
Sound and Complete Verification of
Polynomial Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Polynomial Networks (PNs) have demonstrated promising performance on face1

and image recognition recently. However, robustness of PNs is unclear and thus2

obtaining certificates becomes imperative for enabling their adoption in real-world3

applications. Existing verification algorithms on ReLU neural networks (NNs)4

based on branch and bound (BaB) techniques cannot be trivially applied to PN5

verification. In this work, we devise a new bounding method, equipped with BaB6

for global convergence guarantees, called VPN. One key insight is that we obtain7

much tighter bounds than the interval bound propagation baseline. This enables8

sound and complete PN verification with empirical validation on MNIST, CIFAR109

and STL10 datasets. We believe our method has its own interest to NN verification.10

1 Introduction11

Polynomial Networks (PNs) have demonstrated promising performance across image recognition12

and generation [Chrysos et al., 2021b, Chrysos and Panagakis, 2020] being state-of-the-art on large-13

scale face recognition1.Unlike the conventional Neural Networks (NNs), where non-linearitiy is14

introduced with the use of activation functions [LeCun et al., 2015], PNs are able to learn non-15

linear mappings without the need of activation functions by exploiting multiplicative interactions16

(Hadamard products). Recent works have uncovered interesting properties of PNs, like their larger17

model expressivity [Fan et al., 2021] or their spectral bias [Choraria et al., 2022]. However, one18

critical issue before considering PNs for real-world applications is their robustness.19

Neural networks are prone to small (often imperceptible to the human eye), but malicious perturbations20

in the input data points [Szegedy et al., 2014, Goodfellow et al., 2015]. Those perturbations can have21

a detrimental effect on image recognition systems, e.g., as illustrated in face recognition [Goswami22

et al., 2019, Zhong and Deng, 2019, Dong et al., 2019, Li et al., 2020]. Guarding against such23

attacks has so far proven futile [Shafahi et al., 2019, Dou et al., 2018]. Instead, a flurry of research24

has been published on certifying robustness of NNs against this performance degradation [Katz25

et al., 2017, Ehlers, 2017, Tjeng et al., 2019, Bunel et al., 2020a, Wang et al., 2021, Ferrari et al.,26

2022]. However, most of the verification algorithms for NNs are developed for the ReLU activation27

function by exploiting its piecewise linearity property and might not trivially extend to other nonlinear28

activation functions [Wang et al., 2021]. Indeed, Zhu et al. [2022] illustrate that guarding PNs against29

adversarial attacks is challenging. Therefore, we pose the following question:30

Can we obtain certifiable performance for PNs against adversarial attacks?31

In this work, we answer affirmatively and provide a method for the verification of PNs. Concretely,32

we take advantage of the twice-differentiable nature of PNs to build a lower bounding method based33

1https://paperswithcode.com/sota/face-verification-on-megaface

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

https://paperswithcode.com/sota/face-verification-on-megaface

on α-convexification [Adjiman and Floudas, 1996], which is integrated into a Branch and Bound34

algorithm [Land and Doig, 1960] to guarantee completeness of our verification method. In order to35

use α-convexification a lower bound α of the minimum eigenvalue of the Hessian matrix over the36

possible perturbation set is needed. We use interval bound propagation together with the theoretical37

properties of the lower bounding Hessian matrix [Adjiman et al., 1998], in order to develop an38

algorithm to efficiently compute α.39

Our contributions can be summarized as follows: (i) We propose the first algorithm for the verification40

of PNs. (ii) We thoroughly analyze the performance of our method by comparing it with a black-box41

solver and an interval bound propagation (IBP) BaB algorithm. (iii) We empirically show that42

using α-convexitication for lower bounding provides tighter bounds than IBP for PN verification. To43

encourage the community to improve the verification of PNs, we intend to make our source code44

public upon the acceptance of the paper.45

The proposed approach can practically verify PNs and that could theoretically be applied for46

sound and complete verification of any twice-differentiable network. Recent works showing twice-47

differentiability of ReLU NNs almost everywhere [Yao et al., 2018] also suggest that our approach48

could be used in the case of ReLU NNs, which we believe is an interesting avenue for future work.49

Notation: We use the shorthand [n] := {1, 2, . . . , n} for a positive integer n. We use bold capital50

(lowercase) letters, e.g., X (x) for representing matrices (vectors). The jth column of a matrix X is51

given by x:j . The element in the ith row and jth column is given by xij , similarly, the ith element of a52

vector x is given by xi. The element-wise (Hadamard) product, symbolized with ∗, of two matrices53

(or vectors) in Rd1×d2 (or Rd) gives another matrix (or vector) in Rd1×d2 (or Rd). The ℓ∞ norm of a54

vector x ∈ Rd is given by: ||x||∞ = maxi∈[d] |xi|. Lastly, the operators L and U give the lower and55

upper bounds of a scalar, vector or matrix function by IBP, see Section 3.1.56

Roadmap: We provide the necessary background by introducing the PN architecture and formalizing57

the Robustness Verification problem in Section 2. Section 3 provides a sound and complete method58

called VPN to tackle PN verification problem. In Section 4, we discuss the related works in the59

context of our contributions. Section 5 is devoted to experimental validation. Additional experiments,60

details and proofs are deferred to the appendix.61

2 Background62

To make the paper self-contained, we introduce the PN architecture in Section 2.1 and the Robustness63

Verification problem in Section 2.2.64

2.1 Polynomial Networks (PNs)65

Polynomial Networks (PNs) are inspired by the fact that any smooth function can be approximated via66

a polynomial expansion [Stone, 1948]. However, the number of parameters increases exponentially67

with the polynomial degree, which makes it intractable to use high degree polynomials for high-68

dimensional data problems such as image classification where the input can be in the order of 10569

[Deng et al., 2009]. Chrysos et al. [2021b] introduce a joint factorization of polynomial coefficients70

in a low-rank manner, reducing the number of parameters to linear with the polynomial degree and71

allowing the expression as a Neural Network. We briefly recap one fundamental factorization below.72

