, how do we manage
to train a model such that its decision boundaries have the desirable form outside theHtr?

Since we are interested in the generalization of image classifiers, and the pixel space is a bounded
space, we consider the domain to be bounded, while the Htr occupies some portion of it. Testing
data can be inside and outside theHtr, but always inside the bounded domain.

Let’s now use a polynomial decision boundary as an example to gain some intuitive insights.2
Figure 6a shows two point sets colored in blue and red, each set belonging to a class. These sets are
non-linearly separable, because they have no overlap. If we use the polynomial

y = 10−5(x+ 20)(x+ 17)(x+ 10)(x+ 5)(x)(x− 2)(x− 9), (1)

as our decision boundary, we achieve perfect accuracy in separating these two sets, as shown in
Figure 6b.

(a) (b)

Figure 4: (a) Training data with 2 classes, colored with blue and red. (b) Non-linear separation of 2
classes with a polynomial of degree 7.

Figure 5: Shape of the polynomial decision boundary in our bounded domain, inside and outside the
convex hull of its training data.

2This choice seem appropriate since many recent studies on generalization of deep learning consider the
regression models that interpolate, e.g. [Belkin et al., 2018b,a, 2019, Liang et al., 2020, Verma et al., 2019,
Kileel et al., 2019, Savarese et al., 2019], but those studies do not consider the convex hull of training sets.
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Now that we have obtained this polynomial, i.e., decision boundary, we would be interested to know
how it generalizes to unseen data. Let’s assume that our bounded domain is defined by the limits
shown in Figure 5 which also shows how our decision boundary generalizes outside theHtr. If our
polynomial can correctly separate and label our testing data, we would say that our polynomial is
generalizing well, and vice versa. But, what is reasonable to expect from the testing data? In what
regions of the domain should we be hopeful that our polynomial can generalize? What if the domain
is much larger than theHtr? Is the extension of our polynomial on both sides reasonable enough?

Clearly, the answer to the above questions can be different inside and outside the Htr. Inside the
Htr, if the unseen data has a similar label distribution as the training set, we can be hopeful that our
decision boundary will generalize well. However, outside theHtr is uncharted territory and hence,
there will be less hope/confidence about the generalization of our decision boundary, especially when
we go far outside theHtr.

Now, let’s assume that from some prior knowledge, we know that the decision boundary in Figure 6
is the unique decision boundary that perfectly classifies the testing data. In such case, the decision
boundary defined by equation (1) and shown in Figure 5 will generalize poorly outside the Htr,
despite the fact that it perfectly fits the training data.

(a) Possible extension of polynomial decision
boundary in the over-parameterized regime.

(b) Resulting division of domain between the
two classes, defined by red and blue bounds.

Figure 6: Consider the decision boundary depicted in (a) and assume that the distribution of testing
data is such that the red and blue bounded regions in (b) are densely filled with red and blue data
points, respectively. It follows that the decision boundary in Figure 5 generalizes poorly for testing
points outside theHtr, despite the fact that it perfectly fits the training data.

How can we incorporate that prior knowledge into the decision boundary defined by equation (1) and
reshape it to the decision boundary in Figure 6, so that it can generalize well both inside and outside
the Htr? How can we change the shape of our polynomial outside the Htr, while maintaining its
current shape inside the Htr? Clearly, we should add to the degree of our polynomial, or in other
words, we should over-parameterize it. The necessity of over-parameterization for achieving that
goal for our polynomial decision boundary can be rigorously shown using the orthogonal system of
Legendre polynomials [Ascher and Greif, 2011].

From this perspective, over-parameterization is necessary, but it is not sufficient for good generaliza-
tion, because for an over-parameterized polynomial (i.e., decision boundary), there will be infinite
number of solutions that can fit the training data, but each of them would have a different shape
outside theHtr. In fact, an over-parameterized polynomial can have the same shape as the polynomial
in Figure 5. But, how can we pick the decision boundary that fits the data and also generalizes well
outside theHtr?

In the over-parameterized regime, the key to finding the desirable decision boundary is the optimiza-
tion process, i.e., the training regime. In other words, different training regimes would lead us to
decision boundaries that all perfectly fit the training set, but each has a different shape outside the
Htr. This highlights that the over-parameterization and the training regime work in tandem to shape
the extensions of our decision boundary.

