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Abstract

Inspired by recent advances in the field of expert-
based approximations of Gaussian processes (GPs),
we present an expert-based approach to large-scale
multi-output regression using single-output GP ex-
perts. Employing a deeply structured mixture of
single-output GPs encoded via a Probabilistic Cir-
cuit allows us to accurately capture correlations
between multiple output dimensions. By recurs-
ively partitioning the covariate space and the out-
put space, posterior inference in our model reduces
to inference on single-output GP experts, which
only need to be conditioned on a small subset of
the observations. We show that inference can be
performed exactly and efficiently in our model, that
it can capture correlations between output dimen-
sions and, hence, often outperforms approaches
that do not incorporate inter-output correlations, as
demonstrated on several datasets in terms of the
negative log predictive density.

1 INTRODUCTION

Gaussian processes (GPs) are a popular class of stochastic
processes that can be understood as priors over functions.
Because of their expressiveness and interpretability—the
generalisation properties of a GP are solely determined
by choice of the kernel function, they have been heavily
used for various machine learning tasks, e.g., for regres-
sion or classification tasks [Rasmussen and Williams, 2006].
Moreover, GPs have been shown to be closely related to
other machine learning models, e.g. latent variable models,
since they correspond to the infinite width limit of Bayesian
neural networks [Neal, 1994]. However, exactly computing
the posterior distribution of a GP, i.e., conditioning a GP
prior on D-dimensional observations, scales cubic in the
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number of observations (N ), i.e., O(N3), and has quadratic
memory cost, i.e., O(N2 + DN). This limits their use to
moderately sized data sets. Indeed, in case the observations
are univariate and entail a natural ordering, e.g., time, the
exact posterior distribution can be obtained in linear time.

To enable posterior inference in GPs on large-scale prob-
lems, recent work, see e.g. Liu et al. [2020] for a detailed
review, mainly resorts to global approximations to the pos-
terior, e.g., using inducing points, or local approximations
that aim to distribute the computation of the posterior dis-
tribution onto local experts. Unfortunately, most of these
approaches only focus on single-output regression, i.e., the
dependent variable is univariate, and in the case of local
approximations, they do not easily extend to multi-output
regression tasks, see Bruinsma et al. [2020] for a detailed
discussion on recent techniques on multi-output GPs.

As an alternative, Trapp et al. [2020] proposed a local expert-
based approximation to GPs that leverages Probabilistic
Circuits (e.g. Poon and Domingos [2011], Kisa et al. [2014],
Peharz et al. [2020]), which are a class of deep tractable
probabilistic models, allowing them to perform efficient
and exact posterior inference in their model. Moreover, in
contrast to popular product-of-experts based approaches
(e.g. Deisenroth and Ng [2015], Cohen et al. [2020]), the
method by Trapp et al. [2020] does not approximate the
posterior predictive distribution of a GP directly but instead
is a model on its own, making it more suitable for further
extensions than product-of-experts based approaches.

The contributions of this work are as follows:

1. We propose Multi-Output Mixture of Gaussian Process
(MOMoGP), an extension of Trapp et al. [2020] for
multi-output regression that scales inO(KM3), where
M << N is the number of observations per expert,
and K ≥ D is the number of local experts.

2. Moreover, we show that posterior inference in our
model can be done exactly and reduces to posterior
inference at the GP leaves of the networks.
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3. Finally, we present a quantitative evaluation of our ap-
proach as well as an application to image upsampling,
indicating that MOMoGP is a promising model for
multi-output regression.

The rest of the paper is organised as follows. We start by
reviewing GP regression and Probabilistic Circuits in Sec-
tion 3. In Section 4, we then present MOMoGP for multi-
output regression and discuss posterior inference as well
as hyperparameter optimisation. Finally, before concluding,
we present a quantitative evaluation of the proposed method
in Section 51.

2 RELATED WORK

Time Series Regression. Time series regression is a central
question in machine learning. In the single output regression
case, the simplest regression algorithm — linear regression
— assumes a linear relationship between a set of predict-
ors (features) and a target variable and fits a straight line
through all the predictors to generate a prediction for the
target variable. In this field, there are some traditional ma-
chine learning approaches such as random forest [Breiman,
2001], Adaboost [Solomatine and Shrestha, 2004] and XG-
boost [Chen and Guestrin, 2016]. Furthermore, neural net-
works such as multi-layer perceptron [Murtagh, 1991] have
also been used for time series regression. On the other hand,
the Gaussian process regression [Rasmussen and Williams,
2006] also takes a non-trivial role in univariate output re-
gression.

