
Under review as a conference paper at ICLR 2022

PROTORES: PROTO-RESIDUAL NETWORK FOR POSE
AUTHORING VIA LEARNED INVERSE KINEMATICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Our work focuses on the development of a learnable neural representation of
human pose for advanced AI assisted animation tooling. Specifically, we tackle the
problem of constructing a full static human pose based on sparse and variable user
inputs (e.g. locations and/or orientations of a subset of body joints). To solve this
problem, we propose a novel neural architecture that combines residual connections
with prototype encoding of a partially specified pose to create a new complete pose
from the learned latent space. We show that our architecture outperforms a baseline
based on Transformer, both in terms of accuracy and computational efficiency.
Additionally, we develop a user interface to integrate our neural model in Unity, a
real-time 3D development platform. Furthermore, we introduce two new datasets
representing the static human pose modeling problem, based on high-quality human
motion capture data, which will be released publicly along with model code.

1 INTRODUCTION

Modeling human pose and learning pose representations have received increasing attention recently
due to their prominence in applications, such as computer graphics and animation (Harvey et al., 2020;
Xu et al., 2020); immersive augmented reality (Facebook Reality Labs, 2021; Capece et al., 2018;
Lin & O’Brien, 2019; Yang et al., 2021); entertainment (McDonald, 2018; Xpire, 2019); sports and
wellness (Rosenhahn et al., 2008; Kim et al., 2021) as well as human machine interaction (Heindl et al.,
2019; Casillas-Perez et al., 2016; Schwarz et al., 2014) and autonomous driving (Kumar et al., 2021).
In the gaming industry, state-of-the-art real-time pose manipulation tools, such as CCD (Kenwright,
2012), FABRIK (Aristidou & Lasenby, 2011) or FinalIK (RootMotion, 2020), are popular for rapid
execution and rely on forward and inverse kinematics models defined via non-learnable kinematic
equations. Inverse kinematics (IK) is the process of computing the internal geometric parameters of a
kinematic system resulting in the desired configuration (e.g. global positions) of system’s joints (Paul,
1992). Forward kinematics (FK) refers to the use of the kinematic equations to compute the positions
of joints from specified values of internal geometric parameters. While mathematically accurate,
non-learnable IK models do not guarantee that the underconstrained solutions derived from sparse
constraints (e.g. positions of a small subset of joints) result in plausible human poses.

In this paper we develop a neural modeling approach to reconstruct full human pose from a sparse
set of constraints supplied by a user, in the context of pose authoring and game development. We
bridge the gap between skeleton-aware human pose representation based on IK/FK ideas and the
neural embedding of human pose. Our approach effectively implements a learnable model for
skeleton IK, mapping desired joint configuration into predictions of skeleton internal parameters
(local rotations), learning the statistics of natural poses using datasets derived from high-quality
motion capture (MOCAP) sequences. The approach, which we call ProtoRes, models the semantics of
joints and their interactions using a novel prototypical residual neural network architecture. Inspired
by prototypical networks, which showed that one semantic class can be represented by the prototype
(mean) of a few examples (Snell et al., 2017), we extend it using a multi-block residual approach:
the final pose embedding is a mean across embeddings of sparse constraints and across partial pose
predictions produced in each block. We show that in terms of the pose reconstruction accuracy,
ProtoRes outperforms existing gaming industry tools such as FinalIK, as well as out-of-the-box
machine-learning solution based on Transformer (Vaswani et al., 2017), which also happens to be 10
times less effective in terms of training speed than the proposed architecture.

1

Under review as a conference paper at ICLR 2022

Finally, we develop user-facing tools that integrate learned ProtoRes pose representation in the Unity
game engine, providing impressive qualitative examples of solutions to the problem of the AI assisted
human pose authoring. The examples reveal that at the qualitative level, getting traditional workflows
to behave the way ProtoRes does would require one to use many techniques in tandem, including IK,
FK, layered animation pose libraries, along with procedural rigs encoding explicit heuristics. The
process would be highly labor-intensive even for an experienced user while the results would still
be of variable fidelity depending on the skill of the user. This is because traditional rigs have no
inductive bias towards realistic poses and only allow the user to explore a limited linear latent space
defined by uniform interpolation of a heuristic constraint system. ProtoRes forms a foundation that
allows any junior or indie/studio user to bypass these existing complexities and create entirely new
workflows for meaningfully exploring learned latent space using a familiar yet far more powerful
way. We believe that our model and tools will help speed up the animation process and alleviate game
artist animation skill requirements thus simplifying and democratizing game development.

1.1 BACKGROUND

Figure 1: ProtoRes completes full hu-
man pose using a combination of 3D
coordinates, look-at targets and world-
space rotations specified by a user for an
arbitrary subset of body joints.

We consider the full-body pose authoring animation task
depicted in Fig. 1. The animator provides a few inputs,
which we call effectors, that the target pose has to respect.
For example, in Fig. 1, the look-at effector specifies that
the head should be facing the orange dot, the positional
effectors constrain the right foot and the right hand to be
pinned to the pink dots and the rotational effector, shown in
cyan, constrains the world-space rotation of the pelvis. We
assume that the animator can generate arbitrary number of
such effectors placed on any skeletal joint (one joint can be
driven by more than one effector). The task of the model is
to combine all the information provided via effectors and
generate a plausible full-body pose respecting provided
effector constraints. We define the full-body pose as the
set of all kinematic parameters necessary to recreate the
appearance of the body in 3D.

Mathematically, we assume that each effector can be represented in the space Rdeff , where deff is taken
to be maximum over all effector types. Suppose we have 3D position and 6D rotation effectors: deff
is 6. In position effectors, 3 extra values are 0. We formulate the pose authoring problem as learning
the mapping ϒθ : RN×deff → Rdkin with learnable parameters θ ∈Θ. ϒθ maps the input space RN×deff

of variable effector dimensionality N (the number of effectors is not known in advance) to the space
Rdkin , containing all kinematic parameters to reconstruct full-body pose. For example, a body with
J joints can be fully defined using a tree model with 6D local rotation per joint and 3D coordinate
for the root joint, in which case dkin = 6J + 3, assuming fixed bone lengths. Given a sufficiently
representative dataset D = {xi,yi}M

i=1 of poses containing pairs of inputs xi ∈ RN×deff and outputs
yi ∈ Rdkin it is viable to define the empirical risk minimization problem to learn ϒθ :

ϒθ = argmin
θ∈Θ

1
M ∑

xi,yi∈D
L(ϒθ (xi),yi) (1)

1.2 RELATED WORK

Joint representations. 3D position joint representations can be used to specify a pose (Cheng et al.,
2021; Cai et al., 2019; Khapugin & Grishanin, 2019). However, this approach is sub-optimal as it does
not enforce fixed-length bones, nor specifies joint rotations. Bone length constraints play important
role in modeling realistic poses (Pavllo et al., 2018). Joint rotations are crucial in downstream
applications, such as deforming a 3D mesh on top of the skeleton, to avoid unrealistic twisting. A
practical solution is to predict joint rotations, automatically satisfying bone lengths and adequately
modelling rotations (Pavllo et al., 2018). This is viable via skeleton representations based on Euler
angles (Han et al., 2017), rotation matrices (Zhang et al., 2018) and quaternions (Pavllo et al., 2018).
In this work, we use the two-row 6D rotation matrix representation that addresses the continuity
issues reminiscent of quaternion and Euler representations (Zhou et al., 2019).

2

Under review as a conference paper at ICLR 2022

Pose modeling architectures. Multi-Layer Perceptrons (MLPs) (Cho & Chen, 2014; Khapugin &
Grishanin, 2019; Mirzaei et al., 2020) and kernel methods (Grochow et al., 2004; Holden et al., 2015)
have been used to learn single pose representations. Beyond single pose, skeleton moving through
time can be modeled as a spatio-temporal graph (Jain et al., 2016) or as a graph convolution (Yan
et al., 2018; Mirzaei et al., 2020). A common limitation of these approaches is their reliance on a
fixed set of inputs, whereas our architecture is specifically designed to handle sparse variable inputs.

