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Abstract

Algorithmic fairness has received increased attention in socially sensitive domains.1

While rich literature on mean fairness has been established, research on quantile2

fairness remains sparse but vital. To fulfill great needs and advocate the significance3

of quantile fairness, we propose a novel framework to learn a real-valued quantile4

function under the fairness requirement of Demographic Parity with respect to sen-5

sitive attributes, such as race or gender, and thereby derive a reliable fair prediction6

interval. Using optimal transport and functional synchronization techniques, we7

establish theoretical guarantees of distribution-free coverage and exact fairness for8

the induced prediction interval constructed by fair quantiles. A hands-on pipeline9

is provided to incorporate flexible quantile regressions with an efficient fairness10

adjustment post-processing algorithm. We demonstrate the superior empirical11

performance of this approach on several benchmark datasets. Our results show12

the model’s ability to uncover the mechanism underlying the fairness-accuracy13

trade-off in a wide range of societal and medical applications.14

1 Introduction15

We are increasingly leaning on machine learning systems to tackle human problems. A primary16

objective is to develop intelligent algorithms that can automatically produce accurate decisions which17

also enjoy equitable properties, as unintended social bias has been identified as a major concern18

[13, 17].19

As a means of providing quantitative measures of fairness, a number of metrics have been proposed.20

These metrics can be categorized into three broad categories: group fairness [3], individual fairness21

[22], and causality-based fairness [27]. In contrast to causality-based fairness that requires domain22

knowledge to develop a fair causal structure and individual fairness that seeks equality only between23

similar individuals, group fairness does not require any prior knowledge and seeks equality for groups24

as a whole [6]. Among the metrics defined for group fairness such as equalized odds [9, 26] and25

predictive rate parity [10], demographic parity (DP) is generic since it does not allow prediction26

results in aggregate to depend on sensitive attributes [1, 19, 12, 34]. In particular, an algorithm is said27

to satisfy DP if its prediction is independent of any given sensitive attribute.28

There have been a number of studies on algorithmic fairness concerning DP [1, 11, 12, 19, 28, 34].29

In the context regression analysis, much attention have been paid on conditional mean inferences30

[1, 11, 12, 28], few are concerned with conditional quantiles [32, 34]. As real-world data often31

exhibit heterogeneity, contain extreme outliers, or do not meet satisfactory distributional assumptions,32

like Gaussianity, a fairness discussion on conditional quantiles may be more rational and essential33

since they are able to provide a more complete understanding of the dependence structure between34

response and explanatory variables [34], as well as better accommodate asymmetry and extreme35
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tail behavior [33]. It should also be noted that bias or unfairness that arises in mean regression may36

also be propagated through quantile regression, therefore it must be properly dealt with separately: a37

graphic demonstration can be found in Figure 1. More intuitively, we may take an example from a38

Spanish labor market study [16, 17]. The study found that in Spain, also in line with other countries,39

the mean wage gap between men and women is quite substantial: on average, women earn around 7040

percent of what men earn. While wage gaps are not uniform across all pay scales, they are greater41

at higher quantiles than at lower quantiles. As biases and disparities at different quantiles tend to42

be overshadowed by the mean behavior of the entire population, we propose a novel framework43

for searching for fair predictions at different quantiles. It uses optimal transport techniques [2, 12]44

by transforming bias-affected distributions into an only-fair Wasserstein-2 barycenter through a45

kernel-based functional synchronization method [8, 38], in order to provide fair quantile estimators.46

Figure 1: An illustration of quantile fairness: for a skewed and heteroscedastic quantile estimation
{qα,i}Ni=1 affected by the sensitive attribute S ∈ {0, 1}, for example, the lower quantile of the
salary distribution, the optimal fair quantile prediction Qgα(t), t ∈ (0, 1) is derived through a convex
combination of the conditional quantile functions of Qqα|S=0 and Qqα|S=1.