Let N be the polynomial degree, z ∈ Rd be the input vector, d, k and o be the input, hidden and73

output sizes, respectively. The recursive equation of PNs can be expressed as:74

x(n) = (W⊤
[n]z) ∗ x

(n−1) + x(n−1) ,∀ n ∈ [N] , (1)

where x(1) = W⊤
[1]z, f(z) = Cx(N) + β and ∗ denotes the Hadamard product. W[n] ∈ Rd×k and75

C ∈ Ro×k are weight matrices, β ∈ Ro is a bias vector. A graphical representation of a third degree76

PN architecture corresponding to Eq. (1) can be found in Fig. 1. Further details on the factorization77

(as well as other factorizations) are deferred to the Appendix B.1 (Appendix B.2).78

2.2 Robustness Verification79

Robustness Verification [Bastani et al., 2016, Liu et al., 2021] consists of verifying that a property80

regarding the input and output of a NN is satisfied, e.g. checking whether or not a small perturbation81

2

z W[1] ∗ +

W[2]

∗ +

W[3]

C +

β

f(z)
x(1) x(2) x(3)

Figure 1: Third degree PN architecture. Blue boxes depict learnable parameters, yellow depict
mathematical operations, the green and red boxes are the input and the output respectively. Note that
no activation functions are involved, only element-wise (Hadamard) products ∗ and additions +. This
figure represents the recursive formula of Eq. (1).

in the input will produce a change in the network output that makes it classify the input into another82

class. Let f : [0, 1]
d → Ro be a function, e.g., a NN or a PN, that classifies inputs z into a class c,83

such that c = argmaxf(z). We want to verify that for any input satisfying a set of constraints Cin,84

the output of the network will satisfy a set of output constraints Cout. That is, we want to check the85

following logical formula is satisfied:86

z ∈ Cin =⇒ f(x) ∈ Cout. (2)

In this work we focus on adversarial robustness [Szegedy et al., 2014, Carlini and Wagner, 2017]87

in classification. Assume an observation z0 is given and let t = argmaxf(z0) be the correct class,88

we want to check whether every input in a neighbourhood of z0, is classified as t. We focus on89

adversarial attacks restricted to neighbourhoods defined in terms of ℓ∞ norm, which is a popular90

norm-bounded attack in the verification community. Then, the constraint sets become:91

Cin = {z : ||z − z0||∞ ≤ ϵ, zi ∈ [0, 1],∀i ∈ [d]}
= {z : max{0, z0i − ϵ} ≤ zi ≤ min{1, z0i + ϵ},∀i ∈ [d]}

Cout = {y : yt > yj ,∀j ̸= t}.
(3)

In other words, we need an algorithm that given a function f , an input z0 and an adversarial budget92

ϵ, checks whether Eq. (2) is satisfied. In the case of ReLU NNs, this has been proven to be an93

NP-complete problem [Katz et al., 2017]. This can be reformulated as a mathematical optimization94

problem. For every adversarial class γ ̸= t = argmaxf(z0), we can solve:95

min
z

g(z) = f(z)t − f(z)γ s.t. z ∈ Cin . (4)

If the solution z∗ with v∗ = f(z∗)t − f(z∗)γ ≤ f(z)t − f(z)γ ,∀z ∈ Cin satisfies v∗ > 0 then96

robustness is verified for the adversarial class γ.97

There are two main properties that we would like to have in a verification algorithm: soundness and98

completeness. An algorithm is sound (complete) if every time it verifies (falsifies) a property, it is99

guaranteed to be the correct answer. In practice, when an algorithm is guaranteed to provide the exact100

global minima of Eq. (4), i.e., v∗, it is said to be sound and complete (usually referred in the literature101

as simply complete [Ferrari et al., 2022]), whereas if a lower bound of it is provided v̂∗ ≤ v∗, the102

algorithm is sound but not complete. We will not consider just complete verification, which simply103

aims at looking for adversarial examples, e.g., Madry et al. [2018]. For a deeper discussion on104

soundness and completeness, we refer to Liu et al. [2021].105

3 Method106

Our method, called VPN, can be categorized in the the Branch and Bound (BaB) framework [Land107

and Doig, 1960], a well known approach to global optimization [Horst and Tuy, 1996] and NN108

verification [Bunel et al., 2020a]. This kind of algorithms guarantee finding a global minima of the109

problem in Eq. (4) by recursively splitting the original feasible set into disjoint sets (branching) where110

upper and lower bounds of the global minima are computed (bounding). This mechanism can be used111

to discard subsets where the global minima cannot be achieved (its lower bound is greater than the112

upper bound of another subset).113

3

Our method is based on an α-BaB algorithm [Adjiman et al., 1998], which is characterized for using114

α-convexification [Adjiman and Floudas, 1996] for computing a lower bound of the global minima115

of each subset. To be specific, α-convexification aims to obtain a convex lower bounding function of116

any twice-differentiable function f : Rd → R such that117

fα(z;α, l,u) = f(z) + α

d∑
i=1

(zi − li)(zi − ui) , (5)

as its α-convexified version. Let Hf (z) = ∇2
zzf(z) be the Hessian matrix of f , fα is convex118

in z ∈ [l,u] for α ≥ max{0,− 1
2 min{λmin(Hf (z)) : z ∈ [l,u]}}. Moreover, it holds that119

fα(z;α, l,u) ≤ f(z),∀z ∈ [l,u].120

To make PN verification feasible, we need to study IBP for PNs and design an efficient estimate on121

the α parameter, which are our main technical contributions in the algorithmic aspect. In our case,122

every feasible set, starting with the input set Cin (Eq. (3)), is split by taking the widest variable interval123

and dividing it in two by the middle point. Then, the upper bound of each subproblem is given124

by applying standard Projected Gradient Descent (PGD) [Kelley, 1999] over the original objective125

function. This is a common approach to find adversarial examples [Madry et al., 2018], but as the126

objective is non-convex, it is not sufficient for sound and complete verification. The lower bound is127

given by applying PGD over the α-convexified objective gα, as it is convex, PGD converges to the128

global minima and a lower bound of the original objective. The α parameter is computed only once129

per verification problem. Further details on the algorithm and the proof of convergence of Eq. (4)130

exist in Appendix C.131

In the sequel, we detail our method to compute a lower bound on the minimum eigenvalue of the132

