
TPU-KNN

K Nearest Neighbor Search at Peak FLOP/s

Anonymous Author(s)

Affiliation
Address
email

Abstract

This paper presents a novel nearest neighbor search algorithm achieving TPU1

(Google Tensor Processing Unit) peak performance, outperforming state-of-the-2

art GPU algorithms with similar level of recall. The design of the proposed3

algorithm is motivated by an accurate accelerator performance model that takes into4

account both the memory and instruction bottlenecks. Our algorithm comes with5

an analytical guarantee of recall in expectation and does not require maintaining6

sophisticated index data structure or tuning, making it suitable for applications7

with frequent updates. Our work is available in the open-source package of Jax and8

Tensorflow on TPU.9

1 Introduction10

The K-nearest neighbor (K-NN) search problem has a wide range of applications in machine learning11

and information retrieval systems, including image search (Jia et al., 2021; Babenko and Lempitsky,12

2016), semantic textual retrieval (Liu et al., 2009; Cer et al., 2018), anomaly detection (Gu et al.,13

2019; Omar et al., 2013), recommendation systems (Sarwar et al., 2002; Zhao et al., 2019), as well as14

serving as a component for a downstream tasks (Borgeaud et al., 2021; Guu et al., 2020; Lindgren15

et al., 2021; Shazeer et al., 2017). Given a query, the objective of K-NN is to identify K closest16

datapoints from a database of finite number of data points in a vector space. The main challenge of17

designing a good K-NN algorithm is to compute accurate K-NN results while being computationally18

efficient.19

Solving the K-NN problem on accelerators has emerging interests from both the academia and the20

industry (Johnson et al., 2021; Shanbhag et al., 2018; Zhao et al., 2020). Many accelerators can21

deliver hundreds of Tera Floating Point Operations Per Seconds (TFLOPS) vital to the neighbor22

distance computation. However, utilizing accelerators in K-NN problems is not straightforward;23

multiple issues in data locality, memory bandwidth, and multiple types of hardware parallelism need24

to be carefully considered to achieve high utilization. In this paper we extend the roofline performance25

model (Williams et al., 2009) to quantify the hardware characteristics accurately. As a result, we26

designed a K-NN algorithm to reach peak performance by the precise modeling of the accelerators,27

and our TPU implementation aligned with our predicted performance.28

The main contributions of this work are:29

• We extend the roofline model to address the operation throughput differences of the instruc-30

tions, essential to the algorithm analysis in this paper.31

• We design an approximate K-NN algorithm with recall and performance guarantees based32

on our proposed roofline model.33

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

• We conduct experiments verifying our TPU implementation of the algorithm accurately34

aligned with the performance model and achieves state-of-the-art speed-recall trade-offs on35

standard nearest neighbor search benchmarks.36

2 Preliminaries37

This section covers the necessary notations to work with the nearest neighbor search problem. Given38

a matrix A 2 RM⇥N , we let ai,j denote the item at the ith row and jth column of A, and ai denote39

the ith row-vector of A. We use the matrix X 2 RN⇥D to abbreviate a set-representation of a40

database X = {xi}i=1,2,...,N with N data points, where each data point xi 2 RD is a row vector of41

the matrix X in a D dimensional vector space. The set and matrix representation of database X are42

used interchangeably in this paper.43

The K nearest neighbor search problem is stated as follows. Given a database X 2 RN⇥D and a44

query vector q 2 RD, find the subset S⇤
⇢ X collecting the K-closest data points to q:45

Sq
⇤ = K-argmin

x2X
D(q,x), (1)

where D(x,y) is a distance measure such as Euclidean distance D`2(x,y) := kx�yk2 or the cosine46

distance Dcos(x,y) := 1� hx,yi
kxkkyk . A related problem is the maximum inner product search (MIPS),47

where the goal is to find the data points that have the highest inner products with the query:48

Sq
⇤ = K-argmax

x2X
hq,xi. (2)

MIPS is equivalent to the cosine similarity search when all data points are `2-normalized.49

