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Abstract

Deep Spiking Neural Networks (SNNs) present optimization difficulties for1

gradient-based approaches due to discrete binary activation and complex spatial-2

temporal dynamics. Considering the huge success of ResNet in deep learning,3

it would be natural to train deep SNNs with residual learning. Previous Spiking4

ResNet mimics the standard residual block in ANNs and simply replaces ReLU5

activation layers with spiking neurons, which suffers the degradation problem6

and can hardly implement residual learning. In this paper, we propose the spike-7

element-wise (SEW) ResNet to realize residual learning in deep SNNs. We prove8

that the SEW ResNet can easily implement identity mapping and overcome the9

vanishing/exploding gradient problems of Spiking ResNet. We evaluate our SEW10

ResNet on ImageNet and DVS Gesture datasets, and show that SEW ResNet out-11

performs the state-of-the-art directly trained SNNs in both accuracy and time-steps.12

Moreover, SEW ResNet can achieve higher performance by simply adding more13

layers, providing a simple method to train deep SNNs. To our best knowledge,14

this is the first time that directly training deep SNNs with more than 100 layers15

becomes possible.16

1 Introduction17

Artificial Neural Networks (ANNs) have achieved great success in many tasks, including image18

classification [26, 45, 48], object detection [7, 30, 37], machine translation [2], and gaming [31, 44].19

One of the critical factors for ANNs’ success is deep learning [27], which uses multi-layers to learn20

representations of data with multiple levels of abstraction. It has been proved that deeper networks21

have advantages over shallower networks in computation cost and generalization ability [3]. The22

function represented by a deep network can require an exponential number of hidden units by a shallow23

network with one hidden layer [32]. In addition, the depth of the network is closely related to the24

network’s performance in practical tasks [45, 48, 25, 45]. Nevertheless, recent evidence [11, 46, 12]25

reveals that with the network depth increasing, the accuracy gets saturated and then degrades rapidly.26

To solve this degradation problem, residual learning is proposed [12, 13] and the residual structure is27

widely exploited in “very deep” networks that achieve the leading performance [20, 52, 16, 50].28

Spiking Neural Networks (SNNs) are regarded as a potential competitor of ANNs for their high29

biological plausibility, event-driven property, and low power consumption [38]. Recently, deep30

learning methods are introduced into SNNs, and deep SNNs have achieved close performance as31

ANNs in some simple classification datasets [49], but still worse than ANNs in complex tasks, e.g.,32

classifying the ImageNet dataset [40]. To obtain higher performance SNNs, it would be natural to33

explore deeper network structures like ResNet. Spiking ResNet [23, 53, 19, 15, 42, 10, 28, 56, 41,34

35, 36], as the spiking version of ResNet, is proposed by mimicking the residual block in ANNs35

and replacing ReLU activation layers with spiking neurons. Spiking ResNet converted from ANN36

achieves state-of-the-art accuracy on nearly all datasets, while the directly trained Spiking ResNet37

has not been validated to solve the degradation problem.38
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In this paper, we show that Spiking ResNet is inapplicable to all neuron models to achieve identity39

mapping. Even if the identity mapping condition is met, Spiking ResNet suffers from the problems40

of vanishing/exploding gradient. Thus, we propose the Spike-Element-Wise (SEW) ResNet to realize41

residual learning in SNNs. We prove that the SEW ResNet can easily implement identity mapping42

and overcome the vanishing/exploding gradient problems at the same time. We evaluate Spiking43

ResNet and SEW ResNet on both the static ImageNet dataset and the neuromorphic DVS Gesture44

dataset [1]. The experiment results are consistent with our analysis, indicating that the deeper Spiking45

