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ABSTRACT

Neural Networks are sensitive to various corruptions that usually occur in real-
world applications such as blurs, noises, low-lighting conditions, etc. To estimate
the robustness of neural networks to these common corruptions, we generally use
a group of modeled corruptions gathered into a benchmark. We argue that corrup-
tion benchmarks often have a poor coverage: being robust to them only imply be-
ing robust to a narrow range of corruptions. They are also often unbalanced: they
give too much importance to some corruptions compared to others. In this paper,
we propose to build corruption benchmarks with only non-overlapping corrup-
tions, to improve their coverage and their balance. Two corruptions overlap when
the robustnesses of neural networks to these corruptions are correlated. We pro-
pose the first metric to measure the overlapping between two corruptions. We pro-
vide an algorithm that uses this metric to build benchmarks of Non-Overlapping
Corruptions. Using this algorithm, we build from ImageNet a new corruption
benchmark called ImageNet-NOC. We show that ImageNet-NOC is balanced and
covers several kinds of corruptions that are not covered by ImageNet-C.

1 INTRODUCTION

Neural Networks perform poorly when they deal with images that are drawn from a different dis-
tribution than their training samples. Indeed, neural networks are sensitive to adversarial examples
(Szegedy et al., 2014), background changes (Xiao et al., 2020), and common corruptions (Hendrycks
& Dietterich, 2019).

Common corruptions are perturbations that change the appearance of images without changing their
semantic content. For instance, neural networks are sensitive to noises (Koziarski & Cyganek, 2017),
blurs (Vasiljevic et al., 2016) or lighting condition variations (Temel et al., 2017). Contrary to
adversarial examples (Szegedy et al., 2014), common corruptions are not artificial perturbations
especially crafted to fool neural networks. They naturally appear in industrial applications without
any human interfering, and can significantly reduce the performances of neural networks.

A neural network is robust to a corruption c, when its performances on samples corrupted with c are
close to its performances on clean samples. Some methods have been recently proposed to make
neural networks more robust to common corruptions (Geirhos et al., 2019; Hendrycks* et al., 2020;
Rusak et al., 2020).

To determine whether these approaches are effective, it is required to have a method to measure the
neural network robustness to common corruptions. The most commonly used method consists in
evaluating the performances of neural networks on images distorted by various kinds of common
corruptions: (Hendrycks & Dietterich, 2019; Karahan et al., 2016; Geirhos et al., 2019; Temel et al.,
2017). In this study, we call the group of perturbations used to make the robustness estimation a
corruption benchmark. We also use this term to refer to a set of test images that have been corrupted
with these various corruptions. We identify two important factors that should be taken into account
when building a corruption benchmark: the balance and the coverage.

In this paper, we consider that a corruption c is covered by a benchmark, when increasing the ro-
bustness of a network to all the corruptions of this benchmark, also increases the robustness of
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the network to c. For instance, a benchmark that contains a camera shake blur corruption covers
the defocus blur corruption, because the robustnesses towards these two corruptions are correlated
(Vasiljevic et al., 2016). The coverage of a benchmark is defined as the number of corruptions cov-
ered by this benchmark. The more a benchmark covers a wide range of common corruptions, the
more it gives a complete view of the robustness of a neural network.

At the same time, we consider a benchmark as balanced when it gives the same importance to the
robustness to every corruption it contains. For instance, according to a balanced benchmark, being
robust to noises is as important as being robust to brightness variations. We argue that most of the
existing corruption benchmarks are unbalanced: they give too much importance to the robustness to
some corruptions compared to others.

The coverage and balance of corruption benchmarks are related to the notion of corruption over-
lappings. We say that two corruptions overlap when the robustnesses of neural networks towards
these corruptions are correlated. The contribution of this paper is fourfold:

1. We propose the first method to estimate to what extent two corruptions overlap.
2. We show that building corruption benchmarks with non-overlapping corruptions make

them more balanced and able to cover a wider range of corruptions.
3. We propose a method to build benchmarks that contain only non-overlapping corruptions.
4. We use this method to build from ImageNet, a benchmark of Non-Overlapping Corruptions

called ImagNet-NOC, to estimate the robustness of image classifiers to common corrup-
tions. We show that ImagNet-NOC is balanced and covers corruptions that are not covered
by ImageNet-C: a reference corruption benchmark (Hendrycks & Dietterich, 2019).

2 BACKGROUND AND RELATED WORKS

2.1 ESTIMATING THE ROBUSTNESS OF NETWORKS WITH OUT-OF-DISTRIBUTION SAMPLES

Studying the performances of neural networks on samples that lie outside training distributions, is
a widely studied domain. Being able to understand out-of-distribution (o.o.d) samples is essential
to guarantee that neural networks are reliable in real-world applications. Several benchmarks and
methods have been proposed to study this field. For instance, ImageNet-A (Dan Hendrycks & Song,
2019) is a simple benchmark for ImageNet classifiers that contains samples drawn from a differ-
ent source than the one used to build ImageNet. Adversarial examples, are samples that have been
slightly modified to fool neural networks (Szegedy et al., 2014). Making sure that models are robust
to these kinds of o.o.d samples is essential in terms of security. Artistic renditions (Hendrycks et al.,
2020) or sketches (Haohan et al., 2019), can also be useful to determine if neural networks under-
stand the abstract concepts we want them to learn. Methods to study how classifiers are affected by
background changes have also been recently proposed (Beery et al., 2018; Xiao et al., 2020).