3 Related work50

Exhaustively searching all pair-wise distances between the query and the entire database is compute-51

intensive and often infeasible on many platforms. Therefore, a problem extensively discussed in the52

literature (Wang et al., 2014, 2015) is to find approximate nearest neighbors (ANN) in exchange of53

speed. By convention, the quality of ANN is measured by54

Recall :=
|Sq \ Sq

⇤
|

|Sq
⇤
|

, (3)

where Sq ⇢ X denotes the set of data points retrieved by the search method.55

Compressed domain search One class of ANN approaches is to search on a lossy-compressed56

problem domain. These methods are composed in two steps: a) search on compressed representation157

of the original problem to find a set of candidate data points, b) compute the distances between the58

query and the candidate data points to select the top-K results. Since only a subset of data points59

requires the exact distance computation, the overall cost is reduced.60

The two steps can be composed in arbitrary ways. Locality sensitive hashing (Andoni et al., 2015;61

Neyshabur and Srebro, 2015) applies search followed by scoring; tree-search (Muja and Lowe, 2014;62

Dasgupta and Freund, 2008) applies the two steps recursively; graph-search (Malkov and Yashunin,63

2018) iterates between two steps until the stopping condition is met. And the inverted file (IVF)64

method (Jegou et al., 2010; Babenko and Lempitsky, 2014; Baranchuk et al., 2018; Guo et al., 2020)65

search on subset of data points indexed by the k-means centroids.66

We see that there are two major challenges with the compressed domain search:67

1Here we mean data structures like tree, graph, locality sensitive hash etc.

2

• Fractional search has a poor cache reuse rate because the candidate data points for each query68

rarely overlaps. We show optimizing the cache usage has a huge headroom for accelerators69

in Section 4.2.70

• Tweaking the speed-recall trade-off is data-dependent and non-trivial to tune. The key71

result of Beyer et al. (1999) states that the distance contrast of neighbors diminishes with72

increasing dimensionality (also known as the curse of high dimensionality). Furthermore,73

the key result of Rubinstein (2018) states that sub-linear time nearest neighbor search with74

high recall is impossible for Euclidean, Manhattan, or Hamming distance; otherwise, it75

contradicts the Strong Exponential Time Hypothesis (Impagliazzo and Paturi, 1999).76

Our work takes an opposite approach to focus on machine efficiency with zero search space prun-77

ing. Moreover, since our method computes all the distances, it is immune to the curse of high78

dimensionality.79

Accelerators In this paper, the phrase accelerators represents a class of specialized hardware to80

accelerate machine learning workloads. In particular, we are interested in the novel platforms that81

deliver high FLOP/s for distance computation, namely Google TPU V3, V4, Nvidia GPU V100, and82

A100 in our analysis and evaluation.83

Modern accelerators have special computation units for matrix multiplication, providing a higher84

operation throughput over the regular coefficient-wise operations. The corresponding units are tensor85

cores in Nvidia GPUs (Markidis et al., 2018) and systolic arrays in Google TPUs (Jouppi et al., 2017;86

Norrie et al., 2021). Addressing these operation throughput differences is essential to our algorithm87

design.88

While accelerators excel in parallelism, developing an efficient K-selection algorithm on accelerators89

is still an active research area (Monroe et al., 2011; Shanbhag et al., 2018; Johnson et al., 2021; Zhao90

et al., 2020). Accelerators with higher FLOP/s introduce a higher opportunity cost of computing the91

K-selection problem instead of the distance computation. The trend of the increasing FLOP/s in92

accelerators motivated us to optimize the FLOP/s usage by reducing the time required for computing93

K-selection.94

4 Methodology95

This section presents a performance model to identify non-trivial bottlenecks on multiple plat-96

forms and demonstrates some fundamental limits when designing algorithms for K-NN and related97

problems, and we see that the cache inefficiency of the compressed domain methods introduces a98

significant cost on accelerators.99

We model the accelerator’s runtime as executing a sequence of computation kernels, where each100

kernel is a compiled subroutine on the accelerator used by the main program on the CPU. A kernel101

may be composed of one or several high-level operators: Einsum, ReLU, ArgMax, etc., and each102

kernel can have different performance characteristics.103

Given a sequence of kernels ki, we let Wi denotes the total amount of work and Pi denotes the104

operational speed. Our goal is to estimate the total time of a program:105

t =
X

i

Wi

Pi
. (4)

In the following example, we focus on the MIPS problem. Let Q 2 RM⇥D and X 2 RN⇥D denote106

the queries and the database, the runtime of a generic approximate-MIPS program can be modeled as107

t =
�WD
P

+O(Auxiliary) �
�WD
P

, (5)

where WD denotes the total FLOPs required for searching the entire database, and � denotes the108

search fraction. We note that P varies by algorithm and platform. Traditionally, compressed domain109

search methods minimize � but sacrifice cache efficiency. Our method use an alternative route to110

optimize P instead.111

3

Table 1: Hardware specifications for the generalized roofline model
Name ⇡ (TFLOP/s) � (GB/s) � (TCOP/s)