Multi-Output Regression. The methods mentioned above
can always be applied to multi-output regression by assum-
ing that all output dimensions are independent. However,
simply ignoring the correlations among output dimensions
will not lead to an accurate representation of the regression
task at hand. One solution is to employ a neural network-
based regression model, which can naturally model the out-
put space jointly. However, accurately quantifying the un-
certainties and interpreting the modelled dependencies is
often challenging or only possible to a limited extend.

Existing methods for multi-output regression can be cat-
egorized into two categories: problem transformation
methods and algorithm adaptation methods [Borchani
et al., 2015]. Problem transformation methods are mainly
based on transforming the multi-output regression prob-
lem into a single-target problem. Consequently, one ag-
gregates the predictions from each single-target regression
task to obtain the multi-output predictions. Single-Target
Method, Multi-Target Regressor Stacking, and Regressor
Chains [Spyromitros-Xioufis et al., 2012] are among prob-
lem transformation methods. Moreover, Zhang et al. [2012]
presented a multi-output support vector regression approach

1Source code is available at: https://github.com/
ml-research/MOMoGP

based on problem transformation, which extends the ori-
ginal feature space and expresses the multi-output problem
as an equivalent single-output problem. On the other hand,
algorithm adaptation based methods [Kocev et al., 2009,
Breiman and Friedman, 1997, Similä and Tikka, 2007] adapt
a specific single-output method to handle multi-output data-
sets directly. These methods generally achieve better results
as they consider the underlying relationships between the
features and the corresponding targets and the relationships
between the targets. Existing approaches include reduced-
rank regression [Izenman, 1975, Abraham et al., 2013],
multi-output support vector regression [Tuia et al., 2011,
Xu et al., 2013], kernel methods [Baldassarre et al., 2012,
Alvarez et al., 2011] and multi-target regression trees [Sto-
janova et al., 2012, Appice and Malerba, 2014, Levatić et al.,
2014].

Williams et al. [2007] proposed a multi-task Gaussian pro-
cess, where the model learns a shared covariance function
on input-dependent features and a “free-form” covariance
matrix over tasks. Further, Platanios and Chatzis [2012]
presented a nonparametric Bayesian method for multivariate
volatility modelling and proposed a mixture of multi-output
heteroscedastic GPs to model the covariance matrices of
multiple assets. However, this approach is computationally
not tractable. More recently, Bruinsma et al. [2020] pro-
posed a linear mixing model, which scales linearly in the
number of output dimensions, and showed that their ap-
proach could be combined with variational approximations
to the GP posterior.

Probabilistic Circuits for Time series. Probabilistic Cir-
cuits (PCs) have previously been used for time series
modelling. Melibari et al. [2016] proposed dynamic sum-
product networks for density estimation of time series,
which was later extended to so-called recurrent sum-product
networks [Kalra et al., 2018, Duan et al., 2020] by utilizing
discriminative learning. Recently, Yu et al. [2021] proposed
to model the distribution of time series in the spectral do-
main, using Whittle sum-product networks. While these
approaches are able to model the joint distribution of the
time series, they often do not allow for straightforward com-
putation of the predictive distribution.

Trapp et al. [2020] proposed to define PCs for time series
modelling in terms of their induced measure and to equip
the PC with Gaussian measures induced by local GPs. The
resulting model – called DSMGP – is a deep mixture of
naïve-local GP experts. While DSMGPs aim to approximate
GPs by a deep mixture of GP experts, they are limited to
single-output GP regression hence Trapp et al. [2020] had to
resort to a full factorisation for the multi-output regression.

Conversely, MOMoGPs offer a principled way of incorpor-
ating multiple output dimensions and model dependencies
between outputs through the parameters of the PC. For uni-
variate regression, MOMoGPs reduce to DSMGPs and can
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therefore be understood as a generalisation of DSMGPs.

3 NOTATION AND BACKGROUND

Notation. We use the following notations throughout the pa-
per. D is the dataset, where X is the set of covariates and Y
is the set of target values. Bold font capitalised X and Y are
sets of random variables. X is the set of random variables in
the covariate space (which is an uncountable set) and Y the
set of output RVs. The input space has dimensionD, the out-
put space has dimension P , and the number of observations
is N . Furthermore, x denotes the covariates of one obser-
vation and y the observed multivariate target/output. We
use yn to denote the nth observed target/output value from
dataset D, yp for the pth dimension in the output space,
and yn,p denotes the pth dimension of the nth observed
target/output value.