Another important aspect of the robustness of neural networks to o.o.d samples, is the robustness
to common corruptions. This aspect of the robustness is generally estimated by gathering several
commonly encountered corruptions, and by testing the performances of neural networks on images
corrupted with these corruptions. Diverse selections of common corruptions have been proposed
to make a robustness estimation (Karahan et al., 2016; Laugros et al., 2019; Geirhos et al., 2019).
In particular, ImageNet-C is a popular benchmark used to measure the robustness of ImageNet
classifiers (Hendrycks & Dietterich, 2019). Different common corruption benchmarks have also
been proposed in the context of object detection (Michaelis et al., 2019), scene classification (Tadros
et al., 2019) or, eye-tracking (Che et al., 2020). It is worth noting that some transformations that are
in between adversarial attacks and common corruptions have been recently proposed to measure the
robustness of image classifiers (Kang et al., 2019; Dunn et al., 2019; Liu et al., 2019).

2.2 CORRUPTION OVERLAPPINGS IN BENCHMARKS

It has been noticed that fine-tuning a model with camera shake blur helps it to deal with defocus
blur and conversely (Vasiljevic et al., 2016). The robustnesses to diverse kinds of noises have also
been shown to be closely related (Laugros et al., 2019). Even for two corruptions that do not look
similar to the human eye, increasing the robustness of a model to one of these corruptions, can
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imply increasing the robustness to the other corruption (Kang et al., 2019). In general, it has been
shown that the robustnesses to the corruptions that distort the high-frequency content of images are
correlated (Yin et al., 2019). In the context of adversarial examples, it is known that the robustness
towards one adversarial attack can be correlated with the robustness to another attack (Tramer &
Boneh, 2019). So, it is generally recommended to evaluate the adversarial robustness with attacks
that are clearly different from each other (Carlini et al., 2019). The experiments carried out in this
paper suggest that this recommendation should also be followed in the context of common corruption
robustness estimation.

3 CORRUPTION OVERLAPPING

3.1 THE CORRUPTION OVERLAPPING SCORE

We consider that two corruptions overlap when the robustness to one of these corruptions is cor-
related with the robustness to the other corruption. In this section, we propose a methodology to
estimate to what extent two corruptions overlap.

The Robustness Score. To determine whether two corruptions overlap, we first need to introduce a
metric called the robustness score. This score gives an estimation of the robustness of a model m to
a corruption c. It is computed with the following formula: Rm

c = Ac

Aclean
.

Aclean is the accuracy of m on an uncorrupted test set and Ac is the accuracy of m on the same test
set corrupted with c. The higher Rm

c is, the more robust m is. Please note that using this metric
requires to monitor Aclean and make sure it is relatively high. Otherwise, an untrained model for
which Ac equals Aclean, would be considered as robust for example. In this study, this metric is
used only in the methodology we propose to estimate the overlapping between two corruptions.

The Corruption Overlapping Score. We consider two neural networks m1 and m2 and two cor-
ruptions c1 and c2. m1 and m2 are identical, and trained with exactly the same settings except that
their training sets are respectively augmented with the corruptions c1 and c2. A standard model is
trained the same way but only with non-corrupted samples. We propose a method to measure to
what extent c1 and c2 overlap. The idea of the method is to see if a data augmentation with c1
makes a model more robust to c2 and conversely. To determine this, m1, m2, and a test set are used
to compute the following expression:

(Rm2
c1 −Rstandard

c1 ) + (Rm1
c2 −Rstandard

c2 ) (1)

The first term of (1) measures whether a model that fits exactly c2 is more robust to c1 than the
standard model. Symmetrically, the second term measures whether a model that fits exactly c1 is
more robust than the standard model to c2. The more making a model fit c1 implies being more
robust to c2 and reciprocally, and the more we can suppose that the robustnesses to c1 and c2 are
correlated in practice. In other words, the expression (1) gives an estimation of the overlapping
between c1 and c2. To be more convenient, we would like to build a corruption overlapping score
equal to 1 when c1 = c2, and equal to 0 when the robustnesses to c1 and c2 are not correlated at all.
We propose a new expression that respects both conditions:

Oc1,c2 = max{0, 1
2
∗
(
Rm1

c2 −Rstandard
c2

Rm2
c2 −Rstandard

c2

+
Rm2

c1 −Rstandard
c1

Rm1
c1 −Rstandard

c1

)
} (2)

The expression (2) is a normalized version of (1). It measures the overlapping between two corrup-
tions while respecting the conditions mentioned above. Indeed, if a data augmentation with c1 does
not increase the robustness to c2 at all and conversely, then the ratios in (2) are null or negative, so
the whole overlapping score is maximized to zero. In other words, when c1 and c2 do not overlap at
all, the overlapping score is equal to 0. Besides, when c1 = c2, Rm1

c2 = Rm2
c2 and Rm2

c1 = Rm1
c1 , so

both ratios of (2) are equal to 1. Then, Oc1,c2 = 1 when c1 and c2 completely overlap.