ResNet suffers from the degradation problem — the deeper network has higher train loss than the46

shallower network, while SEW ResNet can achieve higher performance by simply increasing the47

network’s depth. Moreover, we show that SEW ResNet outperforms the state-of-the-art directly48

trained SNNs in both accuracy and time-steps. To the best of our knowledge, this is the first time to49

explore the directly-trained deep SNNs with more than 100 layers.50

2 Related Work51

2.1 Learning Methods of Spiking Neural Networks52

ANN to SNN conversion (ANN2SNN) [18, 4, 39, 42, 10, 9, 47] and backpropagation with surrogate53

gradient [34] are the two main methods to train deep SNNs. The ANN2SNN method firstly trains54

an ANN with ReLU activation, then converts the ANN to an SNN by replacing ReLU with spiking55

neurons and adding scaling operations like weight normalization and threshold balancing. Some56

recent conversion methods have achieved near loss-less accuracy with VGG-16 [10, 9]. However, the57

converted SNN needs a longer time to rival the original ANN in precision as the conversion is based58

on rate-coding [39], which increases the SNN’s latency and restricts the practical application. The59

backpropagation methods can be classified into two categories [24]. The method in the first category60

computes the gradient by unfolding the network over the simulation time-steps [29, 17, 51, 43, 28, 34],61

which is similar to the idea of backpropagation through time (BPTT). As the gradient with respect62

to the threshold-triggered firing is non-differentiable, the surrogate gradient is often used. The63

SNN trained by the surrogate method is not limited to rate-coding, and can also be applied on64

temporal tasks, e.g., classifying neuromorphic datasets [51, 6, 14]. The second method computes the65

gradients of the timings of existing spikes with respect to the membrane potential at the spike timing66

[5, 33, 22, 57, 55].67

2.2 Spiking Residual Structure68

Previous ANN2SNN methods noticed the distinction between plain feedforward ANNs and residual69

ANNs, and made specific normalization for conversion. Hu et al. [15] were the first to apply the70

residual structure in ANN2SNN with scaled shortcuts in SNN to match the activations of the original71

ANN. Sengupta et al. [42] proposed Spike-Norm to balance SNN’s threshold and verified their72

method by converting VGG and ResNet to SNNs. Existing backpropagation-based methods use73

nearly the same structure from ResNet. Lee et al. [28] evaluated their custom surrogate methods74

on shallow ResNets whose depths are no more than ResNet-11. Zheng et al. [56] proposed the75

threshold-dependent batch normalization (td-BN) to replace naive batch normalization (BN) [21] and76

successfully trained Spiking ResNet-34 and Spiking ResNet-50 directly with surrogate gradient by77

adding td-BN in shortcuts.78

3 Methods79

3.1 Spiking Neuron Model80

The spiking neuron is the fundamental computing unit of SNNs. Similar to Fang et al. [6], we use a81

unified model to describe the dynamics of all kinds of spiking neurons, which includes the following82

discrete-time equations:83

H[t] = f(V [t− 1], X[t]), (1)
S[t] = Θ(H[t]− Vth), (2)
V [t] = H[t] (1− S[t]) + Vreset S[t], (3)
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Figure 1: Residual blocks in ResNet, Spiking ResNet and SEW ResNet.

where X[t] is the input current at time-step t, H[t] and V [t] denote the membrane potential after84

neuronal dynamics and after the trigger of a spike at time-step t, respectively. Vth is the firing85

threshold, Θ(x) is the Heaviside step function and is defined by Θ(x) = 1 for x ≥ 0 and Θ(x) = 086

for x < 0. S[t] is the output spike at time-step t, which equals 1 if there is a spike and 0 otherwise.87

Vreset denotes the reset potential. The function f(·) in Eq. (1) describes the neuronal dynamics and88

takes different forms for different spiking neuron models. For example, the function f(·) for the89

Integrate-and-Fire (IF) model and Leaky Integrate-and-Fire (LIF) model can be described by Eq. (4)90

and Eq. (5), respectively.91

H[t] = V [t− 1] +X[t], (4)