47

Since quantile fairness poses a number of theoretical challenges, no previous literature has been48

able to provide any inference results such as prediction intervals concerning quantile fairness. It49

is imperative to keep in mind that fairness is only one of two legs of the primary goal of modern50

machine learning algorithms, the other being accuracy. Building a reliable prediction with valid51

confidence is a significant challenge that is encountered by many machine learning algorithms [37].52

Towards this end, we propose the conformalized fair quantile prediction (CFQP) inspired by the53

works of Romano et al. [29, 30]. Our analysis demonstrates, both mathematically and experimentally,54

that CFQR provides finite sample, distribution-free validity, DP fairness for different quantiles, and55

precise control of the miscoverage rate, regardless of the underlying quantile algorithm.56

Contributions and Outlines. In this paper, we propose a new quantile based method with valid57

inference that enhances both accuracy and fairness while maintaining a balance between the two. It is58

a novel framework that allows an exact control of quantile prediction miscoverages while ensuring59

quantile fairness simultaneously. The main contributions are summarized as follows:60

i. We successfully transform the problem of searching quantiles under DP fairness to the construc-61

tion of multi-marginal Wasserstein-2 barycenters via the optimal transport theory [2, 12, 18].62

We incorporate a novel kernel smoothing step into the preceding method, which is particularly63

advantageous for subgroups whose sample sizes are too small to obtain reliable quantile function64

estimations.65

ii. In Section 4, we propose a conformalized fair quantile regression prediction interval (CFQP)66

inspired by the works of Romano et al. [29, 30]. It is mathematically proved to achieve a finite67

sample, distribution-free validity, demographic parity on different quantiles, and an exact control68

of miscoverage rates, regardless of the quantile algorithm used. The theoretical validity of69

prediction interval constructed by CFQP and exact DP of the fair quantile estimators are given in70

Section 5 and the supplement.71

iii. The experimental results presented in Section 6 include a numerical comparison of the proposed72

CFQP and fair quantile estimation with both state-of-the-art conformal and fairness-oriented73
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methods. By reducing the discriminatory bias dramatically, our method outperforms the state-of-74

the-art methods while maintaining reasonable short interval lengths.75

Related works. Existing approaches for building a fair mean regression broadly fall into three classes:76

pre-processing, in-processing and post-processing. In particular, preprocessing methods focus on77

transforming the data to remove any unwanted bias [5, 27, 36]; in-processing methods aim to build78

in fairness constraints into the training step [1, 4, 22, 26]; post-processing methods target to modify79

the trained predictor [11, 12, 25]. As few previous works have focused on the quantile fairness of80

and fair prediction interval, the most related are Yang et al. [34], where a different fairness measure81

was used. While Agarwal et al. [1] mentioned that their reduction-based approach can be adapted82

into quantile regression, Williamson and Menon [32] brought forward a novel conditional variance83

at risk fairness measure aiming to control the largest subgroup risk. For interval fairness measure,84

the approach by Romano et al. [29] achieved equalized coverage among groups without fairness85

on interval endpoints. Methodologically, integrating algorithmic fairness with Wasserstein distance86

based barycenter problem has been studied in [2, 11, 12, 18, 20]. Both in-processing [1, 20] and87

post-processing [11, 12] methods were proposed to solve classification and mean regression problems.88

As a post-processing method, our work is distinct from above-mentioned methods by constructing89

the DP-fairness for each population quantile, and generating a fair prediction interval accordingly.90

Notations. We denote by [K] the set {1, . . . ,K} for arbitrary integer K. |S| represents the cardinality91

for a finite set S . E and P represent the expectation and probability and 1{·} is the indicator function.92

Let {Zn}∞n=1 be a sequence of random variables, and {kn}∞n=1 be a sequence of positive numbers,93

we say that Zn = Op(kn), if limT→∞ lim supn→∞ P (|Zn| > Tkn) = 0, then Zn/kn = Op(1). To94

denote the equality in distribution of two random variables A and B, we write A
d
= B.95

2 Problem statement96

Consider the regression problem where a “sensitive characteristic” S is available, which by the97

U.S. law [18, 29] can be enumerated as sex, race, age, disability, etc. One observes the triplets98

(X1, S1, Y1) , . . . , (Xn, Sn, Yn), where we denote (Xi, Si, Yi) by Zi, i = 1, . . . , n and Zi is a99

random variable in Rp × [K] × R, and aim to predict the unknown value of Yn+1 at a test point100