Hessian matrix into three main components: interval propagation, lower bounding Hessians, and fast133

estimation on such lower bounding via power method.134

3.1 Interval Bound Propagation through a PN135

Interval bound propagation (IBP) is a key ingredient of our verification algorithm. Suppose we have136

an input set defined by an ℓ∞-norm ball like in Eq. (3). This set can be represented as a vector of137

intervals z̃ = ([l1, u1]
⊤, [l2, u2]

⊤, · · · , [ld, ud]
⊤) = [l,u] ∈ Rd×2, where [li, ui] are the lower and138

upper bound for the ith coordinate. Let L and U be the lower and upper bound IBP operators. Given139

this input set, we would like to obtain bounds on the output of the network (f(z)i), the gradient140

(∇zf(z)i), and the Hessian (∇2
zzf(z)i) for any z ∈ z̃. The operators L(g(z)) and U(g(z)) of any141

function g : Rd → R satisfy:142

L(g(z)) ≤ g(z), U(g(z)) ≥ g(z),∀z ∈ [l,u] (6)

We will define these upper and lower bound operators in terms of the operations present in a PN.143

Using interval propagation [Moore et al., 2009], we can define:144

Identity
{L(zi) = li
U(zi) = ui

linear mapping

L(

∑
i

wihi(z)) = w+
i L(hi(z)) + w−

i U(hi(z))

U(
∑
i

wihi(z)) = w−
i L(hi(z)) + w+

i U(hi(z))

multiplication

S =

L(h1(z))L(h2(z)),

L(h1(z))U(h2(z)),

U(h1(z))L(h2(z)),

U(h1(z))U(h2(z))

, |S| = 4

L(h1(z)h2(z)) = minS ,

U(h1(z)h2(z)) = maxS ,

(7)

where w+
i = max{0, wi} and w−

i = min{0, wi}, hi(z) is any real-valued function of z and | · | is145

the set cardinality. Note that the set S is equivalent to:146

S =
{
ab
∣∣ ∀a ∈ {L(h1(z)),U(h1(z))} ,∀b ∈ {L(h2(z)),U(h2(z))}

}
.

4

With these basic operations one can define bounds on any intermediate output, gradient or Hessian of147

a PN, e.g., the lower bound on the recursive formula from Eq. (1) can be expressed as:148

L(x(n)
i) = L((w⊤

[n]:iz)x
(n−1)
i +x

(n−1)
i) = L((w⊤

[n]:iz+1)x
(n−1)
i), ∀i ∈ [k], n ∈ [N−1]+1 , (8)

which only consists on a linear mapping and a multiplication of intervals. We extend the upper and149

lower bound (L(·) and U(·)) operators to also work on vectors and matrices by applying them at150

every position of the vector or matrix:151

L(g(z)) =

L(g(z)1)
L(g(z)2)

...
L(g(z)m)

 , L(G(z)) =

 L(g(z)11) · · · L(g(z)1m2)
...

. . .
L(g(z)m11) L(g(z)m1m2

)

, (9)

for g(z) ∈ Rm and G(z) ∈ Rm1×m2 . One can directly use IBP to obtain bounds on the verification152

objective from Eq. (4) with a single forward pass of the bounds through the network and obtaining153

L(g(z)) = L(f(z)t)−U(f(z)γ). IBP is a common practice in NN verification to obtain fast bounds154

[Wang et al., 2018a].155

3.2 Lower bound of the minimum eigenvalue of the Hessian156

Here we describe our method to compute a lower bound on the minimum eigenvalue of the Hessian157

matrix in the feasible set. Before deriving the lower bound, we need the first and second order partial158

derivatives of PNs.159

Let g(z) = f(z)t − f(z)a be the objective function for t = argmaxf(z0) and any a ̸= t. In order160

to compute the parameter α for performing α-convexification, we need to know the structure of our161

objective function. In this section we compute the first and second order partial derivatives of the PN.162

The gradient and Hessian matrices of the objective function (see Eq. (4)) are easily found to be:163

∇zg(z) =

k∑
i=1

(cti − cγi)∇zx
(N)
i , Hg(z) =

k∑
i=1

(cti − cγi)∇2
zzx

(N)
i , (10)

we now define the gradients ∇zx
(n)
i and Hessians ∇2

zzx
(n)
i of Eq. (1) in a recursive way:164

∇zx
(n)
i = w[n]:i · x

(n−1)
i + (w⊤

[n]:iz + 1) · ∇zx
(n−1)
i (11)

165

∇2
zzx

(n)
i = ∇zx

(n−1)
i w⊤

[n]:i + {∇zx
(n−1)
i w⊤

[n]:i}
⊤ + (w⊤

[n]:iz + 1)∇2
zzx

(n−1)
i , (12)

with ∇zx
(1)
i = w[1]:i and ∇2

zzx
(1)
i = 0d×d, being 0d×d a d× d matrix with 0 in every position.166

In the next, we are ready to compute a lower bound on the minimum eigenvalue of the Hessian matrix167

in the feasible set.168

Firstly, for any z ∈ [l,u] and any polynomial degree N , we can express the set of possible Hessians169

H = {Hg(z) : z ∈ [l,u]} as an interval matrix. An interval matrix is a matrix [M] ∈ Rd×d×2170

where every position [m]ij = [L(mij),U(mij)] is an interval. Therefore, if Hg(z) is bounded171

for z ∈ [l,u], then we can represent H = {Hg(z) : Hg(z) ∈ [M]} = {Hg(z) : L(mij) ≤172

Hg(z)ij ≤ U(mij),∀i, j ∈ [d]}.173

For every set of Hessians, we can define the lower bounding Hessian LH . Described in Adjiman et al.174

[1998], This matrix satisfies that λmin(LH) ≤ λmin(Hg(z)),∀Hg(z) ∈ H, z ∈ [l,u]. Let L(M)175

and U(M), the lower bounding Hessian is defined as follows:176

LH =
L(M) + U(M)