In a GP, as reviewed below, k(·, ·) denotes the covariance
function and K the covariance (Gram) matrix. A single-
output GP expert is parameterized by hyperparameters θL.

In a Probabilistic Circuit C, as reviewed in the next section,
S represents a sum node, Px represents a product node
that partitions the covariate space, Py represents a product
node that partitions the output space, L is a leaf node, and
N denotes a general node. Furthermore, KS denotes the
number of children of a sum node, and similarly, KPx

, KPy

denotes the numbers of children of a product node. The
maximum number of observations per leaf is denoted as M .

3.1 GAUSSIAN PROCESS REGRESSION

A Gaussian process is defined as an (uncountable) col-
lection of random variables (RVs) X indexed by an ar-
bitrary covariate space R, where any finite subset of the
RVs is multivariate Gaussian distributed and overlapping
finite subsets are marginally consistent [Rasmussen and
Williams, 2006]. Moreover, a GP is fully specified by its
mean function m : RD → R and its covariance function
k : RD × RD → R. Throughout the paper, we assume a
zero-mean function without loss of generality.

Let us assume a dataset D = {(xn, yn)}Nn=1 consisting
of N observations and denote X = {xn}Nn=1 and Y =

{yn}Nn=1. Then the covariance matrix KX ,X is given as:

KX ,X =
k (x1,x1) k (x1,x2) · · · k (x1,xN )
k (x2,x1) k (x2,x2) · · · k (x2,xN )

...
...

. . .
...

k (xN ,x1) k (xN ,x2) · · · k (xN ,xN )

 . (1)

In single-output GP regression tasks and assuming a Gaus-
sian likelihood model, the posterior mean and the posterior

covariance given a test datum x∗ can be obtained in closed-
form, i.e.

mD(x∗) = Kx∗,XC
−1Y , (2)

and

VD(x∗) = Kx∗,x∗ −Kx∗,XC
−1KT

x∗,X , (3)

where C = [KX ,X + σ2I], with σ2 the noise variance and
I the identity matrix. However, computing the posterior
predictive distribution, and consequently, the posterior dis-
tribution, scale poorly with the number of observations, as
the matrix inversion of C required in the computation of the
posterior mean and covariance has computational cost cubic
in N .

3.2 PROBABILISTIC CIRCUITS

Probabilistic Circuits are tractable probabilistic models,
defined as a rooted directed acyclic graph (DAG), in which
leaf nodes represent univariate probability distributions and
non-terminal nodes represent either a mixture (or states of
an observed variable in case of a deterministic circuit) or an
independence relation of their children.

More formally, a PC C over a set of RVs X is a probabilistic
model defined via a DAG, also called the computational
graph, containing input distributions (leaves), sums S and
products P; and a scope function sc(·). We refer to Trapp
et al. [2019] for further details.

For a given scope function, all leaves of the PC are density
functions over some subset of RVs U ⊂ X. This subset
is called the scope of the node, and for a node N is de-
noted as sc(N). The scope of inner nodes is defined as the
union of the scope of its children. Inner nodes compute
either a weighted sum of their children or a product of their
children, i.e. S =

∑
N∈ch(S) wS,NN and P =

∏
N∈ch(P) N,

where ch(·) denotes the children of a node. The sum
weights wS,N are assumed to be non-negative and normal-
ized, i.e. wS,N ≥ 0,

∑
N wS,N = 1, without loss of general-

ity [Peharz et al., 2015]. Further, we assume the PC to be
smooth (complete) and decomposable [Poon and Domingos,
2011]. Specifically, a PC is smooth if for each sum S it holds
that sc(N′) = sc(N′′), for all N′,N′′ ∈ ch(S). And the PC
is called decomposable if it holds for each product P that
sc(N′) ∩ sc(N′′) = ∅, for all N′ 6= N′′ ∈ ch(P).

Note that PCs are typically defined only for a finite set of
RVs, while Trapp et al. [2020] showed that it is possible to
extend PCs to the stochastic process case by defining them
based on their induced measure. We will, therefore, follow
the approach in [Trapp et al., 2020] and recursively define
our model as such.



4 MULTI-OUTPUT MIXTURE OF
GAUSSIAN PROCESSES

Now we have everything at hand to introduce our MOMoGP
model formally. We start off with the problem formulation,
then we will introduce the MOMoGP model and show how
to compute posterior distribution exactly as well as how
to perform predictions. Finally, we discuss hyperparameter
optimisation in MOMoGPs.