Xn+1, Sn+1. Let P be the joint distribution of Z, we assume that all the samples {Zi}n+1
i=1 are101

drawn exchangeable, where i.i.d. is a special case.102

Our goal is to construct a marginal distribution-free prediction band C (Xn+1, Sn+1) ⊆ R that is103

likely to cover the unknown response Yn+1 with finite-sample (nonasymptotic) validity. Formally,104

given a desired miscoverage rate α, the predicted interval satisfies105

P {Yn+1 ∈ C (Xn+1, Sn+1)} ≥ 1− α (1)

for any joint distribution P and any sample size n, while the left and right endpoint of C (Xn+1, Sn+1)106

satisfies the fairness constraint of Demographic Parity concerning the sensitive variable S.107

Demographic Parity. We introduce the quantitative definition of DP on fair regression and connect108

the DP-fairness with a quantile regressor qα. We invoke the result that qα can be projected to109

fairness using optimal transport. In particular, given a fixed quantile level α (it may refer to qαlo
or110

qαhi
indicating the left and right endpoint, which will then given by the upper and lower quantile111

estimates for the prediction band C(Xn+1, Sn+1)), let qα : Rp × [K] → R represent an arbitrary112

conditional quantile predictor. Denote by νqα|s the distribution of (qα(X,S) | S = s), the Cumulative113

Distribution Function (CDF) of νqα|s is given by114

Fνqα|s(t) = P (qα(X,S) ≤ t | S = s). (2)

The quantile function Qνqα|s = F−1
νqα|s

: [0, 1]→ R ,namely, the generalized inverse of Fνqα|s , can115

thus be defined as for all levels t ∈ (0, 1],116

Qνqα|s(t) = inf{y ∈ R : Fνqα|s(y) ≥ t} with Qνqα|s(0) = Qνqα|s(0+). (3)
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To simplify the notations, we will write Fqα|s and Qqα|s instead of Fνqα|s and Qνqα|s respectively,117

for any prediction rule qα.118

In the following, we introduce the definition of Demographic Parity (DP), which is most commonly119

used in the context of fairness research [1, 11, 12, 19, 26].120

Definition 1 (Demographic Parity). An arbitrary prediction g : Rd× [K]→ R satisfies demographic
parity under a distribution P over (X,S, Y ) if g(X,S) is statistically independent of the sensitive
attribute S, namely, for every s, s′ ∈ [K],

sup
t∈R
|P (g(X,S) ≤ t | S = s)− P (g(X,S) ≤ t | S = s′)| = 0.

Demographic Parity (DP) requires the predictions to be independent of the sensitive attribute, and it121

demands the Kolmogorov-Smirnov distance [23] (the difference between CDFs measured in the l∞122

norm) between νg|s and νg|s′ to vanish for all categories s, s′.123

3 Quantile Regression and Conformal Prediction124

In this section, we recall the CQR approach for finite sample, distribution-free prediction interval125

inference. Quantile regression was proposed by Koenker and Bassett [21] to estimate the α-th quantile126

of the conditional distribution of Y given X̃ := (X,S) for some quantile level α ∈ (0, 1), since127

then it has become more pervasive with various applications, such as providing prediction intervals,128

detecting outliers, or perceiving the entire distribution [24]. Denote the conditional cumulative129

distribution of Y given X̃ by F (y | X̃ = x̃) := P{Y ≤ y | X̃ = x̃}. The α-th conditional quantile130

prediction is defined as qα(x̃) := inf{y ∈ R : F (y | X̃ = x̃) ≥ α}. Quantile regression can be131

cast as an optimization problem[24], by minimizing the expected check loss function E(ρα) =132

E[ρα(y, q)|X̃ = x̃], where133

ρα(y, qα(x̃)) =

{
α|y − qα(x̃)| if y ≥ qα(x̃),

(1− α)|y − qα(x̃)| if y < qα(x̃).
(4)

Quantile regression offers a principled way of judging the reliability of predictions by building134

a prediction interval for the new observation (X̃n+1, Yn+1). In contrast to asymptopia, Romano135

et al. [29, 30] brought forward the conformalized quantile regression (CQR) by combining the136

merits of robust quantile regression with conformal prediction; thus finite sample validity in (1)137

is guaranteed. Inspired by the split conformal method, a split CQR likewise starts with splitting138

the data into a proper training set and a calibration set, indexed by I1, I2 respectively. Given any139

quantile regression algorithm Q, we then fit two conditional quantile functions q̂αlo
and q̂αhi

on140

the proper training set: {q̂αlo
, q̂αhi

} ← Q
({(

X̃i, Yi

)
: i ∈ I1

})
. Then the conformity scores are141

calculated to quantify the error made by the plug-in prediction interval Ĉ(x̃) = [q̂αlo
(x̃), q̂αhi