H[t] = V [t− 1] +
1

τ
(−V [t− 1] +X[t]), (5)

where τ represents the membrane time constant. Eq. (2) and Eq. (3) describe the spike generation92

and resetting processes, which are the same for all kinds of spiking neuron models. In this paper, the93

surrogate gradient method is used to define Θ′(x) , σ′(x) during error back-propagation, with σ(x)94

denoting the surrogate function.95

3.2 Drawbacks of Spiking ResNet96

The residual block is the key component of ResNet. Fig. 1(a) shows the basic block in ResNet [12],97

whereX l, Y l are the input and output of the l-th block in ResNet, Conv is the convolutional layer, BN98

denotes batch normalization, and ReLU denotes the rectified linear unit activation layer. The basic99

block of Spiking ResNet used in [56, 15, 28] simply mimics the block in ANNs by replacing ReLU100

activation layers with spiking neurons (SN), which is illustrated in Fig. 1(b). Here Sl[t], Ol[t] are the101

input and output of the l-th block in Spiking ResNet at time-step t. Based on the above definition, we102

will analyze the drawbacks of Spiking ResNet below.103

Spiking ResNet is inapplicable to all neuron models to achieve identity mapping. One of the104

critical concepts in ResNet is identity mapping. He et al. [12] noted that if the added layers implement105

the identity mapping, a deeper model should have train error no greater than its shallower counterpart.106

However, it is unable to train the added layers to implement identity mapping in a feasible time,107

resulting in deeper models performing worse than shallower models (the degradation problem). To108

solve this problem, the residual learning is proposed by adding a shortcut connection (shown in109

Fig. 1(a)). If we use F l to denote the residual mapping, e.g., a stack of two convolutional layers, of110

the l-th residual block in ResNet and Spiking ResNet, then the residual block in Fig.1(a) and (b) can111

be formulated as112

Y l = ReLU(F l(X l) +X l), (6)

Ol[t] = SN(F l(Sl[t]) + Sl[t]). (7)

The residual block of Eq. (6) make it easy to implement identity mapping in ANNs. To see this, when113

F l(X l) ≡ 0, Y l = ReLU(Xl). In most cases, X l is the activation of the previous ReLU layer and114

X l ≥ 0. Thus, Y l = ReLU(X l) = X l, which is identity mapping.115
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Different from ResNet, the residual block in Spiking ResNet (Eq. (7)) restricts the models of spiking116

neuron to implement identity mapping. When F l(Sl[t]) ≡ 0, Ol[t] = SN(Sl[t]) 6= Sl[t]. To transmit117

Sl[t] and make SN(Sl[t]) = Sl[t], the spiking neuron (SN) in the l-th residual block needs to fire a118

spike after receiving a spike, and keep silent after receiving no spike at time-step t. It works for IF119

neuron described by Eq. (4). Specifically, we can set 0 < Vth ≤ 1 to ensure that X[t] = 1 leads to120

H[t] ≥ Vth, and X[t] = 0 leads to X[t] < Vth. However, when considering some spiking neuron121

models with complex neuronal dynamics, it is hard to achieve SN(l[t]) = Sl[t]. For example, the LIF122

neuron used in [58, 6, 54] considers a learnable membrane time constant τ , the neuronal dynamics123

of which can be described with Eq. (5). When X[t] = 1, H[t] = 1
τ . It is difficult to find a firing124

threshold that ensures H[t] > Vth as τ is being changed in training by the optimizer.125

Spiking ResNet suffers from the problems of vanishing/exploding gradient. Consider a spiking126

ResNet with k sequential blocks to transmit Sl[t], and the identity mapping condition is met, e.g.,127

the spiking neurons are the IF neurons with 0 < Vth ≤ 1, then we have Sl[t] = Sl+1[t] = ... =128

Sl+k−1[t] = Ol+k−1[t]. Denote the j-th element in Sl[t] and Ol[t] as Slj [t] and Olj [t] respectively,129

the gradient of the output of the (l + k − 1)-th residual block with respect to the input of the l-th130

residual block can be calculated layer by layer:131

∂Ol+k−1j [t]

∂Slj [t]
=

k−1∏
i=0

∂Ol+ij [t]

∂Sl+ij [t]
=

k−1∏
i=0

Θ′(Sl+ij [t]− Vth)→


0, if 0 < Θ′(Slj [t]− Vth) < 1

1, if Θ′(Slj [t]− Vth) = 1

+∞, if Θ′(Slj [t]− Vth) > 1.