Pose prediction from sparse constraints. Real-time methods based on nearest-neighbor search,
local dynamics and motion matching have been used on sparse marker position and accelerometer
data (Tautges et al., 2011; Riaz et al., 2015; Chai & Hodgins, 2005; Büttner & Clavet, 2015). MLPs
and RNNs have been used for real-time processing of sparse signals such as accelerometers (Huang
et al., 2018; Holden et al., 2017; Starke et al., 2020; Lee et al., 2018) and VR constraints (Lin &
O’Brien, 2019; Yang et al., 2021). These approaches rely on the past pose information to disambiguate
next frame prediction and as such are not applicable to our problem, in which only current pose
constraints are available. Iterative IK algorithms such as FinalIK (RootMotion, 2020) have been
popular in real-time applications. FinalIK works by setting up multiple IK chains for each limb of the
body of a predefined human skeleton and for a fixed set of effectors. Several iterations are executed to
solve each of these chains using a conventional bone chain IK method, e.g. CCD. In FInalIK, the end
effector (hands and feet) can be positioned and rotated, while mid-effectors (shoulders and thighs)
can only be positioned. Effectors can have a widespread effect on the body via a hand-crafted pulling
mechanism that gives a different weight to each chain. This and similar tools suffer from limited
realism when used for human full-body IK, as they are not data-driven. Learning-based methods strive
to alleviate this by providing learned model of human pose. Grochow et al. (2004) proposed a kernel
based method for learning a pose latent space in order to produce the most likely pose satisfying
sparse effector constraints via online constrained optimization. The more recent commercial tool
Cascadeur uses a cascade of several MLPs (each dealing with fixed set of positional effectors: 6,
16, 28) to progressively produce all joint positions without respecting bone constraints (Khapugin &
Grishanin, 2019; Cascadeur, 2019). Unlike our approach, Cascadeur cannot handle arbitrary effector
combinations, rotation or look-at constraints and requires post processing to respect bone constraints.

Permutation invariant architectures. Models for encoding unstructured variable inputs have been
proposed in various contexts. Attention models (Bahdanau et al., 2015) and Transformer (Vaswani
et al., 2017) have been proposed in the context of natural language processing. Prototypical net-
works (Snell et al., 2017) used average pooled embedding to encode semantic classes via a few
support images in the context of few-shot image classification. Maxpool representations over variable
input dimension were proposed by Qi et al. (2017) as PointNet and Zaheer et al. (2017) as DeepSets
for segmentation and classification of 3D point clouds, image tagging, set anomaly detection and
text concept retrieval. Niemeyer et al. (2019) further generalized the PointNet by chaining the basic
maxpool/concat PointNet blocks resulting in ResPointNet architecture.

1.3 SUMMARY OF CONTRIBUTIONS

The contributions of our paper can be summarized as follows.

• We define the 3D character posing task and publicly release two associated benchmarks.

• We show that learned inverse kinematics solution can construct better poses, qualitatively
and quantitatively, compared to a non-learned approach.

• We extend existing architectures with (i) semantic conditioning of joint ID and type at
the input, (ii) novel residual scheme involving prototype subtraction and accumulation
across blocks, as opposed to maxpool/concat daisy chain of ResPointNet, (iii) two-stage
architecture with computationally efficient residual decoder that improves accuracy at
smaller computational cost, as opposed to the naive final linear projection approach of
PointNet and ResPointNet, and (iv) two-stage decoder design.

• We propose a novel look-at loss function.

• We propose a novel randomized weighting scheme combining randomly generated effector
tolerance levels and effector noise to increase the effectiveness of multi-task training.

3

Under review as a conference paper at ICLR 2022

ProtoRes OUTPUTS
POSE DECODER

POSE ENCODER

TRANSLATION
INVARIANCE

USER
INPUTS

Position
NPx3

Joint ID
Nx1

Rotation
NRx6

Type
Nx1

-

Padding
NPx6

Nx6

C
on

ca
t

B
lo

ck
 1

NxE

-
NxE

x 1

1xE

B
lo

ck
 2

-
NxE

x

B
lo

ck
 K

1/2

+

NxE

...

...

GLOBAL
POSITION
DECODER

INVERSE
KINEMATICS

DECODER

- root position

reference

Rotations
Jx6

P
ro

to

P
ro

to

Concat

1xE

Tolerance
Nx1

Positions
Jx3

N
xE

in

+

P
ro

to

Pose
Embedding

Proto

Concat

Embedding

Embedding

FORWARD
KINEMATICS

Look-at
NLAx6 N=NP+NR+NLA

Block 1

Block 2

...

Block R

+

FC 1

FC L

LinearLinear

...

+

ReLu

Residual

Block
Output

Input

O
ut

pu
t

+
Positions

Jx3

Figure 2: ProtoRes follows the encoder-decoder pattern and produces predictions in three steps.
First, the variable number and type of user supplied inputs are processed for translation invariance
and embedded. Second, proto-residual encoder transforms the pose specified via effectors into a
pose embedding. Finally, the pose decoder expands the pose embedding into the full-body pose
representation including local rotation and global position of each joint.

2 PROTORES

ProtoRes, shown in Fig. 2, follows the encoder-decoder pattern, unlike PointNet and ResPointNet that
use a linear layer as a decoding mechanism (Qi et al., 2017; Niemeyer et al., 2019). The encoder has
to deal with N effectors, whereas the decoder processes the collapsed representation of the pose and
is therefore N times more compute efficient. Adding more decoder blocks thus results in accuracy
gains at a fraction of compute cost. Below, we describe the rest of architecture in more detail.

User inputs. ProtoRes accepts position (3D coordinates), rotation (6D representation of Zhou et al.
(2019)) and look-at (3D target position and 3D local facing direction) effectors. All positions are
re-referenced relative to the centroid of the positional effectors to achieve translation invariance.
Translation invariance simplifies the handling of poses in global space removing the need in universal
reference frame, which is tricky to define. Each effector is further characterized by a positive tolerance
value. Smaller tolerance implies that the effector has to be more strictly respected in the reconstructed
pose. Moreover, the input includes effector semantics encoded via joint ID, an integer in [0,J), and
effector type, indicating a positional (0), rotational (1) or look-at (2) effector. Unlike e.g. PointNet (Qi
et al., 2017) acting on dense extensive point clouds, ProtoRes acts on sparse inputs that barely provide
enough information about the full pose. Therefore, it is critical to provide the semantic information on
whether the given effector affects hands or feet and whether this is a positional or a rotational effector,
for example. Type and joint ID variables are embedded into continuous vectors and concatenated
with effector data, resulting in the encoder input, a matrix xin ∈ RN×Ein with Ein corresponding to the
combined dimension of all embeddings plus 7D effector data and tolerance.

Pose Encoder is a two-loop residual network. The first residual loop is implemented inside each
block depicted in Fig. 2 (bottom right). The second residual loop shown in Fig. 2 (left) implements
the proposed Prototype-Subtract-Accumulate (PSA) residual stacking principle, which we empirically
found to outperform ResPointNet’s Maxpool-Concat daisy chain proposed by Niemeyer et al. (2019).
Next, we first lay out the encoder equations and then describe the motivation behind them in detail. We
assume the encoder input to be x1 = xin ∈ RN×Ein , omitting the batch dimension for brevity, in which
case the fully-connected layer FCr,`, with `= 1...L, in the residual block r, r = 1 . . .R, with weights
Wr,` and biases ar,` can be conveniently described as FCr,`(hr,`−1)≡ RELU(Wr,`hr,`−1 +ar,`). The
prototype layer is defined as PROTOTYPE(x)≡ 1

N ∑
N
i=1 x[i, :]. The pose encoder is then described as:

xr = RELU[br−1−1/(r−1) ·pr−1], (2)
hr,1 = FCr,1[xr], . . . , hr,L = FCr,L[hr,L−1], (3)
br = RELU[Lrxr +hr,L], fr = Frhr,L, (4)
pr = pr−1 +PROTOTYPE[fr]. (5)

4

Under review as a conference paper at ICLR 2022

Equations (3) and (4) implement the MLP and the first residual loop. The proposed PSA residual
mechanism, described in equations (2) and (5), is motivated by the following. First, it implements the
inductive bias that the information in individual effectors is only valuable when it is different from
what is already stored in the embedding of entire pose. Equation (2) implements this logic by forcing
delta-mode in effectors w.r.t. to the pose embedding, pr−1, from the previous block, which additionally
creates another residual loop that should facilitate gradient flow. Second, equation (5) collapses the
forward encoding of individual effectors into the representation of the entire pose via prototype, which
is known to be very effective at representing information from sparse examples (see e.g. Snell et al.
(2017)). Finally, the representation of pose is accumulated across residual blocks in (5), effectively
implementing skip connections from very early layers. Distant skip connections implemented via
concatenation were shown to be effective in DenseNet (Huang et al., 2017). Concatenation based
skipping requires additional computation and is most efficient with convolutional networks, in which
kernel size can be traded for feature width while implementing distant skip connections, whereas
accumulation is more compute efficient in our context.

Pose Decoder has two blocks: global position decoder (GPD) and inverse kinematics decoder (IKD).
Both rely on the fully-connected residual (FCR) architecture depicted in Fig. 2 (right). GPD unrolls
the pose embedding generated by encoder into the unconstrained predictions of 3D joint positions.
IKD generates the internal geometric parameters (joint rotations) of the skeleton that are guaranteed
to generate feasible joint positions after forward kinematics pass.