(x̃)].142

We evaluate the scores on the calibration set as Ek := max
{
q̂αlo

(X̃k)− Yk, Yk − q̂αhi
(X̃k)

}
143

for each k ∈ I2, where both undercoverage and overcoverage of the interval are taken into144

consideration [30]. Given a new input data X̃n+1, we construct the prediction interval for145

Yn+1 as C
(
X̃n+1

)
=

[
q̂αlo

(
X̃n+1

)
−Q1−α (E, I2) , q̂αhi

(
X̃n+1

)
+Q1−α (E, I2)

]
, where146

Q1−α(E, I2) := (1 − α)(1 + 1/|I2|)-th empirical quantile of {Ek : k ∈ I2} conformalizes the147

plug-in prediction interval. Note that the constructed interval C(X̃n+1) could be highly influenced148

by the sensitive variable S.149

4 Conformal fair quantile prediction (CFQP)150

We formally describe our proposed conformal fair prediction (CFQP) framework for constructing151

DP fairness constrained prediction intervals in this section. A kernel smoothing quantile function152

is introduced during the functional synchronization, which can improve the estimation when some153

subgroups are too small to give reliable sample quantile function estimations.154
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Definition 2 (Wasserstein-2 distance). Let µ and ν be two univariate probability measures with finite
second moments. The squared Wasserstein-2 distance between µ and ν is defined as

W2
2 (µ, ν) = inf

{∫
R×R
|x− y|2dγ(x, y), γ ∈ Γµ,ν

}
where Γµ,ν is the set of probability measures (couplings) on R× R having µ and ν as marginals.155

Proposition 1 (Fair optimal prediction [12]). Assume, for each s ∈ [K], that the univariate measure156

νqα|s has a density and let ps = P (S = s). Then,157

min
gα is fair

E (qα(X,S)− gα(X,S))
2
= min

ν

∑
s∈[K]

psW2
2

(
νqα|s, ν

)
. (5)

Moreover, if gα and ν solve the l.h.s. and the r.h.s. problems respectively, then ν = νgα and158

specifically,159

gα(x, s) =
∑

s′∈[K]

ps′Qqα|s′ ◦ Fqα|s ◦ qα(x, s). (6)

Proposition 1 implies that the optimal fair quantile predictor for an input (x, s) is obtained by a160

nonlinear transformation of the vector [qα(x, s)]Ks=1 linking to a Wasserstein barycenter problem[2,161

12].162

The explicit closed form solution comes from [2, 12, 15], which relies on the classical characterization163

of optimal coupling in one dimension of the Wasserstein-2 distance. A rigorous proof is given in164

[12, 20]. It shows that a minimizer gα of the L2-risk can be used to construct ν and vice-versa, given165

ν, there is a explicit expression Eq. (6) for the multi-marginal Wasserstein barycenter [2].166

We start with splitting the whole training data into a proper training set I1 and a calibration set I2, then167

fit an arbitrary quantile regression algorithm Q on I1, {q̂αlo
, q̂αhi

} ← Q
({(

X̃i, Yi

)
: i ∈ I1

})
.168

We apply the fitted quantile algorithm Q on the calibration set I2 to obtain the predicted169

{q̂αlo
(X̃i), q̂αhi

(X̃i)}i∈I2
. Since the quantile estimates for I2 will be used for conformalization,170

it is essential to transform them into fair ones, i.e. ĝα,i,∀i ∈ I2 (Eq. (9)), through Algorithm 2.171

Finally, for a test point X̃n+1, we will predict two quantile estimates q̂α(x, s) affected by the sensitive172

variable S by Q, then apply the functional synchronization (details in Algorithm 2) and calibration173

(Algorithm 1) steps in turn to generate the fair constraint prediction interval C(X̃n+1) for Yn+1.174

Next, we explicate in detail how to remove the effect of the sensitive variable for the predicted175

quantile estimates. By Proposition 1, the optimal fair quantiles take the form of Eq. (6). Therefore,176

we propose an empirical optimal fair quantile estimator ĝα that relies on the plug-in principle. In177

particular, Eq.(6) indicates that for each quantile level α and each category s ∈ [K], we only need178

estimators for the regression function q̂α, the proportion p̂s, the cumulative distribution function179