,

(8)

where Θ(x) is the Heaviside step function and is defined in Eq. (2). The first equality hold as132

the identity mapping condition is met and Ol+i−1j [t] = Sl+ij [t]. The second equality hold as133

Ol+ij [t] = SN(Sl+ij [t]). In view of the fact that Slj [t] can only take 0 or 1, Θ′(Slj [t]− Vth) = 1 is not134

satisfied for commonly used surrogate functions mentioned in [34]. Thus, the vanishing/exploding135

gradient problem is prone to happen in deeper Spiking ResNet.136

Based on the above analysis, we believe that the previous Spiking ResNets ignores the highly137

nonlinear caused by spiking neurons, and can hardly implement residual learning. Nonetheless, the138

basic block in Fig. 1(b) is still decent for ANN2SNN with extra normalization [15, 42], as the SNN139

converted from ANN aims to use firing rates to match the origin ANN’s activations.140

3.3 Spike-Element-Wise ResNet141

Here we propose the spike-element-wise (SEW) residual block to realize the residual learning in142

SNNs, which can easily implement identity mapping and overcome the vanishing/exploding gradient143

problems at the same time. As illustrated in Fig. 1(c), the SEW residual block can be formulated as:144

Ol[t] = g(SN(F l(Sl[t])), Sl[t]) = g(Al[t], Sl[t]), (9)

where g represents an element-wise function with two spikes tensor as inputs. Here we use Al[t] to145

denote the residual mapping to be learned as Al[t] = SN(F l(Sl[t])).146

Name Expression of g(Al[t], Sl[t])
ADD Al[t] + Sl[t]
AND Al[t] ∧ Sl[t] = Al[t] · Sl[t]
IAND (¬Al[t]) ∧ Sl[t] = (1−Al[t]) · Sl[t]

Table 1: List of element-wise functions g

SEW ResNet can easily implement identity map-147

ping. By utilizing the binary property of spikes, we148

can find different element-wise functions g that sat-149

isfy identity mapping (shown in Tab. 1). To be spe-150

cific, when choosing ADD and IAND as element-wise151

functions g, identity mapping is achieved by setting152

Al[t] ≡ 0, which can be implemented simply by setting153

the weights and the bias of the last batch normalization154

layer (BN) in F l to zero. Then we can get Ol[t] = g(Al[t], Sl[t]) = g(SN(0), Sl[t]) = g(0, Sl[t]) =155

Sl[t]. This is applicable to all neuron models. When using AND as the element-wise function g, we156

set Al[t] ≡ 1 to get identity mapping. It can be implemented by setting the last BN’s weights to zero157

and the bias to a large enough constant to cause spikes, e.g., setting the bias as Vth when the last SN158

is IF neurons. Then we have Ol[t] = 1 ∧ Sl[t] = Sl[t]. Note that using AND may suffer from the159

same problem as Spiking ResNet. It is hard to control some spiking neuron models with complex160

neuronal dynamics to generate spikes at a specified time-step.161

4



ℱ𝑙

+

SN

𝑆𝑙[𝑡]

𝑂𝑙[𝑡]

Conv

BN
ℱ𝑙

𝑔

𝑆𝑙[𝑡]

𝑂𝑙[𝑡]

Conv

BN

SN SN

(a) Downsample basic block

ℱ𝑙

+

SN

𝑆𝑙[𝑡]

𝑂𝑙[𝑡]

Conv

BN
ℱ𝑙

𝑔

𝑆𝑙[𝑡]

𝑂𝑙[𝑡]

Conv

BN

SN SN

(b) Downsample SEW block

Figure 2: Downsample blocks in Spiking ResNet and SEW ResNet.