4 Output of deep learning functions outside theirHtr

In this section, we investigate a 2-layer neural network with ReLU activation. We train the model with
various number of neurons on the data we investigate in previous section, depicted in Figure 6b. We
then investigate the output of the trained models inside and outside of theHtr, as shown in Figure 7.
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(a) model with 2 neurons (b) model with 10 neurons

(c) model with 20 neurons (d) model with 20 neurons

Figure 7: Variations of model output inside and outside theHtr, as we change the number of neurons
in the model. The black trapezoid depicts the Htr. The colors red and blue correspond to our 2
classes, described earlier. The models (c) and (d) both have 20 neurons and achieve perfect accuracy
on the training set, but they are trained using different hyper-parameters and as a result their decision
boundaries outside the convex hull are completely different. Models with 2 and 10 neurons do not
achieve perfect accuracy inside the convex hull.

We observe that when the model is under-parameterized (e.g., model with 2 neurons), the training
regime does not have a significant effect on the resulting model. The model output also follows a
relatively simple pattern inside and outside theHtr. For an under-parameterized model, the training
loss function has limited number of minimizers, none of which lead to zero loss. Finding the
same minimizer of training loss is equivalent to obtaining the same trained model, hence unlike the
over-parameterized setting, the training regime is focused on finding the best shape for the decision
boundary inside the convex hull.

When the model is over-parameterized, however, we have infinite number of parameter configurations
that minimize the training loss to zero, which is equivalent to developing a decision boundary that
perfectly separates our two sets of data points. So, forming the decision boundary inside the convex
hull is easily achievable. What is different about those infinite number of models is the extension of
their decision boundaries outside the convex hull of the data.

This seems to explain why we need over-parameterized models for deep learning and also explain
why the generalization of deep learning models are so susceptible to different training regimes:

1. Generalization of deep learning models depends on how they extrapolate;

2. In order to desirably shape the extension of decision boundaries, we over-parameterize the
models and then minimize their loss using specific training regimes.3

5 Conclusion and future work

We showed that most of testing data for some standard image classification models lie outside the
convex hull of training sets, both in pixel space and in wavelet space. Therefore, the generalization of
a deep network partially relies on its capability to extrapolate outside the boundaries of the data it
has seen during training. Based on this observation, the significant number of studies that focus on
interpolation regimes seem to be insufficient to explain the generalization of deep networks.

3Specific ways of minimizing the training loss imply the massive literature that aim to find the best training
regime for achieving the best testing accuracy. Much of that literature has relied on the knowledge of test-
ing/validation sets in order to develop those training methods, to desirably shape the extension of decision
boundaries.
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From this perspective, over-parameterization of models may be considered a necessity to desirably
form the extension of decision boundaries outside the convex hull of data. This can be proven for
polynomial regression models using the orthogonal system of Legendre polynomials. Moreover, we
showed that the training regime can significantly affect the shape of decision boundaries outside the
convex hulls, affecting the accuracy of a model in its extrapolation. We investigated a 2-layer ReLU
network and a polynomial decision boundary to demonstrate these ideas.

In future work, we plan to more closely analyze the effect of over-parameterization and training
regimes on the shape of decision boundaries outside the convex hulls, and investigate how that affects
the generalization. We also plan to study how sensitive the classifications of standard trained models
are w.r.t the minimum perturbations that would bring testing images inside the Htr. Developing
efficient methods to compute that minimum perturbation could be useful.

Studying the convex hulls of internal representations of the data in a trained network is another
direction that can be pursued. Such analysis can be performed, separately for each class in the dataset.
It has been speculated that a given image classification dataset lies on a lower dimensional manifold
and such manifold is what a deep learning model learns from the data. Study of convex hulls might
provide insights about such manifold and also about the distribution of training and testing sets.

Finally, measuring the volume of the convex hulls of training and testing sets, their overlap, and also
the volume of the domain that remains unoccupied may be insightful. The dimension of the domain
(number of pixels) relative to the number of samples may have a significant effect on the portion of
testing data that fall outside theHtr. This relates to the limit theorems for the convex hull of random
points in higher dimensions [Hueter, 1999] and also to studies on separability and distribution of
random points [Fink et al., 2016].
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