Fq̂α|s and the quantile function Qq̂α|s.180

Note that we can empirically estimate the CDF and quantile function for each sensitive group in
the calibration set I2 separately. Hence for each quantile level α, let Ns := |Is2 |, and the quantile
estimators (q̂s1, q̂

s
2, . . . , q̂

s
Ns

)1 are calculated through the fitted quantile regression Q with training set
I1. We define the augmented random variable for each data point in I2,

q̃si := q̂si + Us
i ([−σ, σ]) ∀i ∈ Is2 , s ∈ [K],

where Us
i are i.i.d. random variables, uniformly distributed on [−σ, σ] for some small positive σ,181

and independent from all the previously introduced random variables. it serves as a smoothing182

random variable, for the random variables q̃si := q̂si + Us
i are i.i.d. continuous for any P (Y |X̃) and183

Q. Otherwise, the original q̂si might have atoms resulting in a non-zero probability to observe ties184

in the group {qsi } for s = 1, . . . ,K. This trick, also called jittering [7, 12] is often used for data185

1q̂si depends on the quantile level α, we suppress α for notational simplification.
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visualization for tie-breaking. Using the above quantities, we build the CDF and quantile function186

estimators for each subgroup s′ ∈ [K] as follows,187

F̂qα|s′(t) = N−1
s

Ns∑
i=1

1

{
q̃s

′

i ≤ t
}
, for all t ∈ R, (7)

Q̂2,qα|s′(t) =

∫ 1

0

F̂−1
qα|s′(v)Kh(t− v)dv, t ∈ (0, 1). (8)

The smoothed kernel estimator Eq.(8) was firstly proposed by Cheng and Parzen [8], where Kh(·) =188

K(·/h)/h is a kernel function chosen as a probability density function that is symmetric around zero189

with bandwidth parameter h > 0.190

If the quantile functions Q2,qα|s′ is differentiable, the derivative Q′
s′(t) := Q′

2,qα|s′(t) for t ∈ (0, 1)191

is the quantile density function [8, 38]. We hereby give an estimation bound for Eq. (8) using kernel192

smoothing. For this purpose, we invoke the conditions (A1) - (A3) that are needed for deducing193

the following proposition. They can also be found from [38] and are included in the supplementary194

material.195

Proposition 2. Under conditions (A1), (A2), and (A3), we have

sup
s′

sup
t∈[0,1]

∣∣∣Q̂2,qα|s′(t)−Qqα|s′(t)
∣∣∣ = Op

(
N−1/2

)
, s′ = 1, . . . ,K.

The motivation for including a smoothing step is twofold: First, smoothing the quantile function196

eliminates the troublesomeness in defining arbitrary quantiles from the empirical one when the197

sample sizes of subgroups are small. Second, the proposed kernel smoothing improves second-order198

efficiency by alleviating the so-called relative deficiency [14, 38].199

Remark 1. One can utilize various kernels such as the Gaussian or Epanechnikov kernel with200

adaptive bandwidth for better practical performance. Furthermore, other smoothing methods such as201

splines or local linear fitting can be applied with equal effectiveness.202

Consequently, for each quantile level α, the functional synchronized quantile estimator is203

ĝα,i =

K∑
s′=1

p̂s′Q̂2,qα|s′ ◦ F̂qα|s ◦ q̃si , ∀i ∈ I2. (9)

The proposed estimator can be deemed as the empirical counterpart with additional randomization of204

the explicit fair optimal formula Eq.(6).205

To conformalize the adjusted fair quantiles Eq (9), we need to compute the conformity scores206

Ei for each i ∈ I2 that quantify the error made by the plug-in fair prediction interval Ĉg(x̃) =207

[ĝαlo
(x̃), ĝαhi

(x̃)]. The scores are evaluated on the calibration set as208

Ei := max{ĝαlo,i − Yi, Yi − ĝαhi,i}. (10)

At the last stage, for a new data point X̃n+1 = (x, s), and α ∈ {αlo, αhi}, by defining

q̃s1,i = q̂si + Us
i ([−σ, σ]) ∀i ∈ Is1 and q̃α(x, s) = q̂α(x, s) + U([−σ, σ]).