GPU V100 125 900 15.7
GPU A100 312 1555 19.5
TPU V3 126 858 4.0
TPU V4 274 1144 4.3

4.1 Instruction throughput-aware roofline model112

This subsection describes how we model the kernel-dependent performance P on multiple platforms113

with a small extension of the roofline model.114

The classic roofline model (Williams et al., 2009) is a function of machine peak performance ⇡115

measured in FLOP/s, machine peak memory bandwidth � measured in bytes/s, and arithmetic116

intensity IMEM expressed as the ratio of floating-point operations performed to data movement117

(FLOP/byte). The model states the performance is bounded by P  min(⇡,� ⇥ IMEM).118

We desire to model kernels that has a mixture of floating point operations accelerated by dedicated119

hardware as well as other coefficient-wise operations. The coefficient-wise operations are abbreviated120

as COPs. Almost every non matrix multiplication operations are COPs, including vectorized add,121

multiply, compare, conditional-move, etc. We use the symbol � for peak COP/s on platforms, and122

define the instruction throughput intensity ICOP as the ratio between the number FLOPs and the123

number of COPs performed in a kernel (FLOP/COP). The attainable performance of a kernel is124

bounded by:125

P  min

8
<

:

⇡
� ⇥ IMEM

� ⇥ ICOP.
(6)

The statement is self-explanatory because the inadequate resources impede the kernel throughput.126

Table 1 lists the properties of selected accelerators for our analysis2. The roofline model is commonly127

used in accelerator profiling tools but not as frequently discussed in algorithm designs. The following128

sections show how the model prevents pitfalls due to the hardware constraints.129

4.2 The memory bandwidth bound130

This subsection demonstrates how to evaluate if a kernel hits the memory bandwidth wall. We131

associate the distance computation with three levels of BLAS (Dongarra et al., 1990). Level 1 BLAS132

describes vector operations on non-consecutive memory access, such as computing distances while133

traversing through a graph. Level 2 BLAS represents scoring a query with consecutively stored134

data points. Level 3 BLAS expresses batched query-database distance computation, often used in135

brute-force scoring.136

Compressed domain searches are either level 1 or 2 BLAS due to the cache inefficiency. It has137

O(1) memory arithmetic intensity because the number of FLOPs is proportion to the bytes read.138

Combining (5) and (6) we have the following remark:139

Remark 1. Distance computations in compressed domain searches are memory bandwidth bounded.140

In our model, the runtime is lower bounded by: t � O (�WD/�).141

To estimate the memory arithmetic intensity for level 3 BLAS, we continue to use Q 2 RM⇥D and142

X 2 RN⇥D for denoting queries and database. In many K-NN applications N and M are much143

greater than D. The corresponding memory arithmetic intensity is:144

IMEM =
2MND

4MN + o(MN)
⇡

D

2
. (7)

2Readers can find these numbers from the accelerators’ specification sheets.

4

0

50000

100000

150000

200000

250000

300000

350000

4700 4750 48000 50 100 150

⇡ = 6.7 TFLOP/s

⇡ = 125 TFLOP/s

⇡ = 312 TFLOP/s

⇡ = 126 TFLOP/s

⇡ = 274 TFLOP/s

� = 156 GB/s

� = 900 GB/s
� =

155
5 GB/s

� = 858.4
GB/s� = 114

4.4
GB/s

BLAS 1,2, IMEM
=
O
(1)

BLAS 3, D
=
128

, IMEM
=
64

OURS

Pe
rf

or
m

an
ce

P
(G

FL
O

P/
s)

Memory arithmetic intensity IMEM (FLOP/byte)

GPU V100
GPU A100

TPU V3
TPU V4

Skylake

Figure 1: Memory rooflines of accelerators and a dual-sockets Intel skylake machine as a baseline.
Each colored line denotes the maximum performance a platform could achieve, and each vertical line
represents the memory arithmetic intensity of an algorithm. The intersections of the lines show the
maximum performance of an algorithm could achieve on a platform. We label three levels of BLAS
kernels and our algorithm described in Section 5.