Formulation of downsample block. Remarkably, when the input and output of one block have162

different dimensions, the shortcut is set as convolutional layers with stride > 1, rather than the163

identity connection, to perform downsampling. The ResNet and the Spiking ResNet utilize {Conv-164

BN} without ReLU in shortcut (Fig. 2(a)). In contrast, we add a SN in shortcut (Fig. 2(b)).165

SEW ResNet can overcome vanishing/exploding gradient. The SEW block is similar to ReLU166

before addition (RBA) block [13] in ANNs, which can be formulated as167

Y l = ReLU(F l(X l)) +X l. (10)

The RBA block is criticized by He et al. [13] for X l+1 = Y l ≥ X l, which will cause infinite outputs168

in deep layers. The experiment results in [13] also showed that the performance of the RBA block169

is worse than the basic block (Fig.1(a)). To some extent, the RBA block can be seen as a special170

case of the SEW block. It can be obtained by replacing SN in the SEW block with ReLU activation171

layer, and setting g(Al, X l) = ReLU(Al + X l). Note that using ADD and IAND as g will output172

spikes (i.e. binary tensors), which means that the infinite outputs problem in ANNs will never occur173

in SNNs with SEW blocks, since all spikes are less than 1. When choosing ADD as g, the infinite174

outputs problem can be relieved as the output of k sequential SEW blocks will be no larger than k. In175

addition, a downsample SEW block will regulate the output to be no larger than 2 when g is ADD.176

When the identity mapping is implemented, the gradient of the output of the (l + k − 1)-th SEW177

block with respect to the input of the l-th SEW block can be calculated layer by layer:178

∂Ol+k−1j [t]

∂Slj [t]
=

k−1∏
i=0

∂g(Al+ij [t], Sl+ij [t])

∂Sl+ij [t]
=



∏k−1
i=0

∂(0+Sl+i
j [t])

∂Sl+i
j [t]

, if g = ADD∏k−1
i=0

∂(1·Sl+i
j [t])

∂Sl+i
j [t]

, if g = AND∏k−1
i=0

∂((1−0)·Sl+i
j [t])

∂Sl+i
j [t]

, if g = IAND

= 1. (11)

The first equality holds as Ol+i−1j [t] = Sl+ij [t]. The second equality holds as identity mapping is179

achieved by setting Al[t] ≡ 1 for g = AND, and Al[t] ≡ 0 for g = ADD/IAND. Since the gradient in180

Eq. (11) is a constant, the SEW ResNet can overcome the vanishing/exploding gradient problem.181

4 Experiments182

4.1 ImageNet Classification183

As the test server of ImageNet 2012 is no longer available, we can not report the actual test accuracy.184

Instead, we use the accuracy on the validation set as the test accuracy, which is the same as [15, 56].185

He et al. [12] evaluated the 18/34/50/101/152-layer ResNets on the ImageNet dataset. For comparison,186

we consider the SNNs with the same network architectures, except that the basic residual block187

(Fig.1(a)) is replaced by the spiking basic block (Fig.1(b)) and SEW block (Fig.1(c)) with g as ADD,188

respectively. We denote the SNN with the basic block as Spiking ResNet and the SNN with the SEW189

block as SEW ResNet. The IF neuron model is adopted for the static ImageNet dataset.190

Spiking ResNet vs. SEW ResNet. We first evaluate the performance of Spiking ResNet and SEW191

ResNet. Tab. 2 reports the test accuracy on ImageNet validation. The results show that the deeper192

34-layer Spiking ResNet has lower test accuracy than the shallower 18-layer Spiking ResNet.193
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Figure 3: Comparison of the train loss, train accuracy and test accuracy on ImageNet.

Network SEW ResNet Spiking ResNet
Acc@1(%) Acc@5(%) Acc@1(%) Acc@5(%)

ResNet-18 63.18 84.53 62.32 84.05
ResNet-34 67.04 87.25 61.86 83.69
ResNet-50 67.78 87.52 57.66 80.43

Table 2: Test accuracy on ImageNet.