We use the empirical CDF of training set 2209

F̂1,qα|s(t) :=
1

|Is
1 |+1

(∑|Is
1 |

i=1 1
{
q̃s1,i < t

}
+ U([0, 1])

(
1 +

∑|Is
1 |

i=1 1
{
q̃s1,i = t

}))
(11)

to estimate the location F̂1,qα|s ◦ q̃α(x, s). Thus the fair quantile estimator is built as follows210

ĝα(x, s) =

K∑
s′=1

p̂s′Q̂2,qα|s′ ◦ F̂1,qα|s ◦ q̃α(x, s),∀α ∈ {αlo, αhi}. (12)

2Still, q̂si depends on quantile level α.

6



The fair prediction interval for Yn+1 is constructed as211

C(X̃n+1) = [ĝαlo
(x, s)−Q1−α(E, I2), ĝαhi

(x, s) +Q1−α(E, I2)], (13)

where Q1−α(E, I2) := (1− α)(1 + 1/|I2|)-th empirical quantile of {Ei : i ∈ I2} will adjust the212

plug-in fair prediction interval. We present the pseudo-codes of CFQP as well as the construction of213

ĝα for Eq. 9 in Algorithm 1, 2 respectively.214

Algorithm 1 Split Conformal Fair Prediction (CFQP)

Input: D = {(Xi, Si, Yi)}ni=1; miscoverage level α ∈ (0, 1); quantile regression algorithmQ.
1: Randomly split [n] into disjoint proper training and calibration indices I1, I2.
2: Fit two conditional quantile functions on the training set {q̂αlo , q̂αhi} ← Q({(Xi, Si, Yi), i ∈ I1}).
3: Call functional Synchronization (Algorithm 2) to calculate {ĝαlo , ĝαhi} for each i ∈ I2.
4: Compute Ei ← max {ĝαlo (Xi)− Yi, Yi − ĝαhi (Xi)} for ∀ i ∈ I2.
5: Compute Q1−α(E, I2)← (1− α)(1 + 1/|I2|)-th empirical quantile of {Ei : i ∈ I2}.
6: For a new test point (x, s), compute {ĝαlo(x, s), ĝαhi(x, s)} through Algorithm 2

Output: Fair prediction interval C(x, s) = [ĝαlo(x, s) − Q1−α(E, I2), ĝαhi(x, s) + Q1−α(E, I2)] for
(Xn+1, Sn+1) = (x, s).

Algorithm 2 Functional Synchronization

Input: Calibration set {(Xi, Si)}i∈I2 or new point (x, s); base quantile estimatorQ;
slack parameter σ; training set {(Xi, Si)}i∈I1 ;

1: if Calibration set {(Xi, Si)}i∈I2 then
2: for α ∈ {αlo, αhi} do
3: {q̃α(Xi, Si)} ← {qα(Xi, Si) + U([−σ, σ])}i∈I2 ▷ U([−σ, σ]) are used for tie-breaking
4: for s′ ∈ [K] do
5: Compute F̂qα|s′(t), and F̂−1

2,qα|s′(t) by Eq. (7) and (8).

6: Obtain ĝα(Xi, Si)←
∑K

s′=1 p̂s′ F̂
−1
2,qα|s′ ◦ F̂qα|s′ ◦ q̃α(Xi, Si), ∀i ∈ I2

7: end for
8: end for
9: else if New test point (x, s) then

10: for α ∈ {αlo, αhi} do
11: {q̃s1,α} ← {q̂sα + U([−σ, σ])}i∈Is

1
and q̃α(x, s)← qα(x, s) + U([−σ, σ])

12: Compute ĝα(x, s)←
∑K

s′=1 p̂s′ F̂
−1
2,qα|s′ ◦ F̂1,qα|s ◦ q̃α(x, s) by Eq. (8) and (7)

13: end for
14: end if
Output: fair quantile prediction ĝα for calibration set or new test point (x, s).

5 Theoretical results215

In this section, we provide a statistical analysis of the proposed algorithm with coverage and DP-216

fairness guarantees.217

Theorem 1 (Prediction coverage guarantee). If (X̃i, Yi), i = 1, . . . , n+ 1 are exchangeable, then
the prediction interval C(X̃n+1) constructed by the split CFQP algorithm satisfies

P{Yn+1 ∈ C(X̃n+1)} ≥ 1− α.

Moreover, if the conformity scores Ei are almost surely distinct, the prediction interval is nearly
exactly calibrated,

P{Yn+1 ∈ C(X̃n+1)} ≤ 1− α+ 1/(|I2|+ 1).