4.1 PROBLEM FORMULATION

Given a set of observations D = {(xn,yn)}Nn=1 with cov-
ariates xn ∈ RD and noisy target values yn ∈ RP , we aim
to infer the latent functions:

fp ∼ GP(0,K), (4)

yp | fp ∼ N(fp(x), σ2I) , (5)

while aiming to account for the correlations between the
target values. One approach would be to model the multi-
output targets by adopting a multi-valued latent function.
However, such an approach scales cubic in the number of
output dimensions P , i.e. O(N3P 3). Alternatively, we ex-
ploit a simple observation, that is, we can leverage a mix-
ture of independent GP estimators to capture correlations
between the output dimensions. This is akin to the Instant-
aneous Linear Mixing Model by Bruinsma et al. [2020] but
explores recent work by Trapp et al. [2020] to perform effi-
cient and exact posterior inference in a deep mixture over
single-output GP experts to obtain correlated multi-output
predictions.

4.2 MULTI-OUTPUT MIXTURE OF GPS

The Multi-Output Mixture of Gaussian Process (MOMoGP)
can be recursively defined as follows:

1. A Gaussian measure induced by a GP is a MOMoGP,

2. a product of MOMoGPs with disjoint covariate space
or disjoint output space is a MOMoGP, and

3. a convex combination of MOMoGPs over the covariate
and output space is a MOMoGP.

The recursive definition of a MOMoGP is illustrated in
Fig. 1. Here, w1,1, · · · , w1,k, · · · , w1,KS

are KS many nor-
malized weights of the sum node S. The product node Px,
which is a child of the root, splits the input covariate space
X, by assuming certain regions of the input space to be
approximately independent. The second product node, Py,
partitions the output space Y into disjoint subsets. More
specifically, its children can either be a set of output vari-
ables, e.g, Yl

1 or contain only a single variable, e.g., Yl+1.
For a univariate output, e.g., Yl+1 we construct a GP leaf L

+ S

. . . . . .× Px

× Py. . . . . .

GP. . . . . .

w1,1 w1,k w1,KS

Xt<i Xi≤t<j Xt≥j

Yl
1 Yl+1 YP

l+2

Figure 1: Illustration of the MOMoGP structure. w1,k rep-
resents for the normalized weights, Xi≤t<j ⊂ X represents
the subset of RVs Xt with index i ≤ t < j of the covariate
space, and Yl

1 denotes a subset of RVs of the output space,
respectively. Note that we randomly permute the index set
of the output space at each product node Py .

on the respective covariate subspace and output subspace.
Otherwise, the process recurses by appending a new sum
node, resulting in a deep hierarchical structure.

4.3 MOMOGP CONSTRUCTION

The structure of a MOMoGP can either be manually defined
or learned from data. To learn it from data, one can leverage
Alg. 1. In short, we alternate between introducing sum and
product nodes and, finally, append GP experts as leaves once
one of the termination criteria is fulfilled.

As illustrated in Fig. 2, to create a sum node S, we first
construct KS many children under the sum and then attach
those children with uniform weights. In the next step, a
product node Px is constructed by partitioning the covari-
ate space. For the kth product node, the covariate space is
partitioned by the KPx

-quantiles of the dimension with the
kth largest sample variance. Afterwards, a product node Py
is created by randomly partitioning the output space. While
splitting the output space, a conditional independence test on
y can also be applied instead of random splitting. Therefore,
product nodes either enforce independence assumptions in
the covariate space (resulting in weak discontinuities) or in-
dependence assumptions in the output space (assuming sets
of the dependent variables are conditionally independent).
The above sum and product nodes are constructed recurs-



Algorithm 1: Construction of a MOMoGP
Input: X,Y,D, KS, KPx, KPy , M Output: C
Function buildGP(X, Y,D)

Equip L with a single output GP expert on the
domain X and output space Y ;

Condition L on D ;
return L

Function buildSumNode(X,Y,D)
w ← { 1

KS
}KS

k=1;
Let d1, . . . , dD represent the dimensions of the

covariate space in increasing order of their sample
variance in D;

for k = 1, . . . ,KS do
S← S + wk buildProductNodeX(X,Y,D, dk)

return S
Function buildProductNodeX(X,Y,D, d)

l← lower bound of X for dimension d;
u← upper bound of X for dimension d;
v ← u− l ;
s1, . . . , sKPx−1 ←KPx-quantiles of the interval
[l, u];
l̃← l ;
for k = 1, . . . ,KPx − 1 do