2
+ diag

(
L(M)1− U(A)1

2

)
, (13)

where 1 is a vector of ones and diag(v) is a diagonal matrix with the vector v in the diagonal.177

Then, we can obtain the spectral radius ρ(LH) with a power method. As the spectral radius satisfies178

ρ(LH) ≥ |λi(LH)|,∀i ∈ [d], the following inequality holds:179

−ρ(LH) ≤ λmin(LH) ≤ λmin(Hg(z)), ∀Hg(z) ∈ H, z ∈ [l,u] , (14)

allowing us to use α = ρ(LH)
2 ≥ max{0,− 1

2 min{λmin(Hf (z)) : z ∈ [l,u]}}.180

5

3.3 Efficient power method for spectral radius computation of the lower bounding Hessian181

By using interval propagation, one can easily compute sound lower and upper bounds on each position182

of the Hessian matrix, compute the lower bounding Hessian and perform a power method with it to183

obtain the spectral radius ρ. However, this method would not scale well to high dimensional scenarios.184

For instance, in the STL10 case, with 96× 96 RGB images (d = 96 · 96 · 3 = 27, 648) our Hessian185

matrix would require in the order of O(d2) = O(109) real numbers to be stored. This makes it186

intractable to perform a power method over such an humongous matrix, or even to compute the lower187

bounding Hessian. Alternatively, we take advantage of the low rank decomposition characterizing188

PNs to efficiently perform a power method over the lower bounding Hessian.189

Standard power method for spectral radius computation Given any squared and real valued190

matrix M ∈ Rd×d and an initial vector v0 ∈ Rd that is not an eigenvector of M , the sequence:191

vn =
M(Mvn−1)

||M(Mvn−1)||2
, (15)

converges to the eigenvector with the largest eigenvalue in absolute value, i.e. the eigenvector192

where the spectral norm is attained, being the spectral norm ρ(M) = ||M(Mvn−1)||2 [Mises and193

Pollaczek-Geiringer, 1929].194

Power method over lower bounding Hessian of PNs195

We can employ IBP (Section 3.1) in order to obtain an expression of the lower bounding Hessian196

(LH) and evaluate Eq. (15) as:197

LHv =
U(Hg(z))v + L(Hg(z))v

2
+

(
L(Hg(z))1− U(Hg(z))1

2

)
∗ v . (16)

Applying IBP on Eq. (10) we obtain:198

L(Hg(z))v =

k∑
i=1

(cti − cγi)
+ L(∇2

zzx
(N)
i)v +

k∑
i=1

(cti − cγi)
− U(∇2

zzx
(N)
i)v

U(Hg(z))v =

k∑
i=1

(cti − cγi)
− L(∇2

zzx
(N)
i)v +

k∑
i=1

(cti − cγi)
+ U(∇2

zzx
(N)
i)v .

(17)

We can recursively evaluate L(∇2
zzx

(n)
i)v and U(∇2

zzx
(n)
i)v efficiently as these matrices can be199

expressed as a sum of rank-1 matrices:200

Proposition 1. Let δ ∈ [L(δ),U(δ)] be a real-valued weight, the matrix-vector products L(δ ·201

∇2
zzx

(n)
i)v and U(δ · ∇2

zzx
(n)
i)v can be evaluated as:202

L(δ · ∇2
zzx

(n)
i)v =L(δ · ∇zx

(n−1)
i)w⊤

[n]:i

+
v + U(δ · ∇zx

(n−1)
i)w⊤

[n]:i

−
v

+w[n]:i
+ L(δ · ∇zx

(n−1)
i

⊤
)v +w[n]:i

− U(δ · ∇zx
(n−1)
i

⊤
)v

+ L(δ′∇2
zzx

(n−1)
i)v

(18)

203

U(δ · ∇2
zzx

(n)
i)v =L(δ · ∇zx

(n−1)
i)w⊤

[n]:i

−
v + U(δ · ∇zx

(n−1)
i)w⊤

[n]:i

+
v

+w[n]:i
− L(δ · ∇zx

(n−1)
i

⊤
)v +w[n]:i

+ U(δ · ∇zx
(n−1)
i

⊤
)v

+ U(δ′∇2
zzx

(n−1)
i)v ,

(19)

where δ′ ∈ [L(δ),U(δ)] · [L(w⊤
[n]:iz + 1),U(w⊤

[n]:iz + 1)] and vectors L(δ · ∇zx
(n−1)
i) and U(δ ·204

∇zx
(n−1)
i) can be obtained through IBP on Eq. (11).205

Lastly, by applying recursively Proposition 1 from n = N to n = 1, starting with δ = 1, we can206

substitute the results on Eq. (17) and then on Eq. (16) to efficiently evaluate a step of the power207

method (Eq. (15)) without needing to store the lower bounding Hessian matrix or needing to perform208

expensive matrix-vector products.209

6

Overall, our lower bounding method consists in computing a valid value of α that satisfies that the210

α-convexified objective gα is convex, following Eqs. (4) and (5). In particular, we use α = ρ(LH)
2 .211

ρ(LH) is computed via a power method, where the main operation LHv is evaluated without the212

need to compute or store the LH matrix. Provided this valid α, we perform PGD over gα and this213

provides a lower bound of the global minima of Eq. (4).214

4 Related Work215

In this section, we give an overview of neural network verification and polynomial networks, that are216

centered around our target in this work.217

4.1 Neural Network Verification218

Early works on sound and complete NN verification were based on Mixed Integer Linear Programming219

(MILP) and Satisfiability Modulo Theory (SMT) solvers [Katz et al., 2017, Ehlers, 2017, Bastani220

et al., 2016, Tjeng et al., 2019] and were limited to both small datasets and networks.221