How to compute an overlapping score. To get the overlapping score between c1 and c2, we follow
the method illustrated in Figure 1. This method has six steps, and requires to have a training set, a
test set and three untrained models that share the same architecture (m1, m2 and standard). The

3



Under review as a conference paper at ICLR 2021

step (1), consists in using the corruptions c1 and c2 to get two training sets, each corrupted with one
corruption. Then, the obtained corrupted sets are used to train the models m1 and m2 in step (2).
The standard model is also trained during this step but only with non-corrupted samples. In step (3),
similarly to step (1), we use c1 and c2 to get two corrupted versions of the test set. The accuracies of
the three models on the three test sets are computed in step (4). The scores obtained are used in step
(5), to get the robustness scores of each model for the corruptions c1 and c2. The results obtained
are used to compute the overlapping score between c1 and c2 in step (6).

Figure 1: Methodology used to compute the overlapping score between two corruptions c1 and c2.

3.2 CORRUPTION OVERLAPPING AND COVERAGE OF BENCHMARKS

With our definition, a corruption c is covered by a benchmark, when increasing the robustness of a
network to all the corruptions of this benchmark, also increases the robustness of the network to c.
The more a benchmark covers a wide range of corruptions, the more being robust to this benchmark
provides a strong guarantee about the robustness of a neural network. Then, a benchmark should
cover as much common corruptions as possible.

To illustrate the notion of coverage, let us consider bench1, a benchmark that contains three cor-
ruptions of ImageNet-C: Gaussian noise, shot noise and impulse noise (Hendrycks & Dietterich,
2019). We also consider bench2, that contains the Gaussian noise, brightness and elastic corruptions
of ImageNet-C. Intuitively, being robust to bench1 implies being robust only to noises while being
robust to bench2 implies being robust to a wider range of corruptions. Then, we can suppose that
bench1 has a lower coverage than bench2.

When we compute the overlapping scores of these benchmarks, we observe that the overlapping
between the corruptions of bench1 are close to 1, while they are close to 0 in bench2 (see Figure
3). The corruptions of bench1 clearly overlap while the ones of bench2 do not. We argue that the
overlappings in benchmarks tend to reduce their coverage. Indeed, the more two corruptions c1 and
c2 overlap, the more it is likely that a corruption covered by c1 is also covered by c2 and conversely.
So, when two corruptions overlap, their range of covered corruptions overlap too. By reducing the
overlappings in a benchmark, we separate the ranges of corruptions covered by the corruptions of
this benchmark, which results in increasing its coverage. In Section 5.2, we show that we can cover
the fifteen corruptions of ImageNet-C with only eight non-overlapping corruptions.

3.3 CORRUPTION OVERLAPPING AND BALANCE OF BENCHMARKS

We consider that a benchmark is balanced, when it gives the same importance to the robustness to
every corruption it contains. For instance in Section 5.3, we show that the ImageNet-C benchmark
gives more importance to the blur corruptions than to the corruptions that affect the brightness of
images. Yet, in a real-world applications, we think that being robust to different kinds of blurs is not
more valuable than being robust to lighting condition variations. Being unbalanced is in general not
a desirable property, it makes benchmarks give biased estimations of neural network robustness.
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Overlappings between the corruptions of a benchmark can make it unbalanced. Let us consider three
corruptions c1, c2, and c3 with c1 and c2 that completely overlap, and c1 and c2 that do not overlap
at all with c3. A model robust to c3, is robust to one third of the corruptions of the benchmark.
But a model robust to c1 is also robust to c2, because c1 and c2 overlap. So being robust to c1 or
c2 implies being robust to two third of the corruptions of the benchmark. Then, this benchmark
rewards more the robustness to c1 or c2 than the robustness to c3: it is unbalanced. In general, if one
corruption contributes more to the total overlapping of a benchmark than another corruption of this
benchmark, then the benchmark is unbalanced. In Section 5.3, we show that a benchmark built with
non-overlapping corruptions is more balanced than ImageNet-C.