GPD accepts the encoded pose embedding, b̃0 = pR ∈ RE , and produces 3D position predictions
f̃R ∈ R3J of all skeletal joints using the FCR whose r-th block is described as follows:

hr,1 = FCgpd
r,1 [b̃r−1], . . . , hr,L = FCgpd

r,L [hr,L−1],

b̃r = RELU[Lgpd
r b̃r−1 +hr,L], f̃r = f̃r−1 +Fgpd

r hr,L.
(6)

Since GPD produces predictions with no regard to skeleton constraints, its predictions do not respect
bone lengths. For the IKD to provide correct rotations, the origin of the kinematic chain in world
space must be given, and GPD conveniently provides the prediction of the reference (root) joint.

IKD accepts input b̂0 ∈ RE+3J , consisting of the concatenation of the encoder-generated pose
embedding, pR ∈RE , and the output of GPD, f̃R ∈R3J . Effectively, the draft pose generated by GPD,
is used to condition IKD. We show in Section 3 that this additional conditioning improves accuracy.
IKD predicts the 6DoF angle for each joint, f̂R ∈ R6J , and its r-th block operates as follows:

hr,1 = FCikd
r,1 [b̂r−1], . . . , hr,L = FCikd

r,L [hr,L−1],

b̂r = RELU[Likd
r b̂r−1 +hr,L], f̂r = f̂r−1 +Fikd

r hr,L.
(7)

Forward Kinematics (FK) pass, described in detail in Appendix A, applies skeleton kinematic
equations to the local joint rotations and global root position produced by IKD. For each joint j, it
produces the global transform matrix Ĝ j containing the global rotation matrix, Ĝ13

j ≡ Ĝ j[1 : 3,1 : 3],

and the 3D global position, ĝ j = Ĝ j[1 : 3,4], of the joint.

2.1 LOSSES

We use three losses to train the architecture in a multi-task fashion. The total loss combines loss
terms additively with weights chosen to equalize their magnitude orders.

L2 loss penalizes the mean squared error between the prediction ŷ and the ground truth y:

MSE(y, ŷ) = ‖y− ŷ‖2
2. (8)

L2 loss is used to supervise the GPD as well as the IKD output after FK pass. In the latter case it
drives IKD to learn to predict rotations that lead to small position errors after FK.

Geodesic loss penalizes the errors of the IKD’s rotational outputs. It represents the smallest arc (in
radians) to go from one rotation to another over the surface of a sphere. The geodesic loss is defined
for the ground truth rotation matrix R and its prediction R̂ as (see e.g. Salehi et al. (2018)):

GEO(R, R̂) = arccos
[
(tr(R̂T R)−1)/2

]
. (9)

5

Under review as a conference paper at ICLR 2022

We believe that using a combination of L2 and Geodesic losses is necessary to learn a high-quality
pose representation. This is especially important when the task is to reconstruct a sparsely specified
pose, giving rise to multiple plausible reconstructions. We argue that a model trained to reconstruct
both plausible joint positions and rotations is better equipped to solve the task accurately. Empirical
evidence presented in Section 3.4 supports this intuition: a model trained on both L2 and Geodesic
generalizes better on both losses than models trained only on one of those terms.

Look-at loss, proposed in this paper, enables the “look-at” feature, i.e. the ability to orient a joint to
face a particular global position (e.g. having the head looking at a given object). It allows the model
to align any direction vector d j ∈ R3 of a joint, expressed in its local frame of reference, towards a
global target location t. Given the predicted global transform matrix Ĝ j, look-at loss is defined as:

LAT(t,d j,Ĝ j) = arccos
[−−−−→
(t− ĝ j) · Ĝ13

j d j

]
. (10)

−−−−→
(t− ĝ j) is a unit-length vector pointing at the target object in world space. Ĝ13

j , when multiplied by

d j, represents the global predicted look-at direction. The look-at loss trains the IKD to produce Ĝ13
j

consistent with the look-at direction defined by t and d j, both provided as network inputs.

2.2 TRAINING METHODOLOGY

The training methodology involves techniques to (i) regularize model via rotation and mirror augmen-
tations, (ii) learn handling of sparse inputs and (iii) effectively combine multi-task loss terms.

Sparse inputs modeling relies on effector sampling. First, the total number of effectors is sampled
uniformly at random in the range [3, 16]. Given the total number of effectors, the effector IDs (one
of 64 joints) and types (position, rotation, or look-at) are sampled from the Multinomial without
replacement. This induces exponentially large number of effector type and joint permutations,
resulting in strong regularizing effects and teaching the network to deal with variable inputs.

Effector tolerance and randomized loss weighting. The motivation behind randomized loss weight-
ing is two-fold. First, we empirically find that when a random weight is multiplicatively applied to
the respective loss term and its reciprocal is used as one of the network inputs for the corresponding
effector, the network learns to respect the tolerance level. When exposed as a user interface feature,
it lets the user control the degree of responsiveness of the model to different effectors. We also
discovered that this only works when noise is added to the effector value and the standard deviation
of the noise is appropriately modulated by tolerance. For example, the noise teaches the model to
disregard the effector completely if the tolerance input value corresponds to the high noise variance
regime. Second, we notice that the randomized weighting improves multi-task training and general-
ization performance. In particular, we observe significant competition between rotation and position
losses on our task. The introduction of the randomized loss weighting seems to turn the competition
into cooperation as our empirical results suggest in Section 3. We implement the randomized loss
weighting scheme via the following steps. For each sampled effector, we uniformly sample Λ ∈ [0,1]
treated as the effector tolerance. Given an effector tolerance Λ, noise with the maximum standard
deviation σM modulated by Λ (noise models used for different effector types are described in detail
in Appendix B) is added to effector data before feeding them to the neural network:

σ(Λ) = σMΛ
η , (11)

We use η > 10 to shape the distribution of σ to smaller values. Furthermore, each effector is attached
with a randomized loss weight reciprocal to σ(Λ), capped at WM if σ(Λ)< 1/WM:

W (Λ) = min(WM,1/σ(Λ)). (12)
Λ drives network input and W (Λ) weighs the loss term affected by the effector.

The detailed procedure to compute the ProtoRes loss based on one batch item is presented in
Algorithm 1 of Appendix C and the summary is provided below. First, we sample (i) the number of
effectors and (ii) their associated types and IDs. For each effector, we randomly sample the tolerance
level and compute the associated noise std and loss weight. Given noise std, an appropriate noise
model is applied to generate input data based on effector type as described in Appendix B. Then
ProtoRes predicts draft joint positions f̃R, j, local joint rotations R̂ j, as well as world-space rotations
and positions Ĝ j for all joints j ∈ [0,J). We conclude by calculating the individual deterministic and
randomized loss terms, whose weighted sum is used for backpropagation.

6

Under review as a conference paper at ICLR 2022

Table 1: Key quantitative results: ProtoRes vs. baselines. Lower values are better.

miniMixamo miniAnonymous
Ldet

gpd−L2 Ldet
ikd−L2 Ldet

loc−geo Ldet
gpd−L2 Ldet

ikd−L2 Ldet
loc−geo

5-point benchmark
FinalIK (RootMotion, 2020) 5.53e-3 8.54e-3 0.5287 3.76e-3 7.83e-3 0.5164
Masked-FCR 1.30e-3 2.49e-3 0.2607 1.11e-3 2.38e-3 0.2124
Transformer 1.10e-3 2.06e-3 0.2698 0.92e-3 1.79e-3 0.2138
ProtoRes 1.00e-3 2.02e-3 0.2534 0.76e-3 1.74e-3 0.2037

Random benchmark
Masked-FCR 15.02e-3 35.21e-3 0.3136 1.57e-2 3.23e-2 0.2694
Transformer 1.63e-3 4.32e-3 0.2599 1.27e-3 3.49e-3 0.2006
ProtoRes 1.36e-3 4.16e-3 0.2381 0.93e-3 3.28e-3 0.1817

3 EMPIRICAL RESULTS

Our results demonstrate that (i) ProtoRes reconstructs sparsely defined pose more accurately than
existing non-ML IK solution, (ii) ProtoRes is more accurate than two ML baselines, (iii) the proposed
encoder-decoder design is accurate and efficient, (iv) our Prototype-Subtract-Accumulate residual
scheme is more effective than the Maxpool-Concat daisy chain of Niemeyer et al. (2019), (v) two-
stage GPD+IKD decoding is more effective than IKD-only decoding, (vi) the proposed randomized
loss weighting improves multi-task training, (vii) joint Geodesic/L2 loss training is synergetic.