The utilization of custom BaB algorithms enabled verification to scale to datasets and networks that222

are closer to those used in practice. Bunel et al. [2020a] review earlier methods like Katz et al. [2017]223

and show they can be formulated as BaB algorithms. BaDNB [Palma et al., 2021] proposes a novel224

branching strategy called Filtered Smart Branching and uses the Lagrangian decomposition-based225

bounding algorithm proposed in Bunel et al. [2020b]. β-CROWN [Wang et al., 2021] proposes a226

bound propagation based algorithm. MN-BaB [Ferrari et al., 2022] proposes a cost adjusted branching227

strategy and leverages multi-neuron relaxations and a GPU-based solver for bounds computing. Our228

work centers on the bounding algorithm by proposing a general convex lowerbound adapted to PNs.229

BaB algorithms for ReLU networks focus their branching strategies on the activity of ReLU neurons.230

This has been observed to work better than input set branching for ReLU networks [Bunel et al.,231

2020a]. Similarly to our method, Anderson et al. [2019], Wang et al. [2018a], Royo et al. [2019] use232

input set branching strategies.233

4.2 Polynomial Networks234

First works have been focused on developing the foundations and showcasing the performance of235

PNs in different tasks [Chrysos et al., 2021b, Chrysos and Panagakis, 2020]. Also, in Chrysos et al.236

[2021a], PN classifiers are formulated in a common framework where other previous methods like237

Wang et al. [2018b] can be framed. Lately, more emphasis has been put onto proving theoretical238

properties of PNs [Fan et al., 2021, Choraria et al., 2022]. In Zhu et al. [2022], they derive Lipschitz239

constant and complexity bounds for two PN decompositions in terms of the l∞ and l2 norms. They240

also analyze robustness of PNs against PGD adversarial attacks by measuring percentage of images241

where PGD fails to find an adversarial example, which is a complete but not sound verification242

method. Our verification method is sound and complete.243

5 Experiments244

In this section we show the efficiency of our method by comparing against a simple Black-box solver.245

Tightness of bounds is also analyzed in comparison with IBP. Finally, a study of the performance of246

our method in different scenarios is performed. Unless otherwise specified, every network is trained247

for 100 epochs with Stochastic Gradiend Descent (SGD), with a learning rate of 0.001, which is248

divided by 10 at epochs [40, 60, 80], momentum 0.9, weight decay 5 · 10−5 and batch size 128. We249

thoroughly evaluate our method over the popular image classification datasets MNIST [LeCun et al.,250

1998], CIFAR10 [Krizhevsky et al., 2014] and STL10 [Coates et al., 2011]. Every experiment is done251

over the first 1000 images of the test dataset, this is a common practice in verification [Singh et al.,252

2019]. For images that are correctly classified by the network, we sequentially verify robustness253

against the remaining classes in decreasing order of network output. Each verification problem is254

given a maximum execution time of 60 seconds, we include experiments with different time limits255

in Appendix A. Note that the execution time can be longer as execution is cut in an asynchronous256

way, i.e., after we finish the iteration of the BaB algorithm where the time limit is reached. All of our257

experiments were run on a single-GPU machine.258

7

Table 1: Verification results for 2nd degree PNs. Columns #F, #T and #t.o. refer to the number of
images where robustness is falsified, verified and timed-out respectively. When comparing with a
black-box solver, our method is much faster and can scale to higher dimensional inputs. This is due
to our efficient exploitation of the low-rank factorization of PNs.

Dataset Model Correct ϵ
VPN (Our method) Gurobi

time F T t.o. time F T t.o.
MNIST 2× 16 961 0.00725 1.76 37 924 0 16.6 37 924 0

(1× 28× 28) 0.013 1.78 71 890 0 15.13 71 890 0
0.05 1.43 682 267 12 6.25 691 270 0
0.06 1.5 790 155 16 4.47 799 162 0

CIFAR10 2× 16 460 1/610 1.03 90 370 0 328.0 90 370 0
(3× 32× 32) 1/255 1.0 183 277 0 250.07 183 277 0

4/255 0.92 427 28 5 87.93 429 31 0
STL10 2× 16 362 1/610 5.06 142 220 0

out of memory(3× 96× 96) 1/255 3.61 246 113 3
4/255 1.39 360 1 1

2 3 4 5 6 7
Degree

10−8

10−5

10−2

101

104

U
−
L

ϵ = 0.0001

α-conv.
IBP

2 3 4 5 6 7
Degree

ϵ = 0.001

2 3 4 5 6 7
Degree

ϵ = 0.01

2 3 4 5 6 7
Degree

ϵ = 0.1

Figure 2: Average difference in log-scale between PGD upper bound (U) and lower bound (L)
provided by α-convexification (blue) and IBP (red) of the first 1000 images of the MNIST dataset.
α-convexification bounds are significantly tighter than IBP for small ϵ values and all PN degrees
from 2 to 7.

5.1 Comparison with Black-box solver259

In this experiment, we compare the performance of our BaB verification algorithm with the Black-260

box solver Gurobi [Gurobi Optimization, LLC, 2022]. Gurobi can globally solve Quadratically261

Constrained Quadratic Programs whether they are convex or not. As this solver cannot extend to262

higher degree polynomial functions, we train 2nd degree PNs with hidden size k = 16 to compare the263

verification time of our method with Gurobi. In order to do so, we express the verification objective as264

a quadratic form g(z) = f(z)t − f(z)a = z⊤Qz+ q⊤z+ c this together with the input constraints265

z ∈ [l,u] is fed to Gurobi and optimized until convergence.266

The black-box solver approach neither scales to higher dimensional inputs nor to higher polynomial267

degrees. With this approach we need O(d2) memory to store the quadratic form, which makes it268

unfeasible for datasets with higher resolution images than CIFAR10. On the contrary, as seen in269

Table 1, our approach does not need so much memory and can scale to datasets with larger input sizes270

like STL10.271

5.2 Comparison with IBP272

In this experiment we compare the tightness of the lower bounds provided by IBP and α-273

convexification and their effectiveness when employed for verification. This is done by executing one274

upper bounding step with PGD and one lower bounding step for IBP and α-convexification methods275

over the initial feasible set provided by ϵ (see Eq. (3)). We compare the average of the distance from276

each lower bound to the PGD upper bound over the first 1000 images of the MNIST dataset for PNs277

with hidden size k = 25 and degrees ranging from 2 to 7. We also evaluate verified accuracy of 2nd278

(PN_Conv2) and 4th (PN_Conv4) PNs with both bounding methods and a maximum time of 120279

seconds, for details on the architecture of these networks, we refer to Appendix A. When using IBP,280

8

Table 2: Verification results with our method employing IBP and α-convexification for lower bounding
the objective. Acc.% is the clean accuracy of the network, Ver.% is the verified accuracy and U.B.
its upper bound. When using α-convexification bounds we get verified accuracies really close to the
upper bound, while when using IBP verified accuracy is 0 for every network-ϵ pair, which makes it
unsuitable for PN verification.