4 CONSTRUCTION OF A NON-OVERLAPPING CORRUPTION BENCHMARKS:
IMAGENET-NOC

Experimental Set-up. For every training of this study, we use the following parameters. The used
optimizer is SGD with a momentum of 0.9. The used cost function is a cross-entropy function, with
a weight decay set to 10−4. Models are trained for 40 epochs with a batch size of 256. The initial
learning rate is set to 0.1 and is divided by 10 at epoch 20 and 30. In all the experiments we use
ImageNet-100: a subset of ImageNet that contains every tenth ImageNet class by WordNetID order
(Deng et al., 2009). All images are resized to the 224x224 format, and randomly horizontally flipped
with a probability of 0.5 during trainings. When we use a data augmentation with a corruption in
a training, half of the images of each training batch are transformed with the corruption, while the
other half is not corrupted.

We present Algorithm 1: a general method to build benchmarks that do not contain any overlapping
corruption. We argue that this method helps to build balanced benchmarks that have a large coverage.

Algorithm 1 Methodology Proposed to Build a Benchmark of Non-Overlapping Corruptions
Require: S a set of common corruptions
Require: A train set, a test set and a neural network architecture
Require: An overlapping threshold: the maximum overlapping score allowed in the benchmark

(0) n← 2. n is the current number of corruptions in the benchmark. It is initialized to 2.
(1) Use the train set, the test set and the chosen network architecture to apply the methodology
presented in Section 3.1, to get all the overlapping scores between the corruptions of S.
(2) Pick the largest subsets of S with overlapping scores under the overlapping threshold.
(3) Among the retained subsets, select the one with the lowest mean overlapping score to form
the benchmark.

We want to use this algorithm to build a new benchmark that measures the robustness of image
classifiers to common corruptions. Algorithm 1 requires to gather a group of candidate corruptions
called S. The larger S, the more combinations of non-overlapping corruptions can be found in S,
the larger the benchmarks built by the algorithm. Then, we recommend to use a large intial set
of corruptions to increase the coverage of the built benchmarks. For this study, we implemented
two dozens of image corruptions (illustrated in Figure 2) to constitute S. All these corruptions
are associated with a severity range. A value is randomly chosen from the severity range of the
considered corruption each time an image is corrupted. The higher this value is, the more the aspect
of the corrupted image changes. More information about the modeled common corruptions can be
found in Appendix A.

We apply Algorithm 1, using this set of corruptions, the ImageNet train set and test set, and
the ResNet-18 architecture; with different values of the overlapping threshold. The corruption
benchmarks obtained for different values of the threshold are shown in Appendix B. The higher the
overlapping threshold is, the more the number of corruptions included in the constructed benchmarks
increases, and so does the coverage of the constructed benchmarks. However, the coverage gain
due to the increase of the threshold is reduced by overlappings, because overlapping corruptions
tend to cover the same kind of corruptions. Besides, as explained in Section 3.3, the more there
are overlappings in a benchmark, the more it is likely to be unbalanced. All in all, selecting the
overlapping threshold, determines when the coverage gain does not worth the balance loss. Choosing
this value depends on the application case and the kind of robustness estimation we want to make.
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Figure 2: Illustrations of the common corruptions gathered to run the Algorithm 1.

Figure 3: The overlapping scores between all the ImageNet-NOC and ImageNet-C corruptions.

Each benchmark obtained with Algorithm 1 that contains n corruptions, are the n-corruption bench-
marks with the lowest mean overlapping as possible. As explained in Sections 3.2 and 3.3, we expect
that benchmarks that are optimal in terms of overlapping will have a good balance and coverage. We
propose to study the set of eight corruptions obtained with overlapping threshold = 0.1, which
is: rain, quantization, shear, brightness, hue, vertical artifacts, blur and border. The overlapping
scores between these corruptions are displayed in the right lower square in Figure 3. Eight cor-
rupted ImageNet validation sets, each corrupted with one of the eight corruptions, are gathered to
form ImageNet-NOC.

We run the algorithm a second time using a DenseNet-121 architecture instead of the ResNet-18 one.
The overlapping scores obtained by running the step (1) of Algorithm 1 are displayed in Appendix A.
The benchmark obtained with overlapping threshold = 0.1 is rain, Gaussian, shear, brightness,
hue, vertical artifacts, elastic. This benchmark shares six corruptions with ImageNet-NOC, and the
overlapping score computed with Gaussian noise and quantization equals 0.6 and the one computed
with elastic and blur equals 0.26. So, the only two corruptions that are not shared by the two
benchmarks appear to be correlated in terms of robustness. So, using a DenseNet-121 architecture
makes the algorithm build a benchmark that is fairly similar to the one obtained using ResNet-18.