ũ← sk ;
X̃← sub-domain of X such that upper and

lower bounds for d are equal to ũ, l̃,
respectively. ;
D̃← subset of D such that the covariate of
every (xn,yn) ∈ D̃ is defined on X̃. ;
P← P× buildProductNodeY(X̃,Y, D̃);
l̃← sk

return P
Function buildProductNodeY(X,Y,D)

if Number of observations in D > M then
Y1, · · · ,YKPy−1 ← random partitions of

output space Y;
for k = 1, . . . ,KPy − 1 do

P← P× buildSumNode(X,Yk,D)

else
Y1, · · · , YKPy−1 ← each dimension of output
space Y;

for k = 1, . . . ,KPy − 1 do
P← P× buildGP(X, Yk,D)

return P
C← buildSumNode(X,Y,D)

ively until the number of observations in the subspace is
smaller than a predefined threshold M . If the output space
is still multidimensional, it will be directly factorized with
a product node Py. Finally, we construct leaf nodes by pla-
cing single-output GP experts at the respective covariate
subspace parameterized by hyperparameters θL.

4.4 EXACT POSTERIOR INFERENCE

Both PCs and GPs allow for exact posterior inference, like-
wise, we can formalize the exact posterior inference for
MOMoGP as follows:

(Leaf node) If the MOMoGP is a leaf node L we can
obtain the posterior distribution analytically, assuming a
Gaussian likelihood.

(Sum node) If the MOMoGP is a sum node S, the pos-
terior inference becomes:

pS(f | D) ∝
∏

(xn,yn)∈D

p (yn | fn)
∑

N∈ch(S)

wS,N pN (fn | xn)

=
∑

N∈ch(S)

wS,N

∏
(xn,yn)∈D

p (yn | fn) pN (fn | xn)

︸ ︷︷ ︸
=pN(f |D)

. (6)

Instead of being univariate as in Trapp et al. [2020], yn is
multidimensional in MOMoGP.

(Product node) If the MOMoGP is a product node P
decomposing either the covariate space or the output space,
we obtain:

pP(f | D) ∝
∏

(xn,yn)∈D

p (yn | fn)
∏

N∈ch(P)

pN (fn | xn)

=
∏

N∈ch(P)

( ∏
(xn,yn)∈D(N)

p (yn | fn) pN (fn | xn)

︸ ︷︷ ︸
=pN(f |D(N))

)
,

(7)

where D(N) denotes the set of observations in the subspace
for which N is an expert of. In the case of the covariate space
decomposition (Px), D(N) = {(xn,yn) ∈ D |xn ∈ XN},
where XN is the subset of covariates falling into the sub-
space at node N. While for the output space decomposition
(Py), D(N) contains a subset of outputs for each observa-
tion. Therefore, D(N) will either contain fewer observations,
i.e. #D(N) < #D, or fewer output dimensions, i.e. for each
n we have yn ∈ D(N) with yn ∈ RPN and PN < P . In
contrast to Trapp et al. [2020], product nodes in MOMoGPs
partition either the covariate space or the output space, while
DSMGPs [Trapp et al., 2020] only partition the covariate
space and assume the output space to be univariate.

4.5 PREDICTIONS

Given an unseen datum x∗, its posterior predictive distri-
bution is a mixture distribution. To obtain a single pre-
diction for an unseen datum, we employ an approxima-
tion to the multimodal posterior predictive distribution of
the MOMoGP using the first and the second moment. By



X = {Xt | t ∈ R}

Covariate space

Y = {Yp}Pp=1

Output space

D

Data set

+

×

. . .

×

. . .

. . .

×

. . .

. . .

#D(N) > M

Factorise Y and
create GP leaves.

. . .

Partition the covariate space X
and split the data set into subsets
according to the partition of X.

Partition the output space Y
if the number of observations in

D(N) is larger than M .

w1,1

w1,...

w1,KS

Xt<i

Xt≥i

Yl
1

YP
l+1

Xt<j

Xt≥j
No

Yes

recurse

recurse

Figure 2: Illustration of Alg. 1 for learning MOMoGPs in a recursive fashion. Sum nodes have weighted children that are
product nodes. Product nodes either enforce independence assumptions in the covariate space (resulting in discontinuities)
or independence assumptions in the output space (assuming sets of the dependent variables are independent). Sum nodes
replace the independence assumptions made by product nodes through conditional independence. Finally, leaf nodes are
single-output GP experts at the respective covariate subspace. (Best viewed in color)

this, we approximate the posterior predictive distribution
with its closest Gaussian distribution measured in KL diver-
gence [Rasmussen and Williams, 2006].