IBP VPN

Dataset Model Acc.% ϵ
(α-convexification)

Time(s) Ver.% Time(s) Ver.% U.B.

MNIST PN_Conv4 98.6
0.015 0.3 0.0 50 96.3 96.4
0.026 0.4 0.0 69 92.9 94.8

CIFAR10
PN_Conv2 63.5

1/255 0.3 0.0 136.2 44.4 44.6
2/255 0.5 0.0 89.2 25.4 27.5

PN_Conv4 62.6
1/255 0.4 0.0 274.6 45.5 46.7
2/255 0.5 0.0 224.1 16.5 30.5

STL10∗ PN_Conv4 38.1 1/255 3.4 0.0 2481.0 21.7 21.9
∗Note: Results obtained in the first 360 images of the dataset due to the longer running times because
of the larger input size of STL10.

we get a much looser lower bound than with α-convexification, see Fig. 2. Only for high-degree,281

high-ϵ combinations IBP lower bounds are closer to the PGD upper bound. In practice, this is not282

a problem for verification, as for epsilons in the order of 0.1, it is really easy to find adversarial283

examples with PGD and there will be no accuracy left to verify.284

The looseness of the IBP lower bound is confirmed when comparing the verified accuracy with IBP285

and α-convexification, see Table 2. With the latter, we are able to verify the accuracy of 2nd and 4th286

order PNs almost exactly (almost no gap between the verified accuracy and its upper bound) in every287

studied dataset, while with the former, we are not able to verify robustness for a single image in any288

network-ϵ pair, confirming the fact that IBP cannot be used for PN verification.289

6 Conclusion290

We propose a method to verify polynomial networks (PNs). Our method, which can be categorized291

as a α-BaB global optimization algorithm, is a novel approach to verification of PNs. We believe can292

be extended to cover other twice-differentiable networks in the future. We exhibit that our method293

outperforms existing methods, such as black-box solvers and IBP. Our method enables verification294

in datasets such as STL10, which includes RGB images of 96× 96 resolution. This is larger than295

the images typically used in previous verification methods. Our method can further encourage the296

community to extend verification to a broader class of functions as well as conduct experiments in297

datasets of higher resolution.298

Limitations: As discussed in Appendix A.2, our verification method does not scale to high-degree299

PNs. Even though we can verify high-accuracy PNs (see Table 2), we are still far from verifying300

the top performing deep PNs studied in Chrysos et al. [2021b]. Another problem that we share with301

ReLU NN verifiers is the scalability to networks with larger input size [Wang et al., 2021]. In this302

work we are able to verify networks trained in STL10 [Coates et al., 2011], but these networks are303

shallow, yet their verification still takes a long time, see Table 2.304

Societal impact: The performance on standard image classification benchmarks has increased305

substantially the last few years, owing to the success of neural networks. Their success enables306

their adoption in tackling real-world problems. However, robustness and trustworthiness of neural307

networks is of critical importance before their adoption in real-world applications. Our method is a308

verifier that focuses on polynomial networks and enables the complete verification of PNs. Therefore,309

we expect that by using the proposed method, certain properties of the robustness could be verified in310

a principled way. We expect this to have a predominantly positive societal impact as either a tool for311

pre-trained models or tool for certifying models as part of their debugging. However, it can also be312

used as a tool to find weaknesses of pretrained PNs by adversarial agents.313

9

References314

Claire S. Adjiman and Christodoulos A. Floudas. Rigorous convex underestimators for general315

twice-differentiable problems. Journal of Global Optimization, 9(1):23–40, Jul 1996. ISSN316

1573-2916. doi: 10.1007/BF00121749. URL https://doi.org/10.1007/BF00121749.317

Claire S. Adjiman, Stefan Dallwig, Christodoulos A. Floudas, and Arnold Neumaier. A global318

optimization method, αbb, for general twice-differentiable constrained nlps — i. theoretical319

advances. Computers & Chemical Engineering, 22:1137–1158, 1998.320

Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization and abstraction:321

A synergistic approach for analyzing neural network robustness. CoRR, abs/1904.09959, 2019.322

URL http://arxiv.org/abs/1904.09959.323

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya V. Nori, and324

Antonio Criminisi. Measuring neural net robustness with constraints. In Proceedings of the 30th325

International Conference on Neural Information Processing Systems, NIPS’16, page 2621–2629,326

Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.327

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M. Pawan Kumar.328

Branch and bound for piecewise linear neural network verification. Journal of Machine Learning329

Research, 21(42):1–39, 2020a. URL http://jmlr.org/papers/v21/19-468.html.330

Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,331

Philip H. S. Torr, and M. Pawan Kumar. Lagrangian decomposition for neural network verification.332

CoRR, abs/2002.10410, 2020b. URL https://arxiv.org/abs/2002.10410.333

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017334

IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017. doi: 10.1109/SP.2017.49.335

Moulik Choraria, Leello Tadesse Dadi, Grigorios Chrysos, Julien Mairal, and Volkan Cevher. The336

spectral bias of polynomial neural networks. In International Conference on Learning Representa-337

tions (ICLR), 2022.338

Grigorios Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Jiankang Deng,339

and Stefanos Zafeiriou. π−nets: Deep polynomial neural networks. In Conference on Computer340