Running the Algorithm 1 requires to complete one training for each corruption in S. It took one
week with a single GPU Nvidia Tesla V100 to get all the overlapping scores of Figure 3. While this
computational cost is high, we think that the process could be accelerated by fine-tuning models for
a few epochs instead of training them from scratch. Further investigations should be conducted to
determine to what extent this alternative would modify the obtained results.
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How to Use ImageNet-NOC. We recommend to use the CE metric (Hendrycks & Dietterich, 2019)
to measure the robustness of an image classifier to an ImageNet-NOC corruption. The mean CE
score computed with a benchmark is called mCE. Using the mCE metric avoids several pitfalls
while measuring the robustness of neural networks. To compute a CE score, it is required to get
the error rate of a pretrained AlexNet model, on the ImageNet validation set corrupted with the
considered corruption. The error rates of the torchvision pretrained AlexNet computed with the
corruptions introduced in this paper are displayed in Appendix A. We provide the ImageNet-NOC
CE scores of some traditionally used ImageNet classifiers in Appendix C. More details about how
to use ImageNet-NOC can be found by visiting [Link available upon acceptance].

5 COMPARISON BETWEEN IMAGENET-NOC AND IMAGENET-C

5.1 CORRUPTION OVERLAPPINGS IN IMAGENET-C AND IMAGENET-NOC

ImageNet-C is a benchmark commonly used to measure the robustness of ImageNet classifiers to
common corruptions (Hendrycks & Dietterich, 2019). It is built on fifteen common corruptions
called Gaussian noise, shot noise, impulse noise, defocus blur, glass blur, motion blur, zoom blur,
snow, frost, fog, brightness, contrast, elastic, pixelate, and jpeg compression. Each corruption is
associated with five severity levels that determine to what extend the corrupted images are distorted.
Please note that in general, the benchmark corruptions should not be used during a training of a
model. Indeed, corruption benchmarks are built to estimate the robustness to unforeseen corruptions.
In this study, we use the ImageNet-C and ImageNet-NOC corruptions during some training phases
only because we analyze the benchmarks themselves.

Using the ResNet-18 model, the ImageNet training and validation sets, we apply the method illus-
trated in Figure 1 to get the overlapping score of every couple of ImageNet-C corruptions. The
corruption severity is randomly selected for each image corrupted in the process. The obtained
scores are displayed in the upper left square of Figure 3. We observe that all the corruptions that
damage the textures in images (blurs, noises, pixelate and jpeg compression) significantly overlap.
This result is consistent with the experiments carried out by Yin et al. (2019): they argue that the
robustnesses of neural networks to corruptions that alter high-frequency information of images are
correlated. Concerning the corruptions that alter low-frequency information of images, the over-
lappings are less pronounced. But we do observe some significant overlappings. There is a clear
overlapping between fog and contrast or between snow and frost. As explained in Section 3.2 and
3.3, all these overlappings suggest that ImageNet-C is unbalanced and has a poor coverage. Figure
3 reveals that ImageNet-NOC contains far less overalpping corruptions than ImageNet-C.

We compute again the overlapping scores of ImageNet-C and ImageNet-NOC with the DenseNet-
121 (Huang et al., 2017) and WideResNet-50-2 (Zagoruyko & Komodakis, 2016) architectures.
The aspect of the overlapping arrays obtained with these two architectures is the same as the one
obtained with ResNet-18 (see Appendix D). For traditionally used image classifiers, it appears that
overlapping scores do not vary much with the architecture of the model used to compute them.

5.2 COVERAGE OF IMAGENET-NOC AND IMAGENET-C

In the lower left square of Figure 3, are displayed all the overlapping scores computed with one
ImageNet-C corruption and one ImageNet-NOC corruption. We observe that for every ImageNet-C
corruption c1, there is always at least one ImageNet-NOC corruption c2, for which the overlap-
ping score computed with c1 and c2 is higher than 0.3. On the other hand, two ImageNet-NOC
corruptions (hue and border) do not overlap at all with any of the ImageNet-C corruptions. Then,
increasing the robustness to all the ImageNet-NOC corruptions should imply being more robust to
all the ImageNet-C corruptions, but being robust to ImageNet-C may not imply being robust to some
ImageNet-NOC corruptions.

To confirm this, we train two ResNet-18 called mINOC and mIC . A data augmentation procedure
with all the ImageNet-C corruptions is used to train mIC . Each corrupted image of this training
is modified by one randomly selected corruption of ImageNet-C, with a randomly chosen severity.
Similarly, mINOC is trained with a data augmentation procedure with all the ImageNet-NOC cor-
ruptions. After the trainings, we measure the robustness of mINOC to every corruption of ImageNet-
C by computing its CE scores. We also measure the CE scores of mIC towards the ImageNet-NOC
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Table 1: Upper Table: the CE scores of mINOC on ImageNet-C (the lower is the better).
Lower Table: the CE scores of mIC on the ImageNet-NOC corruptions.

Clean Gauss Shot Impul Defo Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg mCE

standard 0.247 120 119 121 147 121 117 107 97 108 97 93 115 67 78 56 104
mINOC 0.199 92 94 93 102 112 86 78 69 81 67 41 97 63 71 53 81

Clean Quant Blur Vert-Arti Rain Border Shear Bright Hue mCE

standard 0.247 87 122 77 71 67 79 117 88 89
mIC 0.239 44 15 39 58 79 49 72 117 59

(2.a) The ImageNet-C mCE scores of models, each trained with one corruption of ImageNet-C.