As the layer increases, the test accuracy of Spiking194

ResNet decreases. To reveal the reason, we compare195

the train loss, train accuracy, and test accuracy of Spik-196

ing ResNet during the training procedure, which is197

shown in Fig. 3. We can find the degradation problem198

of the Spiking ResNet — the deeper network has higher train loss than the shallower network. In199

contrast, the deeper 34-layer SEW ResNet has higher test accuracy than the shallower 18-layer SEW200

ResNet (shown in Tab. 2). More importantly, it can be found from Fig. 3 that the train loss of our SEW201

ResNet decreases and the train/test accuracy increases with the increase of depth, which indicates202

that we can obtain higher performance by simply increasing the network’s depth. All these results203

imply that the degradation problem is well addressed by SEW ResNet.204

Comparisons with State-of-the-art Methods. In Tab. 3, we compare SEW ResNet with previous205

Spiking ResNets that achieve the best results on ImageNet. To our best knowledge, the SEW ResNet-206

101 is the only SNNs with more than 100 layers to date, and there are no other networks with the207

same structure to compare. When the network structure is the same, our SEW ResNet outperforms208

the state-of-the-art accuracy of directly trained Spiking ResNet, even with fewer time-steps T . The209

accuracy of SEW ResNet-34 is slightly lower than Spiking ResNet-34 (large) with td-BN (67.05%210

v.s. 67.04%), which uses 1.5 times as many simulating time-steps T (6 v.s. 4) and 4 times as many211

the number of parameters (85.5M v.s. 21.8M), compared with our SEW ResNet. The state-of-the-art212

ANN2SNN methods [10, 15] have better accuracy than our SEW ResNet, but they respectively use213

1024 and 87.5 times as many time-steps as ours.214

Network Methods Accuracy(%) T
SEW ResNet-34 Spike-based BP 67.04 4
Spiking ResNet-34(large)† with td-BN [56] Spike-based BP 67.05 6
Spiking ResNet-34 with td-BN [56] Spike-based BP 63.72 6
Spiking ResNet-34 [10] ANN2SNN 69.89 4096
Spiking ResNet-34 [42] ANN2SNN 65.47 2000
Spiking ResNet-34 [36] ANN2SNN and Spike-based BP 61.48 250
SEW ResNet-50 Spike-based BP 67.78 4
Spiking ResNet-50 with td-BN [56] Spike-based BP 64.88 6
Spiking ResNet-50 [15] ANN2SNN 72.75 350
SEW ResNet-101 Spike-based BP 68.76 4

Table 3: Comparison with previous Spiking ResNet on ImageNet. † has the same network structure
as the standard Spiking ResNet-34, but uses four times as many the number of convolution kernels.

Analysis of spiking response of SEW blocks. Fig. 4 shows the firing rates of Al in 18/34/50-layer215

SEW ResNets on ImageNet. There are 7 blocks in SEW ResNet-18, and 15 blocks in SEW ResNet-34216

and SEW ResNet-50. The downsample SEW blocks are marked by the triangle down symbol O.217
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Figure 4: Firing rates of Al in SEW blocks on Ima-
geNet.

As we choose ADD as element-wise func-218

tions g, a lower firing rate means that the219

SEW block gets closer to implementing220

identity mapping, except for downsam-221

pling blocks. In fact, the shortcuts of down-222

sampling blocks are not identity mapping,223

which is illustrated in Fig. 2(b). Fig. 4224

shows that all spiking neurons in SEW225

blocks have low firing rates (≤ 0.25), and226

the spiking neurons in the last two blocks227

even have firing rates of almost zero. As228

the time-steps T of our SEW ResNet is 4,229

all neurons fire on average no more than230

one spikes during the whole simulation,231

verifying that SEW blocks can implement232

identity mapping.233

Gradients Check on ResNet-152 Structure. Eq. (8) and Eq. (11) analyze the gradients of multiple234

blocks with identity mapping. To verify that SEW ResNet can overcome vanishing/exploding gradient,235

we check the gradients of Spiking ResNet-152 and SEW ResNet-152, which are the deepest standard236

ResNet structure. We consider the same initialization parameters and with/without zero initialization.237

The zero initialization [8] is to set the block to be an identity mapping at the start of training.238

As the gradients of SNNs are significantly influenced by firing rates, we analyze the firing rate firstly.239

Fig. 5(a) shows the initial firing rate of l-th block’s output. The indexes of downsample blocks are240

marked by vertical dotted lines. The blocks between two adjacent dotted lines represent the identity241

mapping areas, and have inputs and outputs with the same shape. When using zero initialization,242