Vision and Pattern Recognition (CVPR), 2020.341

Grigorios G Chrysos and Yannis Panagakis. Naps: Non-adversarial polynomial synthesis.342

Pattern Recognition Letters, 140:318–324, 2020. ISSN 0167-8655. doi: https://doi.org/343

10.1016/j.patrec.2020.11.006. URL https://www.sciencedirect.com/science/article/344

pii/S0167865520304116.345

Grigorios G. Chrysos, Markos Georgopoulos, Jiankang Deng, and Yannis Panagakis. Polynomial346

networks in deep classifiers. CoRR, abs/2104.07916, 2021a. URL https://arxiv.org/abs/347

2104.07916.348

Grigorios G. Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Jiankang Deng, Yannis Panagakis,349

and Stefanos P Zafeiriou. Deep polynomial neural networks. IEEE Transactions on Pattern Analysis350

and Machine Intelligence, page 1–1, 2021b. ISSN 1939-3539. doi: 10.1109/tpami.2021.3058891.351

URL http://dx.doi.org/10.1109/TPAMI.2021.3058891.352

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised353

feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings354

of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of355

Proceedings of Machine Learning Research, pages 215–223, Fort Lauderdale, FL, USA, 11–13356

Apr 2011. PMLR. URL https://proceedings.mlr.press/v15/coates11a.html.357

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-358

archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,359

pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.360

10

https://doi.org/10.1007/BF00121749
http://arxiv.org/abs/1904.09959
http://jmlr.org/papers/v21/19-468.html
https://arxiv.org/abs/2002.10410
https://www.sciencedirect.com/science/article/pii/S0167865520304116
https://www.sciencedirect.com/science/article/pii/S0167865520304116
https://www.sciencedirect.com/science/article/pii/S0167865520304116
https://arxiv.org/abs/2104.07916
https://arxiv.org/abs/2104.07916
https://arxiv.org/abs/2104.07916
http://dx.doi.org/10.1109/TPAMI.2021.3058891
https://proceedings.mlr.press/v15/coates11a.html

Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun Zhu. Efficient361

decision-based black-box adversarial attacks on face recognition. In Conference on Computer362

Vision and Pattern Recognition (CVPR), pages 7714–7722, 2019.363

Zehao Dou, Stanley J Osher, and Bao Wang. Mathematical analysis of adversarial attacks. arXiv364

preprint arXiv:1811.06492, 2018.365

Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. CoRR,366

abs/1705.01320, 2017. URL http://arxiv.org/abs/1705.01320.367

Fenglei Fan, Mengzhou Li, Fei Wang, Rongjie Lai, and Ge Wang. Expressivity and trainability368

of quadratic networks. CoRR, abs/2110.06081, 2021. URL https://arxiv.org/abs/2110.369

06081.370

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification371

via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning372

Representations, 2022. URL https://openreview.net/forum?id=l_amHf1oaK.373

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial374

examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning375

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,376

2015. URL http://arxiv.org/abs/1412.6572.377

Gaurav Goswami, Akshay Agarwal, Nalini K. Ratha, Richa Singh, and Mayank Vatsa. Detecting and378

mitigating adversarial perturbations for robust face recognition. International Journal of Computer379

Vision (IJCV), 127:719–742, 2019.380

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.381

gurobi.com.382

Reiner Horst and Hoang Tuy. Global Optimization: Deterministic Approaches. Springer, Berlin,383

Heidelberg, 1996. URL https://doi.org/10.1007/978-3-662-03199-5_4.384

Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An efficient smt385

solver for verifying deep neural networks, 2017. URL https://arxiv.org/abs/1702.01135.386

C.T. Kelley. 5. Simple Bound Constraints, pages 87–108. 1999. doi: 10.1137/1.9781611970920.ch5.387

URL https://epubs.siam.org/doi/abs/10.1137/1.9781611970920.ch5.388

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):389

455–500, 2009. doi: 10.1137/07070111X. URL https://doi.org/10.1137/07070111X.390

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs.391

toronto. edu/kriz/cifar. html, 55, 2014.392

A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.393

Econometrica, 28(3):497–520, 1960. ISSN 00129682, 14680262. URL http://www.jstor.394

org/stable/1910129.395

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to396

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.397

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,398

2015.399

Qizhang Li, Yiwen Guo, and Hao Chen. Practical no-box adversarial attacks against dnns. In400

Advances in neural information processing systems (NeurIPS), 2020.401

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, and Mykel J.402

Kochenderfer. Algorithms for verifying deep neural networks. Foundations and Trends® in403

Optimization, 4(3-4):244–404, 2021. ISSN 2167-3888. doi: 10.1561/2400000035. URL http:404

//dx.doi.org/10.1561/2400000035.405

11

http://arxiv.org/abs/1705.01320
https://arxiv.org/abs/2110.06081
https://arxiv.org/abs/2110.06081
https://arxiv.org/abs/2110.06081
https://openreview.net/forum?id=l_amHf1oaK
http://arxiv.org/abs/1412.6572
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-662-03199-5_4
https://arxiv.org/abs/1702.01135
https://epubs.siam.org/doi/abs/10.1137/1.9781611970920.ch5
https://doi.org/10.1137/07070111X
http://www.jstor.org/stable/1910129
http://www.jstor.org/stable/1910129
http://www.jstor.org/stable/1910129
http://dx.doi.org/10.1561/2400000035
http://dx.doi.org/10.1561/2400000035
http://dx.doi.org/10.1561/2400000035

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.406

Towards deep learning models resistant to adversarial attacks. In 6th International Conference on407

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Confer-408

ence Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=409

rJzIBfZAb.410

R. V. Mises and H. Pollaczek-Geiringer. Praktische verfahren der gleichungsauflösung . ZAMM411

- Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und412

Mechanik, 9(2):152–164, 1929. doi: https://doi.org/10.1002/zamm.19290090206. URL https:413

//onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19290090206.414

Ramon E. Moore, Ralph Baker Kearfott, and Michael J. Cloud. Introduction to interval analysis.415