Let L be the set of all leaves in a MOMoGP, and τi : χ 7→ L
a function which maps an unseen datum x∗ to a leaf L
for each induced tree. The posterior mean and variance
given x∗, are propagated bottom-up. Let mτi(x∗)(x

∗) and
Vτi(x∗)(x

∗) denote the mean and variance of the posterior
distribution from the GP at leaf τi(x∗), respectively. Now, a
product node Py that partitions the output space performs
concatenation of the mean and variance from its children:

mP(x∗) = [mN1
(x∗), · · · ,mNk

(x∗)], (8)
and VP(x∗) = diag(VN1

(x∗) , · · · , VNk
(x∗)) . (9)

In contrast, a product node Px that partitions the covariate
space acts as a gate. Moreover, a sum node S corresponds to
a mixture of multivariate Gaussian distributions, resulting
again in a multivariate Gaussian distribution. The mean of
the multivariate Gaussian distribution is:

mS(x∗) =
∑

N∈ch(S)

wS,NmN(x∗) , (10)

and the covariance matrix of it becomes:

VS(x∗) =
∑

N∈ch(S)

wS,NVN(x∗) +
∑

N∈ch(S)

wS,NmN(x∗)T mN(x∗)

+mS(x∗)T mS(x∗) .
(11)

4.6 HYPERPARAMETER OPTIMIZATION

To optimize the hyperparameters of a MOMoGP model,
we can maximize its log marginal likelihood. When using
a formulation in terms of a mixture over induced trees T ,
see Trapp et al. [2020] for details, and following the argu-
ment from 4.4, we can see that the marginal likelihood of a
MOMoGP is obtained as follows:

p(Y |X , θ)

=

∫ ∏
(x,y)∈D

K∑
k=1

p(Tk)

P∏
p=1

∏
L∈Tk,V

p(yp |x, θL)1{Yp,L} df

=

∫ K∑
k=1

p(Tk)

P∏
p=1

∏
L∈Tk,V

∏
(x,yp)∈DL

p(yp |x, θL)1{Yp,L} df

=

K∑
k=1

p(Tk)

P∏
p=1

∏
L∈Tk,V

∫ ∏
(x,yp)∈DL

p(yp |x, θL)1{Yp,L} df

︸ ︷︷ ︸
=pYp (yp | XL,θL)

,

(12)
where DL = {(x,yp) ∈ D |x ∈ XL}, with XL being the
subset of covariates falling into the subspace at leaf L, and
1{Yp,L} = 1{Yp∈sc(L)}.

We can now readily obtain the log marginal likelihood,
which is given as: log p(Y |X , θ) =

L
K

Σ
k=1

E

log p(Tk) +

P∑
p=1

∑
L∈Tk,V

log pYp
(yp | XL, θL)

 ,

(13)



Dataset N (train) N (test) D P

Parkinsons 4,112 1,763 16 2
scm20d 7,173 1,793 61 16
WindTurbine 4,000 1,000 8 6
Energy 57,598 14,400 32 17
usFlight 500,000 200,000 8 2

Table 1: Statistics of the multi-output benchmark datasets
used in our evaluation. A large variety of output dimensions
P were chosen, ranging from 2 to 17.

where L
K

Σ
k=1

E denotes the log-sum-exp operation and the

marginal log likelihood of a GP expert is given as:

log pYp
(yp | X , θ) = −1

2
(yT
pC
−1yp+log |C|+N log 2π) ,

(14)
where C = [KX ,X + σ2I] and N = #X .

Note that we have assumed that each GP expert has its
own hyperparameters θL. Doing so allows us to capture
non-stationarities and heteroscedasticity, while potentially
increasing the risk of overfitting [Zhang and Williamson,
2019].

Note that if the underlying process is believed to be station-
ary, it is possible to tie the hyperparameters either by using
one set of global hyperparameters for each output dimen-
sion or by adopting the approach described in Trapp et al.
[2020] and use a similarity matrix to incorporate depend-
ence between the otherwise independent local experts. Note
that we consistently used independent hyperparameters for
each GP expert in our experiments.

5 EXPERIMENTAL EVALUATION

In this section, we will examine the performance of MO-
MoGP on several benchmark datasets and compare it with
other state-of-the-art approaches. First, we describe the data-
sets and then provide a detailed explanation of the experi-
mental setup and evaluation measures we used. Finally, we
discuss the experimental results obtained.