3.1 DATASETS

miniMixamo We use the following procedure to create our first dataset from the publicly available
MOCAP data available from mixamo.com, generously provided by Adobe Inc. (2020). We down-
load a total of 1598 clips and retarget them on our custom 64-joint skeleton using the Mixamo online
tool. This skeleton definition is used in Unity to extract the global positions as well as global and
local rotations of each joint at the rate of 60 frames per second (total 356,545 frames). The resulting
dataset is partitioned at the clip level into train/validation/test splits (with proportion 0.8/0.1/0.1,
respectively) by sampling clip IDs uniformly at random. Splitting by clip makes the evaluation frame-
work more realistic and less prone to overfitting: frames belonging to the same clip are often similar.
At last, the final splits retain only 10% of randomly sampled frames (miniMixamo has 33,676 frames
total after subsampling) and all the clip identification information (clip ID, meta-data/description,
character information, etc.) is discarded. This anonymization guarantees that the original sequences
from mixamo.com cannot be reconstructed from our dataset, allowing us to release the dataset for
reproducibility purposes without violating the original dataset license (Adobe Inc., 2020).

miniAnonymous To collect our second dataset we predefine a wide range of human motion
scenarios and hire a qualified MOCAP studio to record 1776 clips (967,258 total frames @60
fps). Then we create a dataset of a total of 96,666 subsampled frames following exactly the same
methodology that was employed for miniMixamo.

3.2 TRAINING AND EVALUATION SETUP

We use Algorithm 1 of Appendix C to sample batches of size 2048 from the training subset, hyperpa-
rameters are adjusted on the validation set. The number of effectors is sampled once per batch and is
fixed for all batch items to maximize data throughput. We report Ldet

gpd−L2, Ldet
ikd−L2, Ldet

loc−geo metrics
calculated on the test set, using models trained on the training set. Ldet

gpd−L2 is computed only on the
root joint. These metrics characterise both the 3D position accuracy and the bone rotation accuracy.
The evaluation framework tests model performance on a pre-generated set of seven files containing
6,7 . . .12 effectors respectively. Metrics are averaged over all files, assessing the overall quality of
pose reconstruction in scenario with sparse variable inputs. Tables present results averaged over 4
random seed retries and metrics computed every 10 epochs over last 1000 epochs, rounded to the last
statistically significant digit. Additional details and hyperparameter settings appear in Appendix E.

7

mixamo.com
mixamo.com

Under review as a conference paper at ICLR 2022

Figure 3: Qualitative posing results. Left 4 poses: adding position, look-at and rotation effectors to
specify pose. Right 2 poses: achieving interesting poses with sparse constraints (4 and 7 effectors).

3.3 KEY RESULTS

To demonstrate the advantage of the proposed architecture, we perform two evaluations. First, we
compare ProtoRes against two ML baselines in the random effector evaluation setup described in
Section 3.2. The first baseline, Masked-FCR, is a brute-force unstructured baseline that uses a very
wide J ·3 ·7 input layer (J joints, 3 effector types, 6D effector data and 1D tolerance) handling all
effector permutations. Missing effectors are masked with 3 · J learnable 7D placeholders. Masked-
FCR has 3 encoder and 6 decoder blocks to match ProtoRes. The second baseline is based on the
Transformer encoder (Vaswani et al. (2017), see Appendix G for architecture and hyperparameter
settings). The bottom of Table 1, summarizing this study, shows clear advantage of ProtoRes w.r.t.
both baselines. Additionally, training Transformer on NVIDIA M40 24GB GPU for 40k epochs of
miniMixamo takes 1055 hours (batch size 1024 to fit Transformer in GPU memory), whereas training
ProtoRes takes 106 hours. ProtoRes is clearly more compute efficient.

Second, Table 1 (top) compares ProtoRes against a non-ML IK solution FinalIK (RootMotion, 2020),
as well as Transformer and Masked-FCR, on a 5-point evaluation benchmark. The 5-point benchmark
tests the reconstruction of the full pose from five position effectors: chest, left and right hands, left and
right feet. It is chosen, because generating the exponentially large number of FinalIK configurations
to process all heterogeneous effector combinations in the random benchmark is not feasible. Note
that the 5-point benchmark and random benchmark results are not directly comparable. We can see
that all ML methods significantly outperform FinalIK in reconstruction accuracy, ProtoRes being the
best overall. Clearly, ML methods learn the right inductive biases from the data to solve the ill-posed
sparse input pose reconstruction problem, unlike the pure non-learnable IK method FinalIK.

Third, qualitative posing results are shown in Fig. 3, demonstrating that visually appealing poses can
be obtained with small number of effectors (4 and 7 effectors for the two poses on the right). The left
4 poses demonstrate how pose can be refined successively by adding more effectors. Please refer to
Appendix J and supplementary videos for more demonstration examples.

3.4 ABLATION STUDIES

Decoder ablation is shown in Table 2 (top). We keep all hyperparameters at defaults described in
Section 3.2 and vary the number of decoder blocks (0 blocks corresponds to a simple linear projection)
and compare to the ProtoRes baseline with 3 decoder blocks. We see consistent gain adding more
decoder blocks at small compute cost (91, 95, 102, 106 hours of train time on miniMixamo dataset
and NVIDIA M40 GPU for 0,1,2,3 blocks). Please see more detailed results in Appendix H.

Prototype-Subtract-Accumulate ablation is presented in Appendix I, in which we compare it
against the ResPointNet stacking scheme (Maxpool-Concat daisy chain by Niemeyer et al. (2019)).
We show that our stacking scheme is more accurate and allows stacking deeper networks gaining
more accuracy, whereas stacking by Niemeyer et al. (2019) saturates at 3 encoder blocks.

GPD ablation is shown in Table 2 (middle). We remove GPD and increase IKD depth to 6 blocks to
match the capacity of IKD+GPD. Comparing to the baseline, we see that GPD creates consistent gain
across metrics and datasets by conditioning IKD with a draft pose.

8

Under review as a conference paper at ICLR 2022

Table 2: Ablation studies on the random benchmark. Lower values are better.

miniMixamo miniAnonymous
Ldet

gpd−L2 Ldet
ikd−L2 Ldet

loc−geo Ldet
gpd−L2 Ldet

ikd−L2 Ldet
loc−geo

ProtoRes baseline
1.36e-3 4.16e-3 0.2381 0.93e-3 3.28e-3 0.1817

Decoder blocks Ablation of decoder
0 1.54e-3 4.59e-3 0.2485 1.05e-3 3.65e-3 0.1939
1 1.35e-3 4.34e-3 0.2433 0.93e-3 3.52e-3 0.1895
2 1.34e-3 4.24e-3 0.2397 0.93e-3 3.34e-3 0.1840

GPD blocks, GPD/IKD Ablation of GPD
7 0/6 1.43e-3 4.39e-3 0.2413 0.93e-3 3.34e-3 0.1830

L∗ikd−L2 L∗loc−geo Ablation of rotation and position loss terms
3 7 1.60e-3 4.49e-3 0.2742 1.12e-3 3.65e-3 0.2392
7 3 2.04e-3 6.19e-3 0.2442 1.33e-3 4.63e-3 0.1862

Wpos Randomized Loss Ablation of randomized loss weighting
100 7 1.77e-3 4.93e-3 0.2549 1.15e-3 3.58e-3 0.1905

1000 7 1.66e-3 4.75e-3 0.2668 1.09e-3 3.40e-3 0.2029

Ablation of loss terms, shown in Table 2 (middle), studies the effect of (i) removing all L2 loss terms
from the output of the FK pass and (ii) removing all Geodesic loss terms from the rotation output
of IKD. Interestingly, removing either of the loss terms results in the degradation of all monitored
metrics on both datasets. We conclude that jointly penalizing positions with L2 and rotations with
Geodesic results in positive synergetic effects and improves the overall quality of pose model.

Randomized loss weighting ablation is shown in Table 2 (bottom). The randomized loss weighting
scheme (see Algorithm 1 in Appendix C) is disabled by replacing all randomized loss terms with their
deterministic counterparts. For example, Lrnd

ikd−L2 is replaced with ∑
J
j=1 MSE(g j, ĝ j). The inclusion of

randomized weighting significantly improves generalization performance on all datasets and metrics.
Additionally, when L2 weight Wpos increases with disabled randomized weighting, position L2
metrics improve, but at the expense of declining rotation metrics. Therefore, randomized weighting
scheme contributes positive effect that cannot be achieved by tweaking the deterministic loss weights.

The limitations of the current work, discussed in detail in Appendix K, include (i) the lack of
temporal consistency as we focus on the problem of authoring a discrete pose, (ii) constraints are
satisfied approximately, as opposed to the more conventional systems, (iii) exotic poses significantly
deviating from the training data distribution may be hard to achieve.

4 CONCLUSIONS

We define and solve the discrete full-body pose authoring task using sparse and variable user inputs.
We define and release two datasets to support the development of ML models for discrete pose
authoring and animation. We propose ProtoRes, a novel ML architecture which processes a variable
number of heterogeneous user inputs (position, angle, direction) to reconstruct a full-body pose.
We compare ProtoRes against two strong ML baselines, Masked-FCR and Transformer, showing
superior results for ProtoRes, both in terms of accuracy and computational efficiency. We also show
that ML models reconstruct full-body poses from sparse user inputs more accurately than existing
non-learnable inverse kinematics models. We develop a suite of UI tools for the integration of our
model in Unity and provide demos showing how our model can be used effectively to solve the
discrete pose authoring problem by the end user. Our results have a few implications. First, our
ML based tools will have positive impacts on the simplification and democratization of the game
development process by helping a wide audience materialize their creative animation ideas. Second,
our novel approach to neural pose representation could be applied in a variety of tasks where efficient
and accurate reconstruction of full-body poses from noisy intermittent measurements is important.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Adobe Inc. Adobe general terms of use. https://www.adobe.com/legal/terms.html,
2020. Accessed: 2021-05-06.