Gauss Shot Impul Defo Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg

mCE 71 71 71 54 56 63 68 83 79 86 89 78 92 85 94

(2.b) The ImageNet-NOC mCE scores of models, each trained with one corruption of ImageNet-NOC.

Quant Blur Vert-Arti Rain Border Shear Bright Hue

mCE 83 79 83 83 81 90 79 88

corruptions. We compare the obtained scores of both models with the ones of the standard model in
Table 1. The first column of this table contains the error rates on non-corrupted ImageNet samples.

We observe in Table 1 that mINOC is more robust than the standard model to all the ImageNet-
C corruptions. However, mIC is not robust to the hue and border corruptions of ImageNet-NOC.
These results appear to confirm the hypothesis made by studying the overlapping scores in Fig-
ure 3: ImageNet-C does not cover some of the ImageNet-NOC corruptions while ImageNet-NOC
covers the ImageNet-C corruptions. As argued in Section 3.2, it seems that using non-overlapping
corruptions helps to build benchmarks that have a larger coverage.

5.3 BALANCE OF IMAGENET-NOC AND IMAGENET-C

We carry out an experiment to compare the balance of ImageNet-NOC and ImageNet-C. We train
one ResNet-18 for each corruption of ImageNet-NOC and ImageNet-C. So, fifteen models are
trained using a data augmentation procedure with one corruption of ImageNet-C, and eight oth-
ers are trained with one corruption of ImageNet-NOC. Then, we estimate the robustness of the first
fifteen ResNet-18 on ImageNet-C by computing their mCE scores. We also get the mCE scores of
the eight remaining ResNet-18 on ImageNet-NOC. The obtained scores are displayed in Tables 2.a,
2.b. The CE scores computed to get the mCE scores can be found in Appendix E.

The mCE scores obtained in Table 2.a are very different from each other. For instance, the mCE
score of the model trained with defocus blur, is much lower than the one trained with brightness.
Then, according to the robustness estimation made with ImageNet-C, one of the models is much
more robust than the other one. In other words, the ImageNet-C benchmark gives more importance
to the robustness to defocus blur than to the robustness to brightness: ImageNet-C is unbalanced.

We observe far less variations in the mCE scores in Table 2.b than in Table 2.a. More precisely,
the difference between the lowest mCE and the highest mCE in Table 2.a and 2.b are respectively
40 and 11. And the standard deviation of the mCE scores in these tables are respectively 12.1 and
3.7. Then, the importance given by ImageNet-C to the robustness of its corruptions, varies a lot
with the considered corruption. This variation is way less important for our benchmark. Then,
ImageNet-NOC is significantly more balanced than ImageNet-C.

5.4 ROBUSTNESS ESTIMATIONS USING IMAGENET-NOC AND IMAGENET-C

The experiments carried out in Section 5.2 and 5.3, suggest that ImageNet-NOC has a better balance
and coverage than ImageNet-C. To determine whether using ImageNet-NOC instead of ImageNet-
C makes a difference in practice, we propose to compare the performances of various models on
the two benchmarks. First, we measure the mCE scores of several pretrained torchvision classifiers
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on both ImageNet-C and ImageNet-NOC. The results are displayed in Table 3 and the details of
the computed CE scores can be found in Appendix C. We observe that some models are consid-
ered relatively robust to ImageNet-NOC but not robust to ImageNet-C. For instance, the VGG-19,
ResNet-50, and WideResNet-50-2 are much more robust to ImageNet-NOC than the AlexNet model,
but they are less robust than AlexNet to ImageNet-C.

Table 3: ImageNet-C (IC) and ImageNet-NOC (INOC) mCE obtained with several pretrained classifiers.

Alex Squeeze VGG-11 VGG-19-BN Res-18 Res-50 Dense-121 Dense-201 Wide-Res-50

mCE IC 100 118 123 111 104 105 94 89 101
mCE INOC 100 106 110 88 86 81 73 66 78

The second experiment is carried out using four ResNet-50 that have been shown to be robust to
ImageNet-C. These models are called SIN+IN (Geirhos et al., 2019), ANT3x3 (Rusak et al., 2020),
Augmix (Hendrycks* et al., 2020) and DeepAugment (Hendrycks et al., 2020). We measure the
robustness of these models to ImageNet-NOC by computing their CE scores. Then, we compare
these scores with the ones obtained with the torchvision pretrained ResNet-50 in Table 4. We observe
that the SIN+IN, ANT3x3, and DeepAugment models are not robust to border. Interestingly, we show
in Section 5.2 that this corruption is not covered by ImageNet-C. This result confirms that ImageNet-
NOC can reveal a low robustness of models to corruptions that are not covered by ImageNet-C.