The largest term in the denominator of (7) is the 4MN bytes of the query-database distances. We145

omit the insignificant terms and refer readers to (Golub and Van Loan, 2013, Section 1.5.4) for a146

comprehensive review on memory transfers in block matrix multiplications.147

Figure 1 shows that the distance scoring kernels of different BLAS levels can easily hit the memory148

bandwidth wall. In order to attain high performance, we designed our algorithm to aggregate the149

results within the kernel to avoid writing the O(MN) bytes into memory.150

4.3 The instruction bandwidth bound151

The use of COPs (non matrix multiplication instructions) introduce another slowdown. We let C152

denotes the number of COPs used per dot-product score in a kernel equipped with COPs and matrix153

multiplication instructions. There are M ⇥N dot-product scores, so the total COPs used in a kernel154

is CMN . To prevent hitting the COPs bandwidth wall, we must satisfy:155

ICOP =
2⇠⇠⇠MND

C⇠⇠⇠MN
�

⇡

�
, (8)

) C 
2D ⇥ �

⇡
. (9)

The number of COPs we can afford in the kernels is scarce. We take D = 128 as an example and156

substitute it into (9). We can only use 4 coefficient-wise instructions per dot-product for TPU V4,157

and 16 for GPU A100. We conclude with the following remark:158

Remark 2. Exact and generic K-selection algorithm cannot be efficiently implemented with the159

coefficient-wise operations for the selected platforms (GPU V100, A100, TPU V3 and V4).160

Because of Remark 2, we develop an approximate approach to achieve the peak performances.161

5 Algorithm162

Our algorithm consists of two kernels:163

1. PartialReduce kernel computes the distances and partially aggregate the results from M ⇥N164

distances to M ⇥ L distances with original indices.165

5

Algorithm 1: PartialReduce for MIPS
Input: Q 2 RM⇥D Batch queries
Input: X 2 RN⇥D Database
Input: 2W Bin size
Output: V 2 RM⇥L Top-K values
Output: A 2 NM⇥L Top-K indices

1 for i 1 to M do

2 for j 1 to N do

3 yi,j hqi,xji ;
4 l ShiftRight(j, W) ; /* Unrolled and does not cost COP */

5 b yi,j > vi,l ; /* COP 1: Vectorized compare */

6 vi,l if b then yi,j else vi,l ; /* COP 2: Vectorized conditional move */

7 ai,l if b then j else ai,l ; /* COP 3: Vectorized conditional move */

8 end

9 end

2. ExactRescoring kernel is an optional kernel that aggregates the final top-K results. The166

complexity is O(ML log2(L)) by a bitonic sort followed by a truncation.167

The PartialReduce kernel is where most of the time and compute takes place. See Algorithm 1 for an168

outline of the algorithm. We collect top-1 distances from the L non-overlapping bins of size 2W for169

each query, resulting high arithmetic intensities:170

IMEM ⇡ O (min (M,N)) , (10)

ICOP =
2⇠⇠⇠MND

C⇠⇠⇠MN
=

2D

C
. (11)

We show these arithmetic intensities can achieve high performance on real world database in section171

6.1. See Appendix A.3 for the detailed expansion of the algorithm and how the arithmetic intensities172

are derived.173

5.1 Recall estimation174

This section shows the PartialReduce kernel can achieve high recall with good speed. We reformulate175

our problem in terms of balls and bins. We have K balls representing the top-K distances that are176

thrown into L bins. The location of each ball is chosen independently and uniformly at random. We177

let Z denotes the random variable of the number of balls that does not share the bin with other balls.178

Following the recall definition (3) we have:179

Recall =
Z

K
, (12)

which is a standard Birthday problem:180

E[Recall] =
E[Z]
K

=

✓
L� 1

L

◆K�1

. (13)

Our goal is to find the minimal L such that the expected recall is greater equals to the target recall r.181

Finding L is simple because (13) is invertible in the natural range 0 < r < 1.182

E[Recall] � r) L �
1

1� r1/(K�1)
⇡

K � 1

1� r
. (14)

6

0

50000

100000

150000

200000

250000

300000

0 1000 2000 3000 4000 5000 6000

MIPS

MIPS

`2

`2

0

50000

100000

150000

200000

250000

300000

10 20 30 40 50 60 70 80

MIPS

MIPS

`2

`2

MIPS

MIPS

`2

`2

G
FL

O
P/

s

IMEM (FLOP/byte)

TPU V3 TPU V4

Memory bandwidth roofline (Williams et al.)