5.1 DATASETS

We validate our model on several benchmark datasets for
multi-output regression. The number of observations in the
datasets varies from 4k to 500k, with output space dimen-
sions from 2 to 17. The statistics of the datasets used in the
evaluation are given in Table 1. The Parkinsons and usFlight
datasets, as well as their training/test splits, are from Trapp
et al. [2020]. Note that we applied Principal Component
Analysis (PCA) [Wold et al., 1987] on the scm20d dataset
to reduce its input dimension from 61 to 30. Both MOMo-

GPs and DSMGPs recursively partition the covariate space
using axis-aligned splits. Therefore, applying PCA to high-
dimensional covariate spaces is essential for computational
reasons for both approaches. For the Energy dataset, we se-
lect its subset “Adelaide” for our experiments. The WindTur-
bine dataset is simulated with the FAST simulator 2.

5.2 EXPERIMENTAL PROTOCOL

To construct a MOMoGP for each experiment, we imple-
mented Alg. 1. More specifically, the root node of our hier-
archy structure was a sum node, with KS product nodes as
children, initialized with uniform weights. Product nodes
that split the input space had KPx

children, and those that
decompose the output space used a random split strategy to
obtain KPy children. The structure construction terminated
with GP leaves when the output space was completely de-
composed and the number of observations in the subspace
is smaller than a predefined threshold of M .

In the experiments, we set KS = 2, KPy
= 2, and

M ∈ {500, 1000, 5000} based on the size of dataset. Each
GP leaf was equipped with a Matérn-3/2 covariance func-
tion with Automatic Relevance Detection (ARD), and a
zero-mean function. The initialized lengthscale paramet-
ers of the GPs were randomly sampled. The learning rate
and the number of training epochs were tuned to speed up
the training, and at the same time, avoid overfitting. That
is, when the training loss reached a plateau, the optimiza-
tion terminated. We used Adam to maximize the marginal
likelihood of the GP leaves.

The hyperparameters θL of all GPs in our experiments were
sampled from a Gamma distribution Γ(2, 3). Note that we
kept consistent settings for all the GP-related approaches,
e.g., covariance and mean functions. For MOSVGP, the
number of inducing points was setQ = 500, and the number
of latent functions corresponded to the number of output
dimensions.

Additionally, we tested our hypothesis that a mixture of inde-
pendent single-output GPs can model correlations between
the outputs by employing a shallow mixture of exact single-
output GPs denoted as sumGP. In fact, sumGPs are a sub-
class of MOMoGPs which contain only sum nodes and GP
leaves.

For quantitative evaluation, we compared the Root Mean
Squared Error (RMSE):

RMSE(y, ŷ) =
1

P

P∑
p=1

√√√√ 1

N

N∑
n=1

(yn,p − ŷn,p)2, (15)

2https://www.nrel.gov/wind/nwtc/fast.html

https://www.nrel.gov/wind/nwtc/fast.html


Dataset LR GP MOGP MOSVGP DSMGP sumGP MOMoGP

RMSE 0.974 0.783 0.793 0.864 0.774 0.784 0.775↓
Parkinsons MAE 0.816 0.610 0.603 0.708 0.604 0.610 0.605↓

NLPD 2.787 2.389 1.766 2.515 2.319 2.388 2.208↑
RMSE 0.854 0.832 0.816 0.824 0.839 0.829 0.820↑

scm20d MAE 0.652 0.643 0.630 0.636 0.646 0.641 0.630↑
NLPD 21.876 21.013 21.310 17.319 19.059 14.859 11.416↑
RMSE 0.391 0.133 0.139 0.302 0.143 0.133 0.143

WindTurbine MAE 0.311 0.074 0.080 0.236 0.073 0.074 0.073
NLPD 1.435 -2.649 2.594 0.104 -8.749 -2.627 -7.467↓
RMSE 0.752 NA NA 0.659 0.547 NA 0.556↓

Energy MAE 0.605 NA NA 0.516 0.400 NA 0.398↓
NLPD 14.775 NA NA 14.169 11.745 NA 8.610↑
RMSE 0.983 NA NA 0.955 0.927 NA 0.934↓

usFlight MAE 0.529 NA NA 0.494 0.492 NA 0.505↓
NLPD 2.331 NA NA 2.251 2.178 NA 2.091↑

Table 2: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Negative Log Predictive Density (NLPD) of
state-of-the-art approaches and MOMoGP (our work) on benchmark datasets with 4K to 500K observations. Smaller values
are better. Best result is indicated in bold and comparison to the DSMGP is indicated using arrows ↑ / ↓.

the Mean Absolute Error (MAE):

MAE(y, ŷ) =
1

N · P

N∑
n=1

P∑
p=1

|yn,p − ŷn,p| , (16)

and the Negative Log Predictive Density (NLPD):

NLPD(yn) = − log p(yn | D,xn, θ), (17)

where ŷn is the ground truth of prediction yn for datum xn.