The ImageNet-NOC and ImageNet-C mCE scores of the five considered models are compared in the
two last columns of Table 4. We observe that the robustness ranking established with ImageNet-C
is different from the one established with ImageNet-NOC. For instance, ANT3x3 is very robust to
ImageNet-C but not robust to ImageNet-NOC. We think this is a direct consequence of the lack of
balance of ImageNet-C. Indeed, we provide evidence in Section 5.3 that ImageNet-C gives a lot of
importance to the noise robustness, and ANT3x3 has been shown to be particularly robust to noises
(Rusak et al., 2020). So ANT3x3 is considered as very robust to ImageNet-C, but not to ImageNet-
NOC which is more balanced. We note that Augmix obtains a relatively low ImageNet-NOC mCE
compared to the ImageNet-C one. This result should be considered cautiously because shears and
quantizations are used by the Augmix data augmentation procedure, and these corruptions overlap
with some of the ImageNet-NOC corruptions. This is a reason why the Augmix model obtains low
shear and quantization CE scores.

The experiments carried out in this section show that the robustness estimations made with
ImageNet-NOC are different from the ones made with ImageNet-C. We think that ImageNet-NOC
should be preferred to ImageNet-C because of its coverage and balance.

6 CONCLUSION

We proposed a metric called the corruption overlapping score, that measures to what extend the
robustnesses towards two corruptions are correlated. We showed that the overlappings between
the corruptions of a benchmark can reduce its coverage and make it unbalanced. We provided a
benchmark of Non-Overlapping Corruptions called ImageNet-NOC to measure the robustness of
image classifiers. We showed that ImageNet-NOC is balanced and covers several kinds of common
corruptions that are not covered by ImageNet-C. ImageNet-NOC is built thanks to the method we
proposed to construct non-overlapping corruption benchmarks. This method can be easily adapted
to other computer vision tasks. We hope it will be used to build other non-overlapping corruption
benchmarks, that will help to make better estimations of the robustness of neural networks.

Table 4: ImageNet-NOC CE scores obtained for several data augmentation strategies. The two last columns
contain the ImageNet-NOC and ImageNet-C mCE scores, and the associated ranks written in brackets.

Quant Blur Vert-Arti Rain Border Shear Bright Hue INOC mCE (rank) IC mCE (rank)

Standard 130 60 95 93 53 87 71 58 81 (5) 77 (5)
SIN+ 85 55 74 86 56 82 61 49 68 (3) 69 (4)
Augmix 51 13 72 90 49 71 62 56 58 (1) 65 (3)
ANT3x3 85 56 80 109 58 76 67 55 73 (4) 63 (2)
DeepAugment 65 25 69 93 61 67 46 43 59 (2) 60 (1)
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A PRESENTATION OF THE MODELED COMMON CORRUPTIONS

The common corruptions gathered in Section 4 are implemented with computationally cheap image
transformations that can be easily added in an image pipeline. We provide in Figures 5 and 6,
information about how the common corruptions used in this study are modeled. These corruptions
are implemented for images that have pixel values in [0-1].

The Severity Range column of these arrays precises how the severity of each corruption is set. The
lower bound of each severity range is selected to get a robustness score of 0.95 with the standard
ResNet-18 model, tested on the ImageNet validation set that has been altered with the considered
corruption. The upper bound is selected to get a robustness score of 0.5 in the same conditions. The
upper bounds of the hue and gray scale corruptions are different because these corruptions are not
harmful enough to reach a robustness score of 0.5. They respectively reach a robustness score of
0.63 and 0.70 for the standard ResNet-18. The last column of the Figures 5 and 6 corresponds to the
error rate of the torchvision pretrained AlexNet on the ImageNet validation set corrupted with the
corruption indicated in the first column.

In Section 4, by completing the step (1) of Algorithm 1, we compute the overlapping scores between
the corruptions gathered in Figure 2. These overlapping scores are displayed in Figure 4.

Figure 4: Overlapping scores between all the common corruptions displayed in Figure 2. The scores have
been computed with the ResNet-18 and DenseNet-121 architectures
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Figure 5: Presentation of half of the group of common corruptions displayed in Figure 2. The other half is
presented in Figure 6.
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Figure 6: Presentation of half of the group of common corruptions displayed in Figure 2. The other half is
presented in Figure 5.
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B BENCHMARKS OBTAINED FOR DIFFERENT VALUES OF THE
OVERLAPPING THRESHOLD

Figure 7: Benchmarks obtained when running Algorithm 1, for different values of the overlapping threshold.
The third column contains the overlapping scores between the corruptions of the benchmarks.
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C PERFORMANCES OF VARIOUS MODELS ON IMAGENET-NOC AND
IMAGENET-C

Table 5: The ImageNet-C CE scores obtained with several pretrained torchvision classifiers.