Andreas Aristidou and Joan Lasenby. Fabrik: A fast, iterative solver for the inverse kinematics
problem. Graphical Models, 73(5):243–260, 2011.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, January 2015.

Michael Büttner and Simon Clavet. Motion matching - the road to next gen animation. In Proc. of
Nucl.ai 2015, 2015. URL https://www.youtube.com/watch?v=z_wpgHFSWss&t=
658s.

Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, Junsong Yuan, and Nadia Magnenat
Thalmann. Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional
networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

Nicola Capece, Ugo Erra, and Giuseppe Romaniello. A low-cost full body tracking system in
virtual reality based on microsoft kinect. In Lucio Tommaso De Paolis and Patrick Bourdot (eds.),
Augmented Reality, Virtual Reality, and Computer Graphics, pp. 623–635. Springer International
Publishing, 2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm (eds.), ECCV 2020, pp. 213–229, 2020.

Cascadeur. How to use deep learning in character posing. https://cascadeur.com/ru/
blog/general/how-to-use-deep-learning-in-character-posing, 2019. Ac-
cessed: 2021-05-06.

David Casillas-Perez, Javier Macias-Guarasa, Marta Marron-Romera, David Fuentes-Jimenez, and
Alvaro Fernandez-Rincon. Full body gesture recognition for human-machine interaction in
intelligent spaces. In Francisco Ortuño and Ignacio Rojas (eds.), Bioinformatics and Biomedical
Engineering, pp. 664–676. Springer International Publishing, 2016.

Jinxiang Chai and Jessica K Hodgins. Performance animation from low-dimensional control signals.
In ACM Transactions on Graphics (ToG), volume 24, pp. 686–696. ACM, 2005.

Yu Cheng, Bo Wang, Bo Yang, and Robby T Tan. Graph and temporal convolutional networks for 3d
multi-person pose estimation in monocular videos. AAAI, 2021.

Kyunghyun Cho and Xi Chen. Classifying and visualizing motion capture sequences using deep
neural networks. In 2014 International Conference on Computer Vision Theory and Applications
(VISAPP), volume 2, pp. 122–130. IEEE, 2014.

Facebook Reality Labs. Inside facebook reality labs: Research up-
dates and the future of social connection. https://tech.fb.com/
inside-facebook-reality-labs-research-updates-and-the-future-of-social-connection/,
2021. Accessed: 2021-04-30.

Keith Grochow, Steven L Martin, Aaron Hertzmann, and Zoran Popović. Style-based inverse
kinematics. In ACM SIGGRAPH 2004 Papers, pp. 522–531. 2004.

Fei Han, Brian Reily, William Hoff, and Hao Zhang. Space-time representation of people based on
3d skeletal data: A review. Computer Vision and Image Understanding, 158:85–105, 2017.

Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-
betweening. 39(4), 2020.

Christoph Heindl, Markus Ikeda, Gernot Stübl, Andreas Pichler, and Josef Scharinger. Metric pose
estimation for human-machine interaction using monocular vision. ArXiv, 2019.

10

https://www.adobe.com/legal/terms.html
https://www.youtube.com/watch?v=z_wpgHFSWss&t=658s
https://www.youtube.com/watch?v=z_wpgHFSWss&t=658s
https://cascadeur.com/ru/blog/general/how-to-use-deep-learning-in-character-posing
https://cascadeur.com/ru/blog/general/how-to-use-deep-learning-in-character-posing
https://tech.fb.com/inside-facebook-reality-labs-research-updates-and-the-future-of-social-connection/
https://tech.fb.com/inside-facebook-reality-labs-research-updates-and-the-future-of-social-connection/

Under review as a conference paper at ICLR 2022

Daniel Holden, Jun Saito, and Taku Komura. Learning an inverse rig mapping for character animation.
In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pp. 165–173, 2015.

Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks for character control.
ACM Transactions on Graphics (TOG), 36(4):1–13, 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In CVPR. IEEE Computer Society, 2017.

Yinghao Huang, Manuel Kaufmann, Emre Aksan, Michael J Black, Otmar Hilliges, and Gerard Pons-
Moll. Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements
in real time. ACM Transactions on Graphics (TOG), 37(6):1–15, 2018.

Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn: Deep learning
on spatio-temporal graphs. In Proceedings of the ieee conference on computer vision and pattern
recognition, pp. 5308–5317, 2016.

Ben Kenwright. Inverse kinematics–cyclic coordinate descent (ccd). Journal of Graphics Tools, 16
(4):177–217, 2012.

Evgeniy Khapugin and Alexander Grishanin. Physics-based character animation with cascadeur.
In ACM SIGGRAPH 2019 Studio, SIGGRAPH ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

Hyounghun Kim, Abhaysinh Zala, Graham Burri, and M. Bansal. Fixmypose: Pose correctional
captioning and retrieval. In AAAI, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Chandan Kumar, Jayanth Ramesh, Bodhisattwa Chakraborty, Renjith Raman, Christoph Weinrich,
Anurag Mundhada, Jain. Arjun, and Fabian B Flohr. VRU Pose-SSD: Multiperson pose estimation
for automated driving. In AAAI 2021, 2021.

Kyungho Lee, Seyoung Lee, and Jehee Lee. Interactive character animation by learning multi-
objective control. In SIGGRAPH Asia 2018 Technical Papers, pp. 180. ACM, 2018.

James Lin and James O’Brien. Temporal ik: Data-driven pose estimation for virtual reality. 2019.

Kyle McDonald. Dance x machine learning: First steps. https://medium.com/@kcimc/
discrete-figures-7d9e9c275c47, 2018. Accessed: 2021-05-03.

Maryam Sadat Mirzaei, Kourosh Meshgi, Etienne Frigo, and Toyoaki Nishida. Animgan: A
spatiotemporally-conditioned generative adversarial network for character animation. In 2020
IEEE International Conference on Image Processing (ICIP), pp. 2286–2290. IEEE, 2020.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow: 4d
reconstruction by learning particle dynamics. In ICCV, October 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS 2019, pp. 8024–8035, 2019.

R.P. Paul. Robot Manipulators: Mathematics, Programming, and Control : The Computer Control of
Robot Manipulators. The MIT Press Series in Artificial Intelligence. MIT Press, 1992.

Dario Pavllo, David Grangier, and Michael Auli. QuaterNet: A quaternion-based recurrent model for
human motion. In British Machine Vision Conference (BMVC), 2018.

C. Qi, Hao Su, Kaichun Mo, and L. Guibas. Pointnet: Deep learning on point sets for 3d classification
and segmentation. CVPR, pp. 77–85, 2017.

11

https://medium.com/@kcimc/discrete-figures-7d9e9c275c47
https://medium.com/@kcimc/discrete-figures-7d9e9c275c47

Under review as a conference paper at ICLR 2022

Qaiser Riaz, Guanhong Tao, Björn Krüger, and Andreas Weber. Motion reconstruction using very
few accelerometers and ground contacts. Graphical Models, 79:23–38, 2015.

RootMotion. Advanced character animation systems for Unity. http://root-motion.com,
2020. Accessed: 2021-04-30.

Bodo Rosenhahn, Christian Schmaltz, Thomas Brox, Joachim Weickert, Daniel Cremers, and Hans-
Peter Seidel. Markerless motion capture of man-machine interaction. In CVPR, pp. 1–8, 2008.

Seyed Sadegh Mohseni Salehi, Shadab Khan, Deniz Erdogmus, and Ali Gholipour. Real-time deep
pose estimation with geodesic loss for image-to-template rigid registration. IEEE transactions on
medical imaging, 38(2):470–481, 2018.

Julia Schwarz, Charles Claudius Marais, Tommer Leyvand, Scott E. Hudson, and Jennifer Mankoff.
Combining body pose, gaze, and gesture to determine intention to interact in vision-based interfaces.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pp.
3443––3452, New York, NY, USA, 2014. Association for Computing Machinery.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In
NIPS, pp. 4080–4090, 2017.

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. Local motion phases for learning
multi-contact character movements. ACM Transactions on Graphics (TOG), 39(4):54–1, 2020.

Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber, Thomas Helten, Meinard
Müller, Hans-Peter Seidel, and Bernd Eberhardt. Motion reconstruction using sparse accelerometer
data. ACM Transactions on Graphics (ToG), 30(3):18, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), NeurIPS, volume 30, 2017.