ICOP (FLOP/COP)

Instruction bandwidth roofline (Ours)

Figure 2: Roofline plots for MIPS and `2 search benchmarks using the PartialReduce kernel. The
colored lines denotes the attainable performance derived from Table 1. The figure on the left shows
none of the benchmark is memory bandwidth limited. The figure on the right shows that our model
gives a much tighter bound for `2 on TPU V4. See also Appendix A.5 for detailed deviation of the
numbers.

The approximation in (14) follows from Appendix A.4. Since L is at the order of K, and in most183

applications K ⌧ N , the cost of the ExactRescoring kernel is amortized out. Thus we affirm the184

claim that our method attains high performance with an analytical recall guarantee.185

6 Evaluation186

In this section, we show that our proposed algorithm and implementation is near the hardware limit187

and leads to superior performance over the baselines of similar recalls. We applied our algorithm188

to two datasets from the public ANN benchmarks (Aumüller et al., 2020). In our first evaluation,189

we compares the measured FLOP/s to the theoretical peak governed by the proposed refinement of190

the roofline model (6), proclaiming our implementation is reaching the hardware peak performance.191

In the second benchmark, we compare the end-to-end performance with competitive baselines with192

pre-tuned parameters. We plot each algorithm’s speed-recall curve and show ours achieves the193

state-of-the-art.194

6.1 Comparison with the theoretical peak195

This section shows that our refined roofline model (6) captures additional performance characteristic196

over the classic roofline model, and demonstrates our kernels are having near optimal performances.197

We select the Glove3 (Pennington et al., 2014) and Sift4 (Jegou et al., 2010) datasets from the ANN198

benchmarks. Their corresponding distances are the cosine distance and the Euclidean distance. See199

the code snippets in Appendix A.1 and A.2.200

See Figure 2, the colored lines represent machines’ max performances, and the dots represent201

each benchmark with its measured FLOP/s. The classic roofline on the left shows that our in-202

cache aggregation strategy has a large memory arithmetic intensity (⇠4,700) exceeding the memory203

bandwidth ridge points ⇡/�. However, it is difficult to diagnose why the Euclidean distance search204

does not perform well on TPU V4 from the classic roofline plot.205

Fortunately, when combined with the instruction bandwidth roofline we can tell the performance206

regression is caused by hitting the coefficient-wise operation throughput wall. Therefore we affirms207

3Released in Apache license 2.0.
4Released in CC0 public domain.

7

the claim that our MIPS solution is reaching the peak FLOP/s, and our Euclidean distance search208

solution is meeting the compute bound on TPU V4 and attaining the peak FLOP/s on TPU V3.209

6.2 Recall-speed benchmark210

To evaluate the effectiveness of the K-NN algorithm in a realistic setting, we adopted the methodology211

of public ANN benchmarks (Aumüller et al., 2020) to compare the end-to-end performance against212

other methods. The typical ANN benchmarks are only performed on a single platform. However, it213

is non-trivial to either port our TPU algorithm to GPU or vice versa. Alternatively, we selected the214

following GPUs with parity in peak performance to TPU (Table 1).215

We select the Faiss GPU (Johnson et al., 2021) implementation as our baseline. Faiss provides three216

algorithms: Flat, IVF-flat, and IVF-PQ. The Flat algorithm performs a brute-force search, and the217

IVF-Flat and IVF-PQ algorithms corresponds to the inverted file method with and without the product218

quantization (Jegou et al., 2010; Johnson et al., 2021). We use the repository’s suggested inverted file219

size (16384) in the IVF methods.220

Figure 3 shows our performance significantly outperforms competing methods in the high recall221

regions. We highlight that our method has a consistent recall-speed trade-off over different datasets,222

because our recall only rely on the order statistics instead of the information encoded in the com-223

pression domain search methods, which may vary by the datasets. Since our method scores all the224

pair-wise distances, our method is immune from the curse of high dimensionality.225

7 Discussion and future work226

We limit our experiments and discussion to single-chip accelerator K-NN performance of dense227

vectors. Accelerators performance on sparse vectors follow a completely different paradigm due to228

random memory access. Our algorithm can be naturally extended to multi-chip or distributed settings229

to handle billion scale datasets through Tensorflow’s tf.distribute (Abadi et al., 2015) or Jax’s230

jax.pmap (Bradbury et al., 2018) programming interfaces.231

It is also possible to use our operations in conjunction with other strategies, including dimension232

reduction, quantization and tree search (Van Der Maaten et al., 2009; Jegou et al., 2010; Wang et al.,233