5.3 EXPERIMENT RESULTS

Herein, we investigate the performance of seven differ-
ent regression models, including linear regression (LR),
exact GP (GP), Deep Structured Mixtures of GPs (DS-
MGPs) [Trapp et al., 2020], which all employ independ-
ence assumption for the output space, and Multitask GP
Regression (MOGP) [Williams et al., 2007], Multi-Output
Sparse Variational GP (MOSVGP) [Moreno-Muñoz et al.,
2018], sumGP and MOMoGP, which models the output
space jointly. Note that we use consistent settings for all the
GP approaches.

Table 2 reports the RMSE, MAE and NLPD on each dataset.
Generally, the multi-output models provide smaller RMSE
and MAE values compared with the single-output mod-
els. This means by modelling the joint of the output space,
instead of assuming them to be independent, the models
achieve a smaller approximation error. Moreover, MOMoGP
captures predictive uncertainties better than expert-based
approaches and DSMGP, resulting in lower NLPDs. Note

that the NLPD gives rise to the output distribution, while the
RMSE and the MAE only account for the mean value of the
distribution. Thus, improvements in terms of the NLPD are
strictly more important than in terms of the RMSE or the
MAE. Additionally, MOMoGP provided the lowest NLPD
values for large-scale datasets such as Energy and usFlight,
and the corresponding RMSE and MAE values are also very
competitive.

Overall, we can conclude that MOMoGP can achieve com-
petitive regression results, and provides better predictive
uncertainties at the same time.

5.4 EXTRA RESULTS ON IMAGE UPSAMPLING

To deepen the performance evaluation, we envisioned a MO-
MoGP application to the field of image upsampling. The
horizontal and vertical locations of a pixel form the input
space, while the RGB channels of the pixel are defined as
the outputs. Therefore, we have D = 2 and P = 3 for the
image upsampling task. For a given image, this task aims at
enlarging the image via interpolation. The posterior mean
from a MOMoGP is taken as the new pixel value, given the
location of the pixel to be interpolated. In this experiment,
the original image has the size of 64 × 64 and was down-
sampled to 32× 32. We then aim to reconstruct the original
image from the downsampled version. For MOMoGP, we set
KS = 2, KPx

= 2, KPy
= 2 and M = 256. As visualized

in Fig. 3, bilinear interpolation produces smooth and blurry
artefacts. The nearest neighbour approach brings blocks in
the image. MOMoGP as an interpolation approach achieves



the best performance, exhibiting a more appropriate balance
between colour flattening and salient edge.

6 CONCLUSION

We introduced the Multi-Output Mixture of Gaussian Pro-
cess (MOMoGP), which leverages a deep structured mix-
ture of single-output GPs to model correlations between
the dependent variables. MOMoGP uses GP experts as leaf
nodes to model sub-spaces for single-output regressions and
employs a Probabilistic Circuit (PC) to capture dependen-
cies in the input and the output space jointly. Moreover,
we introduced a structure learning algorithm for MOMoGP
and showed that MOMoGPs enable efficient and exact pos-
terior inference and discussed hyperparameter optimisation
through maximisation of the log marginal likelihood.

Comparing with Deep Structured Mixtures of GPs (DS-
MGPs) [Trapp et al., 2020] and other methods we have
discussed in this paper, our MOMoGP approach models the
output space jointly, i.e., the proposed algorithm considers
a more general case. Finally, we concluded that MOMo-
GPs provide competitive results for both RMSE and MAE
and outperform other models in terms of the NLPD. This
provides several avenues for future work, e.g., it is inter-
esting to sparsify the spectral representation of the GP in
MOMoGPs [Lázaro-Gredilla et al., 2010].

Original Bilinear

Nearest MOMoGP

Figure 3: Image upsampling using MOMoGP and other
methods. MOMoGP achieves an RMSE of 1.289, while
Bilinear 1.542 and Nearest 1.855. (Best viewed in color)
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