Xpire. Using ai to make nba players dance. https://tinyurl.com/y3bdj5p5, 2019. Ac-
cessed: 2021-05-03.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. Rignet: Neural
rigging for articulated characters. ACM Trans. on Graphics, 39, 2020.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In AAAI 2018, volume 32, 2018.

Dongseok Yang, Doyeon Kim, and Sung-Hee Lee. Real-time lower-body pose prediction from sparse
upper-body tracking signals. arXiv preprint arXiv:2103.01500, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In NeurIPS, volume 30. Curran Associates, Inc., 2017.

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural networks for
quadruped motion control. ACM Transactions on Graphics (TOG), 37(4):1–11, 2018.

Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li Hao. On the continuity of rotation
representations in neural networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

12

http://root-motion.com
https://tinyurl.com/y3bdj5p5

Under review as a conference paper at ICLR 2022

Supplementary Material for ProtoRes:
Proto-Residual Network for Pose Authoring
via Learned Inverse Kinematics
Table of Contents

A Architecture Details 14

B Effector noise model 15
B.1 Position effector noise model . 15
B.2 Rotation effector noise model . 15
B.3 Look-at effector noise model . 15

C Training Methodology: Details 16

D Datasets: Details 17

E Training Setup: Details 18

F Masked-FCR baseline architecture 19

G Transformer baseline architecture 19

H Ablation of the Decoder: Details 20

I Ablation of the Prototype-Subtract-Accumulate stacking principle 21

J Videos and demonstrations 22
J.1 ProtoRes Demo . 22
J.2 Posing from Images . 22
J.3 Loss Ablation . 22
J.4 FinalIK Comparison . 22
J.5 Datasets Comparison . 23
J.6 Limitations . 23

K Limitations 23

13

Under review as a conference paper at ICLR 2022

Block 1

Block 2

... ...

Block R

+

FC layer 1

FC layer L

LinearLinear

...

+

ReLu

Residual

Block
Output

Block Input Input

Output

Figure 4: Block diagram of the fully-connected residual (FCR) decoder architecture. Left: the
diagram of one residual block of the FCR decoder. Note that the basic residual block of the encoder
architecture is exactly the same. Right: residual blocks connected in the FCR architecture.

A ARCHITECTURE DETAILS

Encoder The residual block depicted in Fig. 4 (left) is used as the basic building block of the ProtoRes
encoder.

Decoders The block diagram of the global position and the inverse kinematics decoders used in the
main architecture (see Fig. 2) is presented in Fig. 4. The architecture has fully connected residual
topology consisting of multiple fully connected blocks connected using residual connections. Each
block has residual and forward outputs. The forward output contributes to the final output of the
decoder. The residual connection sums the hidden state of the block with the linear projection of the
input and applies a ReLU non-linearity.

In the main text we use a convention that the number of layers and blocks in the encoder, as well
as in GPD and IKD decoders is the same and is given by L and R respectively. Obviously, using a
different number of layers and residual blocks in each of the blocks might be more optimal.

Forward Kinematics pass is applied to the output of the IKD, transforming local joint rotations and
global root position into the global joint rotations and positions using skeleton kinematic equations.
The FK pass relies on the offset vector o j = [ox, j,oy, j,oz, j]

ᵀ and the rotation matrix R j for each joint
j. The offset vector is a fixed non-learnable vector representing bone length constraint for joint j. It
provides the displacement of this joint with respect to its parent joint when joint j rotation is zero. R j
can be naı̈vely represented using local Euler rotation angles α j,β j,γ j:

o j =

[ox, j
oy, j
oz, j

]
; R j =

[cosα j −sinα j 0
sinα j cosα j 0

0 0 1

][cosβ j 0 sinβ j
0 1 0

−sinβ j 0 cosβ j

][1 0 0
0 cosγ j −sinγ j
0 sinγ j cosγ j

]
.

However, we use a more robust representation proposed by (Zhou et al., 2019), relying on vector
norm −→u ≡ u/‖u‖2 and vector cross product u×v = ‖u‖‖v‖cos(γ)−→n (γ is the angle between u and
v in the plane containing them and −→n is the normal to the plane):

r̂ j,x =
−−−−−→
f̂R, j[1 : 3], r̂ j,z =

−−−−−−−−−−→
r̂ j,x× f̂R, j[4 : 6], r̂ j,y = r̂ j,z× r̂ j,x, R̂ j = [̂r j,x r̂ j,y r̂ j,z] . (13)

14

Under review as a conference paper at ICLR 2022

Provided with the local offset vectors and rotation matrices of all joints, the global rigid transform of
any joint j is predicted following the tree recursion from the parent joint p(j) of joint j:

Ĝ j = Ĝp(j)

[
R̂ j o j
0 1

]
. (14)

The global transform matrix Ĝ j of joint j contains its global rotation matrix, Ĝ13
j ≡ Ĝ j[1 : 3,1 : 3],

and its 3D global position, ĝ j = Ĝ j[1 : 3,4].

B EFFECTOR NOISE MODEL

This section describes the details of the of the NOISEMODEL that is used in Algorithm 1 to corrupt
model effector input x[i, :] based on appropriate noise level σ(Λi).

B.1 POSITION EFFECTOR NOISE MODEL

If effector type is positional (Ti = 0), i.e. effector i is a coordinate in 3D space, typically corresponding
to the desired position of joint Ii in 3D space, we employ Gaussian white noise model:

x[i,1 : 3] = gIi +σ(Λi)εi; x[i,4 : 6] = 0. (15)

Here x[i, :] is the i-th model input, gIi is the ground truth location of joint Ii, σ(Λi) is the noise standard
deviation computed based on eq. equation 19 and εi is a 3D vector sampled from the zero-mean
Normal distribution N(0,I).

B.2 ROTATION EFFECTOR NOISE MODEL

If effector type is angular (Ti = 1), i.e. effector i is a 6DoF rotation matrix representation, we employ
random rotation model that is implemented in the following stages. First, suppose fIi is the ground
truth 6DoF representation of the global rotation of joint Ii corresponding to effector i. We transform it
to the rotation matrix representation G13

Ii using equation equation 13. Second, we generate the random
3D Euler angles vector εi from the zero-mean Gaussian distribution N(0,σ(Λi)I)1 and convert it to
the random rotation matrix Ψi using eq. equation 16:

Ψi =

[cosεi[1] −sinεi[1] 0
sinεi[1] cosεi[1] 0

0 0 1

][cosεi[2] 0 sinεi[2]
0 1 0

−sinεi[2] 0 cosεi[2]

][1 0 0
0 cosεi[3] −sinεi[3]
0 sinεi[3] cosεi[3]

]
. (16)

Third, we apply random rotation to the ground truth matrix, G13′
Ii = ΨiG13

Ii . Finally, we convert the
randomly perturbed rotation matrix back to the 6DoF representation:

x[i,1 : 3] = G13′
Ii [:,1], x[i,4 : 6] = G13′

Ii [:,2]. (17)

B.3 LOOK-AT EFFECTOR NOISE MODEL

If effector type is look-at (Ti = 2), i.e. effector i is a position of the target at which a given joint is
supposed to look, we employ random sampling of the target point along the ray formed by the ground
truth global rotation of a given joint.

First, we sample the local direction vector di from the zero-mean normal 3D distribution N(0,I) and
normalize it to unit length. Second, we sample the distance between the joint and the target object, dt,
from the normal distribution N(0,5) folded over at 0 by taking the absolute value. The location of
the target object is then determined as ti = gIi +dtdi +σ(Λi)εi. Finally, the output is constructed as
follows:

x[i,1 : 3] = ti, x[i,4 : 6] = di. (18)

As previously, εi is a 3D vector sampled from the zero-mean Normal distribution N(0,I).

15

Under review as a conference paper at ICLR 2022

Algorithm 1 Loss calculation for a single item in the training batch of ProtoRes.