2014), because many compressed domain search methods use brute-force distance computation on its234

auxiliary data structures before performing the fractional search. We note that heterogeneous architec-235

tures with off-HBM storage such as host-RAM or even SSD (Chen et al., 2021; Jayaram Subramanya236

et al., 2019; Ren et al., 2020) are great starting points for future research.237

Finally, while our refinement of the roofline model handles kernel with mixture of instructions that238

have different throughput, there are many studies that have extended the roofline model to related239

topics in recent years: GPU warp instruction roofline (Ding and Williams, 2019), time-based roofline240

(Wang et al., 2020), roofline for multiple cache tiers (Yang et al., 2021), and energy rooflines (Choi241

et al., 2013; Lopes et al., 2017). Readers may refer to these models for some analysis that are left out,242

such as the auxiliary work in (5).243

8 Conclusion244

Accelerator-based machine learning has become the mainstream in academics and industries. How-245

ever, the performance characteristics of accelerators are counter-intuitive and difficult to program.246

In this paper, we propose a roofline-based complexity analysis framework to discuss the optimality247

of the algorithms without low-level optimization details: unrolling factors, batch window sizes,248

vectorization, and systolic array scheduling, which are platform-dependent and lengthy to read. We249

demonstrated several examples of inferring the hardware performance limits by simply addressing250

the kernel’s total FLOPs, byte transferred, and the number of coefficient-wise instructions used. Our251

refined model foreshadowed non-trivial performance regression caused by the coefficient-wise in-252

structions bandwidth. We took it into account to design a new algorithm for K-NN and achieved peak253

performance on TPU. Finally, our experiments showed that our method outperformed state-of-the-art254

baselines on platforms with similar performance characteristics, which are known to be hard to beat.255

8

0

100000

200000

300000

400000

500000

600000

700000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Glove1.2M
Q

PS

Recall (k=10)

V100 ivf,flat
V100 ivf,pq50
V100 flat

A100 ivf,flat
A100 ivf,pq50
A100 flat

TPU V3 ours
TPU V4 ours

0

100000

200000

300000

400000

500000

600000

700000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Sift1M

Q
PS

Recall (k=10)

Figure 3: Speed-recall trade-off on Glove1.2M and Sift1M. Up and to the right the better. The
GPU methods (ivf-flat, ivf-pq, and flat) are released by Faiss (Johnson et al., 2021). For each ivf⇤
benchmark, the search fractions are � = {0.24%, 0.61%, 1.22%}. We note that the recall differences
between datasets with similar ivf search configurations is a known problem asserted by Rubinstein
(2018).

References256

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,257

J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,258

R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,259

Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,260

V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).261

TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from262

tensorflow.org.263

Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., and Schmidt, L. (2015). Practical and optimal264

lsh for angular distance. Advances in neural information processing systems, 28.265

Aumüller, M., Bernhardsson, E., and Faithfull, A. (2020). Ann-benchmarks: A benchmarking tool266

for approximate nearest neighbor algorithms. Information Systems, 87:101374.267

Babenko, A. and Lempitsky, V. (2014). The inverted multi-index. IEEE transactions on pattern268

analysis and machine intelligence, 37(6):1247–1260.269

Babenko, A. and Lempitsky, V. (2016). Efficient indexing of billion-scale datasets of deep descriptors.270

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages271

2055–2063.272

9

Baranchuk, D., Babenko, A., and Malkov, Y. (2018). Revisiting the inverted indices for billion-scale273

approximate nearest neighbors. In Proceedings of the European Conference on Computer Vision274

(ECCV), pages 202–216.275

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “nearest neighbor”276

meaningful? In International conference on database theory, pages 217–235. Springer.277

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Driessche, G. v. d.,278

Lespiau, J.-B., Damoc, B., Clark, A., et al. (2021). Improving language models by retrieving from279

trillions of tokens. arXiv preprint arXiv:2112.04426.280

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,281

A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations282

of Python+NumPy programs.283

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R. S., Constant, N., Guajardo-Cespedes,284

M., Yuan, S., Tar, C., et al. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175.285

Chen, Q., Zhao, B., Wang, H., Li, M., Liu, C., Li, Z., Yang, M., and Wang, J. (2021). Spann: Highly-286

efficient billion-scale approximate nearest neighborhood search. Advances in Neural Information287