Remark 2. We give an extension for the conformalization step which allows coverage errors to be218

spread arbitrarily over the left and right tails as Corollary 1 in the supplement. Controlling the left219

and right tails independently yields a stronger coverage guarantee.220

Theorem 2 (Demographic parity guarantee). For any joint distribution P of (X,S, Y ), any σ > 0,
as well as the base quantile estimator q̂α : Rp × [K]→ R constructed on labeled data, the estimator
ĝα defined in Eq. (12) satisfies

(ĝα(X,S) | S = s)
d
= (ĝα(X,S) | S = s′) ∀s, s′ ∈ [K].
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To prove Theorem 2, we leverage distribution-free properties on rank and order statistics presented in221

Lemma 3 in the supplementary material. Theorem 2 and the estimator ĝ improve upon the estimator222

of Chzhen et al. [12], Chzhen and Schreuder [11], for which only approximate fairness is established.223

6 Experiments224

To evaluate our proposed method3, we report the performance of post-processing fairness adjustment225

on quantiles through four benchmark datasets: Law School (LAW), Community&Crime (CRIME),226

MEPS 2016 (MEPS), Government Salary (GOV). A detailed description of these datasets can be227

found in the supplementary material.228

We measure the violation of DP-fairness of the quantiles required by Definition 1 through the229

empirical Kolmogorov-Smirnov (KS) distance. The value represents the disparity between groups230

Zs = {(X,S, Y ) ∈ Z : S = s} for all s ∈ [K],231

KS(gα) = max
s,s′∈[K]

sup
t∈R

∣∣∣∣∣ 1
|Zs|

∑
(X,S,Y )∈Zs

1{gα(X,S) ≤ t} − 1
|Zs′ |

∑
(X,S,Y )∈Zs′

1{gα(X,S) ≤ t}

∣∣∣∣∣.
Experiment results. In Table 1, we report the average performance of the proposed CFQP over232

200 randomly training-test splits as well as the baseline model CQR by the coverage rate, length of233

prediction interval, and the KS distance of the interval endpoint. 80% of the examples are used for234

training, and the remaining 20% to test. We split the training part into proper training and calibration235

sets of equal sizes. Throughout the experiments, the nominal miscoverage rate is fixed to α = 0.1.236

Among preexisting quantile algorithms, we select three leading variants: linear model[21], random237

forests [24] and neural networks [31]. Overall, our CFQP likewise CQR constructs prediction bands238

attaining desirable coverage around 90%, as claimed in Theorem 1. Random forest based approaches239

tend to be slightly more conservative than the other two w.r.t the coverage rate.240

LAW CRIME

Coverage Length KS(lo) KS(hi) Coverage Length KS(lo) KS(hi)

Ln-CQR 90.16±0.47 0.46±.004 0.39±0.03 0.11±0.02 90.22±1.88 1.30±0.05 0.62±0.06 0.53±0.06
Ln-CFQP 90.02±0.51 0.46±.004 0.02±0.01 0.02±0.01 90.44±1.84 1.64±0.05 0.11±0.03 0.12±0.04

RF-CQR 90.25±0.55 0.39±.005 0.20±0.02 0.15±0.02 90.27±1.66 1.15±0.03 0.64±0.05 0.59±0.05
RF-CFQP 90.11±0.48 0.38±.004 0.02±.008 0.02±.009 90.34±1.84 1.54±0.04 0.12±0.04 0.12±0.03

NN-CQR 90.00±0.50 0.40±0.02 0.41±0.07 0.18±0.05 90.01±1.89 1.16±0.05 0.70±0.05 0.63±0.06
NN-CFQP 90.01±0.51 0.39±0.01 0.02±.009 0.03±.009 89.95±1.62 1.54±0.12 0.12±0.04 0.12±0.03

MEPS GOV

Coverage Length KS (lo) KS(hi) Coverage Length KS (lo) KS(hi)

Ln-CQR 89.92±0.66 0.66±0.01 0.09±0.03 0.33±0.05 90.00±0.19 0.79±.002 0.26±.014 0.44±0.02
Ln-CFQP 89.99±0.69 0.66±0.01 0.03±0.01 0.03±0.01 90.02±0.19 0.78±.002 0.05±0.01 0.04±0.01