Require: R j,G j;N ∼ UNIFORM[3,16] . Ground truth for all joints j ∈ [0,J); number of effectors
Ensure: x . Sample inputs

I1, . . . , IN ←MULTINOMIAL({0, . . . ,J−1},N) . Effector IDs
T1, . . . ,TN ←MULTINOMIAL({0,1,2},N) . Effector type
for i in 1 . . .N do

Λi← UNIFORM[0,1] . Effector tolerance
σ(Λi); W (Λi)← σMΛ

η

i ; min(WM,1/σ(Λi)) . Effector noise std and weight
x[i, :]← NOISEMODEL(GIi ,σ(Λi),Ti) . Generate noisy effector

end for
Predict: f̃R, j, R̂ j,Ĝ j ∀ j
Lrnd

gpd−L2← 1
∑

N
i=11Ti=0 W (Λi)

∑
N
i=11Ti=0 W (Λi)MSE(gIi , f̃R,Ii) . Randomized GPD position loss

Lrnd
ikd−L2← 1

∑
N
i=11Ti=0 W (Λi)

∑
N
i=11Ti=0 W (Λi)MSE(gIi , ĝIi) . Randomized IKD position loss

Ldet
gpd−L2← ∑

J
j=1 MSE(g j, f̃R, j) . Deterministic GPD position loss

Ldet
ikd−L2← ∑

J
j=1 MSE(g j, ĝ j) . Deterministic IKD position loss

Ldet
loc−geo← ∑

J
j=1 GEO(R j, R̂ j) . Deterministic local rotation loss

Lrnd
glob−geo← 1

∑
N
i=11Ti=1 W (Λi)

∑
N
i=11Ti=1 W (Λi)GEO(G13

Ii ,Ĝ
13
Ii) . Randomized global rotation loss

Ldet
lat ← 1

∑
N
i=11Ti=2

∑
N
i=11Ti=2 LAT(x[i,1 : 3],x[i,4 : 6],Ĝ13

Ii) . Randomized Look-at loss

L← Wpos
J (Lrnd

gpd−L2+Lrnd
ikd−L2+Ldet

gpd−L2+Ldet
ikd−L2)+

1
J (L

det
lat +Lrnd

glob−geo+Ldet
loc−geo) . Total loss

C TRAINING METHODOLOGY: DETAILS

The training methodology involves techniques targeting to (i) regularize model via data augmentation,
(ii) learn handling of sparse inputs and (iii) effectively combine multi-task loss terms.

Data augmentation is based on the rotation and mirror augmentations. The former rotates the
skeleton around the vertical Y axis by a random angle in [0,2π]. Rotation w.r.t. ground XZ plane is not
applied to avoid creating poses implausible according to the gravity direction. Mirror augmentation
removes any implicit left- or right-handedness biases by flipping the skeleton w.r.t. the Y Z plane.

Sparse inputs modeling relies on effector sampling. First, the total number of effectors is sampled
uniformly at random in the range [3, 16]. Given the total number of effectors, the effector IDs (one of
64 joints) and types (one of 3 types: position, rotation, or look-at) are sampled from the Multinomial
without replacement. This sampling scheme produces an exponentially large number of different
permutations of effector types and joints, resulting in strong regularizing effects.

Effector tolerance and randomized loss weighting. The motivation behind the randomized loss
weighting is two-fold. First, the randomized loss weighting was originally introduced as a binary
indicator to force the model to better respect constraints provided as effectors, compared to the joints
predicted by the model. Afterwards, we realized that this can be made more flexible by generating
a continuous variable representing the tolerance level. This variable can be provided as an input to
the network and it can be exposed as a user interface feature to let the user control the degree of
responsiveness of the model to different effectors. We also discovered that the latter feature only
works when a noise is added to effector value and the standard deviation of the noise is appropriately
synchronised with the tolerance. The noise teaches the model to disregard the effector completely if
the tolerance input value corresponds to the high noise variance regime.

Second, we observed that the use of the randomized weighting improves multi-task training and
generalization performance. Initially, we noticed that increasing the weight of position loss would
drive the generalization on the position metric to a better spot, while the rotation metric generalization
would be compromised, which is not surprising. This was especially evident when the position loss
weight was increased by one or two orders of magnitude. This is a well-known phenomenon when

1Note that in the case of angles, sampling from the Tikhonov (a.k.a. circular normal or von Mises) distribution
might be a better idea, but Gaussian worked well in our case.

16

Under review as a conference paper at ICLR 2022

dealing with multiple loss terms, which we informally call “fighting” between losses (related to
the Pareto front, more formally). This effect can be observed when comparing two bottom rows in
Table 2. Introducing the randomized loss weighting scheme we observed two things. “Fighting”
disappeared, i.e. the randomly generated weights of position effectors varied in a wide range between
1e-1 and 1e5 within a batch, but the fact that some of the weight values are one or two orders of
magnitude greater than the baseline position weight of 100, did not lead to the deterioration of the
rotation loss. Moreover, the introduction of the randomized loss weighting positively affected the
generalization on both position and rotation metrics, which can be assessed by comparing the first
row of Table 2 with its bottom rows. This leads us to believe that the randomized loss weighting
introduces a sinergy in the multi-task training that is not achievable by simple adjustment of static
loss weights. We believe this technique could be more generally applicable to multi-task training, but
a more detailed investigation of this is outside of the current scope.

We now describe the technical details behind randomized loss weighting implementation. For each
sampled effector, we further uniformly sample Λ ∈ [0,1] treated as effector tolerance. Given an
effector tolerance Λ, noise (noise models used for different effector types are described in detail in
Appendix B) with variance proportional to Λ is added to effector data before feeding them to the
neural network:

σ(Λ) = σMΛ
η . (19)

We use η > 10 to shape the distribution of σ to smaller values. Furthermore, to each effector is
attached a randomized loss weight reciprocal to σ(Λ), capped at WM if σ(Λ)< 1/WM:

W (Λ) = min(WM,1/σ(Λ)). (20)

Λ drives network inputs and is simultaneously used to weigh losses by W (Λ). Thus ProtoRes learns to
respect effector tolerance, leading to two positive outcomes. First, ProtoRes provides a tool allowing
one to emphasize small tolerance effectors (Λ≈ 0) and relax the large tolerance ones (Λ≈ 1). Second,
randomized loss weighting improves the overall accuracy in the multi-task training scenario.

The detailed procedure to compute the ProtoRes loss based on one batch item is presented in
Algorithm 1 and the summary is provided below. First, we sample (i) the number of effectors and (ii)
their associated type and ID. For each effector, we randomly sample the tolerance level and compute
the associated noise std and loss weight. Given noise std, an appropriate noise model is applied to
generate input data based on effector type as described in Appendix B. Then ProtoRes predicts draft
joint positions f̃R, j, local joint rotations R̂ j, as well as world-space rotations and positions Ĝ j for all
joints j ∈ [0,J). We conclude by calculating the individual deterministic and randomized loss terms,
whose weighted sum is used for backpropagation.

D DATASETS: DETAILS

miniMixamo We use the following procedure to create our first dataset from the publicly available
MOCAP data available from mixamo.com, generously provided by Adobe Inc. (2020). We down-
load a total of 1598 clips and retarget them on our custom 64-joint skeleton using the Mixamo online
tool. This skeleton definition is used in Unity to extract the global positions as well as global and
local rotations of each joint at the rate of 60 frames per second (total 356,545 frames). The resulting
dataset is partitioned at the clip level into train/validation/test splits (with proportion 0.8/0.1/0.1,
respectively) by sampling clip IDs uniformly at random. Splitting by clip makes the evaluation frame-
work more realistic and less prone to overfitting: frames belonging to the same clip are often similar.
At last, the final splits retain only 10% of randomly sampled frames (miniMixamo has 33,676 frames
total after subsampling) and all the clip identification information (clip ID, meta-data/description,
character information, etc.) is discarded. This anonymization guarantees that the original sequences
from mixamo.com cannot be reconstructed from our dataset, allowing us to release the dataset for
reproducibility purposes without violating the original dataset license (Adobe Inc., 2020).

For miniMixamo our contribution is as follows. Mixamo data is not available as a single file. There-
fore, anyone who wants to use the data for academic purposes needs to go through a lengthy process
of downloading individual files. Importantly, this step creates additional risks for the reproducibility
of results. We have gone through this step and assembled all files in one place. Furthermore, Mixamo
data cannot be redistributed, according to Adobe licensing, which is again a reproducibility risk.

17

mixamo.com
mixamo.com

Under review as a conference paper at ICLR 2022

Hyperparameter Value Grid

Epochs, miniMixamo/ miniAnonymous 40k/15k [20k, 40k, 80k] / [10k, 15k, 40k]
Losses MSE,GEO,LAT MSE,GEO,LAT
Width (dh) 1024 [256, 512, 1024, 2048]
Blocks (R) 3 [1, 2, 3]
Layers (L) 3 [2, 3, 4]
Batch size 2048 [512, 1024, 2048, 4096]
Optimizer Adam [Adam, SGD]
Learning rate 2e-4 [1e-4, 2e-4, 5e-4, 1e-3]
Base L2 loss scale (Wpos) 1e2 [1, 10, 1e2, 1e3, 1e4]
Max noise scale (σM,0, σM,1) 0.1 [0.01, 0.1, 1]
Max effector weight (WM) 1e3 [10, 1e2, 1e3, 1e4]
Noise exponent, η 13 13
Dropout 0.01 [0.0, 0.01, 0.05, 0.1, 0.2]
Embedding dimensionality 32 [16, 32, 64, 128]
Augmentattion mirror, rotation [mirror, rotation, translation]

Table 3: Settings of ProtoRes hyperparameters and the hyperparameter search grid.