Gauss Shot Impul Defo Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg mCE

AlexNet 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SqueezeNet 118 116 114 104 110 106 105 106 110 98 101 100 126 129 229 118
VGG-11 122 121 125 116 129 121 115 114 113 99 86 102 151 161 174 123
VGG-19-BN 104 105 114 108 132 114 119 102 100 79 68 89 165 125 144 111
ResNet-18 104 106 111 100 116 108 112 103 101 89 67 87 133 97 126 104
ResNet-50 104 107 107 97 126 107 110 101 97 79 62 89 146 111 132 105
DenseNet-121 84 87 89 97 120 101 104 91 87 61 50 66 147 97 122 94
DenseNet-201 82 87 87 91 116 100 107 85 82 63 45 62 136 80 113 89
WideResNet-50-2 91 93 97 93 123 103 109 104 95 81 65 89 146 99 126 101

Table 6: The ImageNet-NOC CE scores obtained with several pretrained torchvision classifiers.

Clean Quant Blur Vert-Arti Rain Border Shear Bright Hue mCE

AlexNet 43.5 100 100 100 100 100 100 100 100 100
SqueezeNet 41.8 143 97 109 111 93 99 109 86 106
VGG-11 31.0 193 90 156 94 70 107 92 77 110
VGG-19-BN 25.8 175 70 113 77 55 91 71 53 88
ResNet-18 30.2 128 68 103 84 69 92 80 64 86
ResNet-50 23.9 130 60 95 93 53 87 71 58 81
DenseNet-121 25.3 101 58 98 89 55 72 57 54 73
DenseNet-201 22.8 89 54 86 84 49 69 52 50 66
WideResNet-50-2 21.5 112 59 97 92 35 96 72 58 78
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D OVERLAPPINGS OBTAINED FOR THREE DIFFERENT ARCHITECTURES

Figure 8: The overlapping scores between all the ImageNet-NOC and ImageNet-C corruptions, computed
with the ResNet-50, DenseNet-121 and Wide-ResNet-50-2 architectures .
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E PERFORMANCES OF MODELS TRAINED WITH A DATA AUGMENTATION
WITH ONE CORRUPTION ON IMAGENET-C AND IMAGENET-NOC

We provide in Table 7 and 8, the CE scores computed and averaged to get the mCE scores of Tables
2.a and 2.b. The first column of these arrays contains the error rate on the non-corrupted ImageNet
validation set.

Table 7: CE scores computed with models trained with a data augmentation with one corruption of
ImageNet-C. Each line refers to one model trained with one corruption of ImageNet-C and each column refers

to one corruption of ImageNet-C.

Clean Gauss Shot Impul Defo Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg mCE

Standard 0.247 121 119 122 147 121 118 107 97 109 98 94 116 68 79 56 104
Gauss 0.264 6 9 8 122 88 100 95 87 93 125 107 129 58 19 15 71
Shot 0.269 10 6 9 125 92 102 96 84 94 126 103 128 59 20 16 71
Impul 0.272 10 11 4 123 88 99 96 91 93 127 102 129 54 17 14 71
Defo 0.300 62 62 63 6 25 36 34 76 77 82 91 93 46 2 50 54
Glass 0.287 74 73 74 24 8 32 30 81 81 83 95 99 34 2 55 56
Motion 0.263 92 92 92 55 41 6 26 76 94 73 97 93 42 10 53 63
Zoom 0.254 98 98 99 60 50 31 6 88 97 77 101 98 45 24 51 68
Snow 0.263 114 113 118 115 91 87 87 5 74 97 84 117 54 40 52 83
Frost 0.259 109 111 112 118 87 99 89 40 9 69 60 108 57 28 84 79
Fog 0.254 117 116 118 136 115 100 86 76 79 2 58 57 73 88 72 86
Bright 0.235 108 111 110 142 113 112 104 86 88 75 7 100 72 60 55 89
Contr 0.282 96 98 100 131 103 97 87 82 76 50 72 2 66 53 50 78
Elastic 0.200 124 122 125 127 92 91 72 92 110 98 104 118 19 22 61 92
Pixel 0.251 99 98 102 129 87 96 93 93 95 90 86 108 53 5 42 85
Jpeg 0.256 86 86 88 143 110 118 113 98 102 120 101 129 66 32 11 94

Table 8: CE scores computed with models trained with a data augmentation with one corruption of
ImageNet-NOC. Each line refers to one model trained with one corruption of ImageNet-NOC and each

column refers to one corruption of ImageNet-NOC.

Clean Quant Blur Vert-Arti Rain Border Shear Bright Hue mCE

standard 0.247 87 122 77 71 67 79 117 88 89
Quant 0.237 9 125 77 90 70 90 124 80 83
Blur 0.251 79 7 61 72 82 90 132 106 79
Vert-Arti 0.242 79 133 4 63 80 84 119 104 83
Rain 0.231 86 131 78 2 73 82 115 97 83
Border 0.241 89 123 71 73 8 74 118 89 81
Shear 0.234 129 127 65 85 75 6 133 102 90
Bright 0.236 75 125 78 77 73 92 21 89 79
Hue 0.261 83 139 91 96 74 101 116 1 88
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