RF-CQR 90.07±0.65 0.38±.009 0.19±0.02 0.30±0.03 90.03±0.17 0.61±.002 0.29±0.01 0.28±0.02
RF-CFQP 90.38±0.60 0.39±0.01 0.02±0.01 0.03±0.01 90.03±0.17 0.62±.002 0.05±0.01 0.04±0.01

NN-CQR 89.95±0.68 0.37±0.04 0.24±0.09 0.37± 0.06 90.01±0.19 0.58±0.01 0.28±0.03 0.32±0.04
NN-CFQP 89.97±0.61 0.37±0.04 0.03±0.01 0.04±0.01 90.01±0.18 0.59±0.01 0.05±0.01 0.05±0.01

Table 1: Results reported on test set of 200 repeated experiments with α = 0.1. CQR refers to the
conformalized quantile regression in [30]. Ln, RF, and NN denote the linear, random forest, as well
as neural network quantile regression models proposed in [21, 24, 31] respectively. Our methods are
shown in bold.

241

In the KS column concerning the DP-fairness of interval endpoints, our CFQP method greatly reduces242

the discriminatory bias (quantified by KS) by 70% up to 90% compared to that of CQR. In addition,243

the lengths of the prediction intervals mostly remain the same except for the Crime dataset, which is244

due to the reason of its inherent high discriminatory bias among sensitive groups.245

Figure 2 presents the comparison of our post-processing fairness adjustment procedure on quantiles246

ĝα on the test set Ztest = {(Xi, Si, Yi)}ntest
i=1 with some state-of-the-art fairness algorithms. Since247

3we utilize the local linear fitting smoothing method in the experiments.
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most of the algorithms are targeted at mean prediction, there is no direct comparison with our quantile248

fairness method; we accordingly modified the existing methods into quantile versions for comparison.249

A detailed description can be found in the supplementary material.250

The points in Figure 2 represents the mean of 200 repeated experiments with x-axis as KS distance251

and y-axis as Mean Absolute Error(MAE), defined as MAE(gα) = 1/ntest

∑
Ztest

|Y − gα(X,S)|252

to measure the prediction error of quantiles, the bars is the standard error on both axis. The optimal253

point should be located at the bottom left corner of the graph, where the smaller KS distance, as254

well as smaller MAE, are achieved. In each subplot, our method consistently performs better with255

the smallest KS distance while keeping the MAE equal or slightly higher than the others or unfair256

version. Overall, CFQP is more robust according to the standard errors over experiment repetitions.257

Note that due to the highly right skewness of real datasets, the MAE of the upper quantile estimation258

is larger than that of the lower quantile for all approaches as well as datasets.259

Figure 2: Results for estimating the lower (αlo) and upper (αhi) quantiles using some state-of-the-art
DP-fairness requirement methods on all the datasets. ‘Unfair’, ‘Chzhen’, and ‘Agarwal’ stand for
the linear quantile model without fairness adjustment, barycenter method [12] and reduction-based
algorithm [1] respectively. We present the MAE and KS of lower quantile estimation, as well as
upper quantile estimation. We applied linear quantile models in this comparison.

260

7 Conclusion and future work261

Conformal fair quantile regression is a novel approach for creating fair prediction intervals that262

attain valid coverage and reach independence between sensitive attributes while making minimal263

modifications to the quantile endpoints simultaneously. It becomes superior within heteroskedastic264

and/or asymmetric datasets and robust to outliers. CFQP is supported by rigorous distribution-free265

coverage and exact DP-fairness guarantees, as proved in theoretical parts. We conducted several266

real data examples demonstrating the effectiveness of our method in achieving exact coverage while267

imposing DP-fairness in practice. The method outperforms several state-of-the-art approaches by268

comparison.269

A limitation in our numerical experiments is that we simply utilize the local linear smoothing method270

in defining quantile functions of the subgroups; we believe incorporating flexible kernel smoothing271

approaches [35, 38] would improve the experimental performances. As potential future works, it272

would be valuable to introduce a DP relaxation framework based on an unfairness measure in a similar273

manner as [11, 32], allowing controlling the level of unfairness in quantile estimates. We also expect274

to extend the scope to other potential fairness metrics which is dependent on the underlying response275

like equalizing quantile loss across groups by incorporating a fairness penalty term in training, or the276

fairness metric defined for conditional variance-at-risk.277
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