2009.416

Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,417

Philip H. S. Torr, and M. Pawan Kumar. Improved branch and bound for neural network verification418

via lagrangian decomposition. CoRR, abs/2104.06718, 2021. URL https://arxiv.org/abs/419

2104.06718.420

Vicenç Rúbies Royo, Roberto Calandra, Dušan M. Stipanović, and Claire J. Tomlin. Fast neural421

network verification via shadow prices. ArXiv, abs/1902.07247, 2019.422

Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial423

examples inevitable? In International Conference on Learning Representations, 2019. URL424

https://openreview.net/forum?id=r1lWUoA9FQ.425

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. Beyond the single neuron426

convex barrier for neural network certification. In H. Wallach, H. Larochelle, A. Beygelzimer,427

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing428

Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/429

paper/2019/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf.430

M. H. Stone. The generalized weierstrass approximation theorem. Mathematics Magazine, 21(4):431

167–184, 1948. ISSN 0025570X, 19300980. URL http://www.jstor.org/stable/3029750.432

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,433

and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning434

Representations, 2014. URL http://arxiv.org/abs/1312.6199.435

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed436

integer programming. In International Conference on Learning Representations, 2019. URL437

https://openreview.net/forum?id=HyGIdiRqtm.438

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis439

of neural networks using symbolic intervals. In Proceedings of the 27th USENIX Conference440

on Security Symposium, SEC’18, page 1599–1614, USA, 2018a. USENIX Association. ISBN441

9781931971461.442

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. Beta-443

crown: Efficient bound propagation with per-neuron split constraints for complete and incomplete444

neural network verification. CoRR, abs/2103.06624, 2021. URL https://arxiv.org/abs/445

2103.06624.446

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In447

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7794–7803,448

2018b. doi: 10.1109/CVPR.2018.00813.449

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. Hessian-based analysis of large450

batch training and robustness to adversaries. In Proceedings of the 32nd International Conference451

on Neural Information Processing Systems, NIPS’18, page 4954–4964, Red Hook, NY, USA, 2018.452

Curran Associates Inc.453

Yaoyao Zhong and Weihong Deng. Adversarial learning with margin-based triplet embedding454

regularization. In International Conference on Computer Vision (ICCV), pages 6549–6558, 2019.455

12

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19290090206
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19290090206
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19290090206
https://arxiv.org/abs/2104.06718
https://arxiv.org/abs/2104.06718
https://arxiv.org/abs/2104.06718
https://openreview.net/forum?id=r1lWUoA9FQ
https://proceedings.neurips.cc/paper/2019/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
http://www.jstor.org/stable/3029750
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=HyGIdiRqtm
https://arxiv.org/abs/2103.06624
https://arxiv.org/abs/2103.06624
https://arxiv.org/abs/2103.06624

Zhenyu Zhu, Fabian Latorre, Grigorios Chrysos, and Volkan Cevher. Controlling the complex-456

ity and lipschitz constant improves polynomial nets. In International Conference on Learning457

Representations, 2022. URL https://openreview.net/forum?id=dQ7Cy_ndl1s.458

Checklist459

1. For all authors...460

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s461

contributions and scope? [Yes]462

(b) Did you describe the limitations of your work? [Yes] In Section 6 we discuss the463

limitations.464

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our465

method aims at verifying PNs robustness to adversarial attacks, which has no direct466

negative societal impact, see Section 6.467

(d) Have you read the ethics review guidelines and ensured that your paper conforms to468

them? [Yes]469

2. If you are including theoretical results...470

(a) Did you state the full set of assumptions of all theoretical results? [Yes]471

(b) Did you include complete proofs of all theoretical results? [Yes] The complete proof472

of propositions, lemmas and theorems is present in the appendix.473

3. If you ran experiments...474

(a) Did you include the code, data, and instructions needed to reproduce the main experi-475

mental results (either in the supplemental material or as a URL)? [Yes] We use publicly476

available datasets and our code and instructions are available in the supplementary477

material.478

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they479

were chosen)? [Yes]480

(c) Did you report error bars (e.g., with respect to the random seed after running exper-481

iments multiple times)? [N/A] We follow the standard practice in the literature for482

reporting the results.483

(d) Did you include the total amount of compute and the type of resources used (e.g., type484

of GPUs, internal cluster, or cloud provider)? [Yes] A single GPU was used in each485

experiment. The single GPU is part of our internal cluster.486

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...487

(a) If your work uses existing assets, did you cite the creators? [Yes]488

(b) Did you mention the license of the assets? [N/A] Standard image-based datasets are489

used in this work. All of them are publicly available and we cite their respecting papers,490

where the licenses are mentioned.491

(c) Did you include any new assets either in the supplemental material or as a URL? [No]492

(d) Did you discuss whether and how consent was obtained from people whose data you’re493

using/curating? [N/A]494

(e) Did you discuss whether the data you are using/curating contains personally identifiable495

information or offensive content? [N/A]496

5. If you used crowdsourcing or conducted research with human subjects...497

(a) Did you include the full text of instructions given to participants and screenshots, if498

applicable? [N/A]499

(b) Did you describe any potential participant risks, with links to Institutional Review500

Board (IRB) approvals, if applicable? [N/A]501

(c) Did you include the estimated hourly wage paid to participants and the total amount502

spent on participant compensation? [N/A]503

13

https://openreview.net/forum?id=dQ7Cy_ndl1s

	Introduction
	Background
	Polynomial Networks (PNs)
	Robustness Verification

	Method
	Interval Bound Propagation through a PN
	Lower bound of the minimum eigenvalue of the Hessian
	Efficient power method for spectral radius computation of the lower bounding Hessian

	Related Work
	Neural Network Verification
	Polynomial Networks

	Experiments
	Comparison with Black-box solver
	Comparison with IBP

	Conclusion
	Appendix
	Comparison with ReLU BaB verification algorithms.
	Limitations of the proposed method

	Background
	Coupled CP decomposition (CCP)
	Nested coupled CP decomposition (NCP)
	Product of Polynomials

	BaB algorithm for PN robustness verification
	Lowerbound of the minimum eigenvalue of the Hessian of PNs