Spiking ResNet, SEW AND ResNet, SEW IAND ResNet, and SEW ADD ResNet have the same243

firing rates (green curve), which is the zero init curve. Without zero initialization, the silence problem244

happens in the SEW AND network (red curve), and is relieved by the SEW IAND network (purple245

curve). Fig. 5(b) shows the firing rate of Al, which represents the output of last SN in l-th block. It246

can be found that although the firing rate of Ol in SEW ADD ResNet increases linearly in the identity247

mapping areas, the last SN in each block still maintains a stable firing rate. Note that when g is ADD,248

the output of the SEW block is not binary, and the firing rate is actually the mean value. The SNs of249

SEW IAND ResNet maintain an adequate firing rate and decay slightly with depth (purple curve),250

while SNs in deep layers of SEW AND ResNet keep silent (orange curve). The silence problem can251

be explained as follows. When using AND, Ol[t] = SN(F(Ol−1[t])) ∧Ol−1[t] ≤ Ol−1[t]. Since it252

is hard to keep SN(F(Ol−1[t])) ≡ 1 at each time-step t, the silence problem that Ol+i[t] ≡ 0 may253

frequently happen in SEW ResNet with g as ADD. Using IAND as a substitute of AND can relieve254

this problem because it is easy to keep SN(F(Ol−1[t])) ≡ 0 at each time-step t.255
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Figure 5: The initial firing rates of output Ol and Al in l-th block on 152-layer network.

The surrogate gradient function we used in all experiments is σ(x) = 1
π arctan(π2αx) + 1

2 , thus256

σ′(x) = α
2(1+(πx)2) . When Vth = 1, α = 2, the gradient amplitude

∥∥ ∂L
∂Sl

∥∥ of each block is shown in257

Fig. 6. Note that α = 2, σ′(x) ≤ σ′(0) = σ′(1− Vth) = 1 and σ′(0− Vth) = 0.092 < 1. It can be258
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found that the gradients in Spiking ResNet-152 decay from deeper layers to shallower layers in the259

identity mapping areas without zero initialization, which is caused by σ′(x) ≤ 1. It is worth noting260

that the decay also happens in Spiking ResNet-152 with zero initialization. The small convex
∧

near261

the dotted lines is caused by the vanishing gradients of those Slj [t] = 0. After these gradients decays262

to 0 completely,
∥∥ ∂L
∂Sl

∥∥ will be a constant because the rest gradients are calculated by Slj [t] = 1 and263

σ′(1− Vth) = 1, which can also explain why the gradient-index curve is horizontal at some areas.264

When referring to SEW ResNet-152 with zero initialization, it can be found that all gradient-index265

curves are similar no matter what g we choose. This is caused by that in the identity mapping areas,266

Sl is constant for all index l, and the gradient also becomes a constant as it will not flow through SN.267

Without zero initialization, the vanishing gradient happens in the SEW AND ResNet-152, which is268

caused by the silence problem. The gradients of SEW ADD, IAND network increase slowly when269

propagating from deeper layers to shallower layers, due to the adequate firing rates shown in Fig. 5.270

When Vth = 0.5, α = 2, σ′(0 − Vth) = σ′(1 − Vth) = 0.288 < 1, indicating that indicating that271

transmitting spikes to SN is prone to causing vanishing gradient. With zero initialization, the decay in272

Spking ResNet-152 is more serious because gradient from F l can not contribute. The SEW ResNet-273

152 will not be affected no matter what g we choose. When Vth = 1, α = 3, σ′(1− Vth) = 1.5 > 1,274

indicating that transmitting spikes to SN is prone to causing exploding gradient. Fig. 7 shows the275

gradient in this situation. Same with the reason in Fig. 8, the change of surrogate function will276

increase gradients of all networks without zero initialization, but not affect SEW ResNet-152 with277

zero initialization. The Spiking ResNet-152 meets exploding gradient, while this problem in SEW278