Processing Systems, 34:5199–5212.288

Choi, J. W., Bedard, D., Fowler, R., and Vuduc, R. (2013). A roofline model of energy. In 2013 IEEE289

27th International Symposium on Parallel and Distributed Processing, pages 661–672. IEEE.290

Dasgupta, S. and Freund, Y. (2008). Random projection trees and low dimensional manifolds. In291

Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 537–546.292

Ding, N. and Williams, S. (2019). An instruction roofline model for gpus. IEEE.293

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S. (1990). A set of level 3 basic linear294

algebra subprograms. ACM Transactions on Mathematical Software (TOMS), 16(1):1–17.295

Golub, G. H. and Van Loan, C. F. (2013). Matrix computations. JHU press.296

Gu, X., Akoglu, L., and Rinaldo, A. (2019). Statistical analysis of nearest neighbor methods for297

anomaly detection. Advances in Neural Information Processing Systems, 32.298

Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F., and Kumar, S. (2020). Accelerating299

large-scale inference with anisotropic vector quantization. In International Conference on Machine300

Learning, pages 3887–3896. PMLR.301

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-W. (2020). Realm: Retrieval-augmented302

language model pre-training. arXiv preprint arXiv:2002.08909.303

Impagliazzo, R. and Paturi, R. (1999). The complexity of k-sat. In Proceedings. Fourteenth Annual304

IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory305

Conference)(Cat. No. 99CB36317), pages 237–237. IEEE Computer Society.306

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Krishnawamy, R., and Kadekodi, R. (2019).307

Diskann: Fast accurate billion-point nearest neighbor search on a single node. Advances in Neural308

Information Processing Systems, 32.309

Jegou, H., Douze, M., and Schmid, C. (2010). Product quantization for nearest neighbor search.310

IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128.311

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, Q., Sung, Y.-H., Li, Z., and Duerig, T.312

(2021). Scaling up visual and vision-language representation learning with noisy text supervision.313

In International Conference on Machine Learning, pages 4904–4916. PMLR.314

Johnson, J., Douze, M., and Jégou, H. (2021). Billion-scale similarity search with gpus. IEEE315

Transactions on Big Data, 7(3):535–547.316

10

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden,317

N., Borchers, A., et al. (2017). In-datacenter performance analysis of a tensor processing unit. In318

Proceedings of the 44th annual international symposium on computer architecture, pages 1–12.319

Lindgren, E., Reddi, S., Guo, R., and Kumar, S. (2021). Efficient training of retrieval models using320

negative cache. Advances in Neural Information Processing Systems, 34.321

Liu, T.-Y. et al. (2009). Learning to rank for information retrieval. Foundations and Trends® in322

Information Retrieval, 3(3):225–331.323

Lopes, A., Pratas, F., Sousa, L., and Ilic, A. (2017). Exploring gpu performance, power and energy-324

efficiency bounds with cache-aware roofline modeling. In 2017 IEEE International Symposium on325

Performance Analysis of Systems and Software (ISPASS), pages 259–268. IEEE.326

Malkov, Y. A. and Yashunin, D. A. (2018). Efficient and robust approximate nearest neighbor search327

using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and328

machine intelligence, 42(4):824–836.329

Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B., and Vetter, J. S. (2018). Nvidia tensor core330

programmability, performance & precision. In 2018 IEEE international parallel and distributed331

processing symposium workshops (IPDPSW), pages 522–531. IEEE.332

Monroe, L., Wendelberger, J., and Michalak, S. (2011). Randomized selection on the gpu. In333

Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, pages 89–98.334

Muja, M. and Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data.335

IEEE transactions on pattern analysis and machine intelligence, 36(11):2227–2240.336

Neyshabur, B. and Srebro, N. (2015). On symmetric and asymmetric lshs for inner product search.337

In International Conference on Machine Learning, pages 1926–1934. PMLR.338

Norrie, T., Patil, N., Yoon, D. H., Kurian, G., Li, S., Laudon, J., Young, C., Jouppi, N., and Patterson,339

D. (2021). The design process for google’s training chips: Tpuv2 and tpuv3. IEEE Micro,340

41(2):56–63.341

Omar, S., Ngadi, A., and Jebur, H. H. (2013). Machine learning techniques for anomaly detection: an342

overview. International Journal of Computer Applications, 79(2).343

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation.344

In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.345

Ren, J., Zhang, M., and Li, D. (2020). Hm-ann: Efficient billion-point nearest neighbor search on346

heterogeneous memory. Advances in Neural Information Processing Systems, 33:10672–10684.347

Rubinstein, A. (2018). Hardness of approximate nearest neighbor search. In Proceedings of the 50th348

annual ACM SIGACT symposium on theory of computing, pages 1260–1268.349

Sarwar, B. M., Karypis, G., Konstan, J., and Riedl, J. (2002). Recommender systems for large-350

scale e-commerce: Scalable neighborhood formation using clustering. In Proceedings of the fifth351

international conference on computer and information technology, volume 1, pages 291–324.352

Citeseer.353

Shanbhag, A., Pirk, H., and Madden, S. (2018). Efficient top-k query processing on massively parallel354

hardware. In Proceedings of the 2018 International Conference on Management of Data, pages355

1557–1570.356

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. (2017).357

Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint358

arXiv:1701.06538.359

Van Der Maaten, L., Postma, E., Van den Herik, J., et al. (2009). Dimensionality reduction: a360

comparative. J Mach Learn Res, 10(66-71):13.361

Wang, J., Liu, W., Kumar, S., and Chang, S.-F. (2015). Learning to hash for indexing big data—a362

survey. Proceedings of the IEEE, 104(1):34–57.363

11

Wang, J., Shen, H. T., Song, J., and Ji, J. (2014). Hashing for similarity search: A survey. arXiv364

preprint arXiv:1408.2927.365

Wang, Y., Yang, C., Farrell, S., Zhang, Y., Kurth, T., and Williams, S. (2020). Time-based roofline366

for deep learning performance analysis. In 2020 IEEE/ACM Fourth Workshop on Deep Learning367

on Supercomputers (DLS), pages 10–19. IEEE.368

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful visual performance369

model for multicore architectures. Communications of the ACM, 52(4):65–76.370

Yang, C., Wang, Y., Kurth, T., Farrell, S., and Williams, S. (2021). Hierarchical roofline performance371

analysis for deep learning applications. In Intelligent Computing, pages 473–491. Springer.372

Zhao, W., Tan, S., and Li, P. (2020). Song: Approximate nearest neighbor search on gpu. In 2020373

IEEE 36th International Conference on Data Engineering (ICDE), pages 1033–1044.374

Zhao, Z., Hong, L., Wei, L., Chen, J., Nath, A., Andrews, S., Kumthekar, A., Sathiamoorthy, M., Yi,375

X., and Chi, E. (2019). Recommending what video to watch next: a multitask ranking system. In376

Proceedings of the 13th ACM Conference on Recommender Systems, pages 43–51.377

Checklist378

1. For all authors...379

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s380

contributions and scope? [Yes]381

(b) Did you describe the limitations of your work? [Yes] See Section 4 for how we model382

the hardware limitations and Section 6.1 for real world evaluations.383

(c) Did you discuss any potential negative societal impacts of your work? [N/A]384

(d) Have you read the ethics review guidelines and ensured that your paper conforms to385

them? [Yes]386

2. If you are including theoretical results...387

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section388

5.1, we formulate the problems in terms of the classic balls into bins.389

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 5.1 and390

Appendix A.4.391

3. If you ran experiments...392

(a) Did you include the code, data, and instructions needed to reproduce the main experi-393

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix394

A.1 and A.2395

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they396

were chosen)? [N/A]397

(c) Did you report error bars (e.g., with respect to the random seed after running experi-398

ments multiple times)? [N/A]399

(d) Did you include the total amount of compute and the type of resources used (e.g., type400

of GPUs, internal cluster, or cloud provider)? [Yes] See Table 1 and 2.401

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...402

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.1.403

(b) Did you mention the license of the assets? [Yes] See the footnotes in Section 6.1.404

(c) Did you include any new assets either in the supplemental material or as a URL? [No]405

(d) Did you discuss whether and how consent was obtained from people whose data you’re406

using/curating? [N/A]407

(e) Did you discuss whether the data you are using/curating contains personally identifiable408

information or offensive content? [N/A]409

5. If you used crowdsourcing or conducted research with human subjects...410

12

(a) Did you include the full text of instructions given to participants and screenshots, if411

applicable? [N/A]412

(b) Did you describe any potential participant risks, with links to Institutional Review413

Board (IRB) approvals, if applicable? [N/A]414

(c) Did you include the estimated hourly wage paid to participants and the total amount415

spent on participant compensation? [N/A]416

13