ADD, IAND ResNet-152 is not serious.279

4.2 DVS Gesture Classification280

The origin ResNet, which is designed for classifying the complex ImageNet dataset, is too large281

for the DVS Gesture dataset. Hence, we design a tiny network named 7B-Net, whose structure is282

c32k3s1-BN-PLIF-{SEW Block-MPk2s2}*7-FC11. Here c32k3s1 means the convolutional layer with283

kernel size 3 stride 1, MPk2s2 is the max pooling with kernel size 2 stride 2, the symbol {}*7 denotes284

seven repeated structure, and PLIF denotes the Parametric Leaky-Integrate-and-Fire Spiking Neuron285

with a learnable membrane time constant, which is proposed in [6] and can be described by Eq. (5).286

See Appendix for AER data pre-processing details.287

Spiking ResNet vs. SEW ResNet. We first compare the performance of SEW ResNet with ADD288

element-wise function (SEW ADD ResNet) and Spiking ResNet by replacing SEW blocks with basic289

blocks. As shown in Fig. 9 and Tab. 4, although the train loss of Spiking ResNet (blue curve) is lower290

than SEW ADD ResNet (orange curve), the test accuracy is lower than SEW ADD ResNet (90.97%291

v.s. 97.92%), which implies that Spiking ResNet is easier to overfit than SEW ADD ResNet.292
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Figure 9: Comparison of the train loss, train accuracy and test accuracy on DVS Gesture dataset.

Evaluation of different element-wise functions and plain block. As the training cost of SNNs293

on the DVS Gesture dataset is much lower than on ImageNet, we carry out more ablation ex-294

periments on the DVS Gesture dataset. We replace SEW Block with the plain block (no short-295

cut connection) and test the performance. We also evaluate all kinds of element-wise functions296

g in Tab. 1. Fig. 9 shows the train loss and test accuracy on DVS Gesture. The sharp fluctu-297

ation during early epochs is caused by the large learning rate (see Appendix for more details).298

We can find that the train loss is SEW IAND<Spiking ResNet<SEW ADD<Plain Net<SEW299

AND. Due to the overfitting problem, a lower loss does not guarantee a higher test accuracy.300

Network Element-Wise Function g Accuracy(%)
SEW ResNet ADD 97.92
SEW ResNet IAND 95.49
Plain Net - 91.67
Spiking ResNet - 90.97
SEW ResNet AND 70.49

Table 4: Test accuracy on DVS Gesture. The networks’
order is ranked by accuracy.

Tab. 4 shows the test accuracy of all net-301

works. The SEW ADD ResNet gets the302

highest accuracy than others.303

Comparisons with State-of-the-art304

Methods. Tab. 5 compares our network305

with SOTA methods. It can be found306

that our SEW ResNet outperforms the307

SOTA works in accuracy, parameter308

numbers, and simulating time-steps.309

Network Accuracy(%) Parameters T
c32k3s1-BN-PLIF-{SEW Block (c32) -MPk2s2}*7-FC11 (7B-Net) 97.92 0.13M 16
{c128k3s1-BN-PLIF-MPk2s2}*5-DP-
FC512-PLIF-DP-FC110-PLIF-APk10s10 [6] 97.57 1.70M 20

Spiking ResNet17 with td-BN [56] 96.87 11.18M 40
MPk4-c64k3-LIF-c128k3-LIF-APk2-c128k3-LIF-APk2-FC256-LIF-FC11[14] 93.40 23.23M 60

Table 5: Comparison with the state-of-the-art (SOTA) methods on DVS Gesture dataset.

5 Conclusion310

In this paper, we analyze the previous Spiking ResNet whose residual block mimics the standard311

block of ResNet, and find that it can hardly implement identity mapping and suffers from the problems312

of vanishing/exploding gradient. To solve these problems, we propose the SEW residual block and313

prove that it can implement the residual learning. The experiment results on ImageNet and DVS314

Gesture datasets show that our SEW residual block solves the degradation problem, and SEW ResNet315

can achieve higher accuracy by simply increasing the network’s depth. Our work may shed light on316

the learning of “very deep” SNNs.317
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