However, we do not need the entire dataset for benchmarking on the task we defined. Therefore,
we defined a suitable subsampling and anonymization procedure that allowed us to obtain (i) a high
quality reproducible benchmark dataset for our task and (ii) a legal permission from Mixamo/Adobe
to redistribute this benchmark for academic research purposes. We are extremely grateful to the
representatives from Mixamo and Adobe who approved it to facilitate the democratization of character
animation. The entire process of creating the benchmark took us a few months of work, which we
consider a significant contribution to the research community.

miniAnonymous To collect our second dataset we predefine a wide range of human motion
scenarios and hire a qualified MOCAP studio to record 1776 clips (967,258 total frames @60
fps). Then we create a dataset of a total of 96,666 subsampled frames following exactly the same
methodology that was employed for miniMixamo.

The key differentiators of the datasets that we release that make them significant contributions toward
AI driven artistic pose development are as follows:

• Both miniMixamo (derived from the Mixamo, which is generously provided by Adobe) and
miniAnonymous are collected by professional studio contractors relying on the service of
professional actors using high-end MOCAP studio equipment.

• Both datasets are clean and contain data of very high quality. For our dataset, we specifically
had to go through multiple cleaning iterations to make sure all the data collection and
conversion artifacts are removed. We are very grateful to our contractor for being diligent,
detail oriented, and determined to provide the high quality data.

• Both datasets provide data in the industry standard skeleton format compatible with multiple
existing animation rigs and therefore making it easy to experiment with the ML assisted pose
authoring results in 3D development environments such as Unity. This is in contrast to CMU
and AMASS datasets that are collected in heterogeneous environments using non-standard
sensor placements.

• Both our datasets provide 64 joint skeletons and contain fine grain hands and feet data,
unlike other publicly available datasets.

E TRAINING SETUP: DETAILS

We use Algorithm 1 of Appendix C to sample batches of size 2048 from the training subset. The num-
ber of effectors is sampled once per batch and is fixed for all batch items to maximize data throughput.

18

Under review as a conference paper at ICLR 2022

Transformer Baseline OUTPUTS
POSE DECODER

Transformer

TRANSLATION
INVARIANCE

USER
INPUTS

Position, NPx3

Effector Joint
ID, Nx1

Rotation, NRx6

Effector Type,
Nx1

-

Padding
NPx6

Nx6

C
on

ca
t

Fully
Connected
Residual
Decoder

-

+

Joint Positions,
unconstrained

(Jx3)

reference

Joint Rotations
(Jx6)

Effector
Tolerance, Nx1

Joint Positions
(Jx3)

root position

NxEin

Proto

Concat

Embedding

Embedding

FORWARD
KINEMATICS

Look-at, NLx6
N=NP+NR+NL

src

All Joint IDs, Jx1

Embedding

tgt

Jx32

Linear

J x d_model

Li
ne

ar

N x d_model

out

Linear

Linear

J x d_model

J x 1024

Figure 5: Block diagram of the Transformer baseline architecture.

The training loop is implemented in PyTorch (Paszke et al., 2019) using Adam optimizer Kingma
& Ba (2015) with a learning rate of 0.0002. Hyperparameter values are adjusted on the validation
set (see Appendix E for hyperparameter settings). We report Ldet

gpd−L2, Ldet
ikd−L2, Ldet

loc−geo metrics
calculated on the test set, using models trained on the training set. Ldet

gpd−L2 is computed only on the
root joint. These metrics characterise both the 3D position accuracy and the bone rotation accuracy.
The evaluation framework tests model performance on a pre-generated set of seven files containing 6
to 12 effectors each. Skeleton is split in six zones, with four main zones including each limb, the
hip zone and the head zone. In each file, we first sample one positional effector from each main
zone. Remaining effectors are sampled randomly from all zones and effector types, mimicking pose
authoring scenarios observed in practice. Metrics are averaged over all samples in all files, assessing
the overall quality of pose reconstruction in scenario with sparse and variable inputs. All tables
present results averaged over 4 random seed retries and metric values computed every 10 epochs over
last 500 epochs, rounded to the last statistically significant digit.

Hyperparameter settings The training loop is implemented in PyTorch (Paszke et al., 2019) using
Adam optimizer Kingma & Ba (2015) with a learning rate of 0.0002. We tried to use SGD optimizer
to train the architecture, but it was very difficult to obtain stable results with it. Adam optimizer
turned out to be much more suitable for our problem. The learning rate was selected to be 0.0002,
which is lower than Adam’s default. Obtaining stable training results with higher learning rates was
not feasible. Batch size is selected to be 2048 to accelerate training speed. In practice we observed
slightly better generalization results with smaller batch size (1024 and 512). The detailed settings of
ProtoRes hyperparameters are presented in Table 3.

F MASKED-FCR BASELINE ARCHITECTURE

Masked-FCR is a brute-force unstructured baseline that uses a very wide J ·3 ·7 input layer (J joints,
3 effector types, 6D effector plus one tolerance value) to handle all possible effector permutations.
Each missing effector is masked with one of 3 · J learnable 7D placeholders. Masked-FCR has 3
encoder and 6 decoder blocks to match ProtoRes.

G TRANSFORMER BASELINE ARCHITECTURE

We implement Transformer baseline using the default Transformer module available from PyTorch
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.
html. The block diagram of the Transformer baseline architecture is shown in Fig. 5.

We use a standard transformer application scenario in which the transformer source input is fed
with the variable length input and the required outputs are queried via target input. In our case
the variable length input corresponds to the effector data concatenated with embedded effector

19

https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html

Under review as a conference paper at ICLR 2022

Hyperparameter Value Grid

FCR decoder parameteres
FCR Blocks (R) 6 N/A
FCR Width (dh) 1024 N/A

Transformer parameteres
d model 128 [64, 128, 256]
nhead 8 [1, 2, 4, 8]
num encoder layers 2 [1,2,3]
num decoder layers 2 [1,2,3]
dim feedforward 1024 [256, 512, 1024]
dropout 0.01 0.01
activation relu relu
Base L2 loss scale (Wpos) 100 [10, 100]

Table 4: Settings of Transformer baseline hyperparameters and the hyperparameter search grid.

categorical variables. The query for the output consists of the embeddings of all joints. Note that
the joint embedding is reused both for source and target inputs and both inputs are projected to the
internal d model dimensionality of transformer.

The embeddings of joint IDs are used to query the Transformer output, producing one encoder
embedding for each of J joints. The J encodings are fed into the 6-block FCR decoder (to match
the total number of decoder blocks in ProtoRes) with two heads: one predicting rotation and one
predicting unconstrained position. This is similar to the use of Transformer to predict bounding box
class IDs and sizes for object detection Carion et al. (2020). Predictions of rotations and of the root
joint are used in the forward kinematics pass, just as in ProtoRes.

Internally, Transformer processes both source and target inputs via self-attention first and then applies
the multi-head attention between source and target after self-attention. This results in the output
embedding for each skeleton joint that depends on all the input information as well as the learned
interactions across all output skeleton joints. The output embedding of transformer is then decoded to
unconstrained position and rotation outputs using two-headed Fully-Connected residual stack (this is
the same architecture as the one used in ProtoRes decoders). Note that this is a classical Transformer
application scheme that has recently been used to achieve SOTA results in object detection, for
example Carion et al. (2020). Table 4 lists the hyperparameter settings for the Transformer baseline.
Note that only hyperparameters that are unique to this baseline or different from the ProtoRes defaults
appearing in Table 3 are listed.

H ABLATION OF THE DECODER: DETAILS

The detailed results of the decoder ablation are shown in Table 5. One block of decoder is much less
computationally expensive than one block of encoder. One block of encoder processes N effectors,
whereas the decoder deals with the partially defined pose representation collapsed to a vector. Hence
the decoder block is N times less expensive. To demonstrate the effectiveness of decoder, we keep all
hyperparameters at defaults described in Section 3.2 and vary the number of encoder and decoder
blocks in ProtoRes (0 decoder blocks corresponds to a simple linear projection of encoder output).
We measure the train time of each configuration on NVIDIA M40 24GB GPU installed on Dell
PowerEdge r720 server with two Intel Xeon E5-2667 2.90GHz CPU. The table reveals a few things.
First, adding more decoder blocks significantly increases accuracy when the number of encoder
blocks is lower (e.g. 3 or 5). When the number of encoder blocks is high (e.g. 7) linear projection
provides similar accuracy. Second, using non-trivial decoder is computationally more efficient. For
example, the 3 encoder and 3 decoder blocks configuration has comparable accuracy with 5 encoder
and 1 decoder blocks, however it is noticeably more compute efficient (5+1 configuration uses 40%
more compute time than 3+3).

20

Under review as a conference paper at ICLR 2022

Table 5: Ablation of the decoder. Random benchmark, lower values are better. Train time is measured
on a 2GPU Dell PowerEdge R720 server with two NVIDIA M40 24GB GPUs and two Intel Xeon
E5-2667 2.90GHz processors, each GPU running one ProtoRes training session.

miniMixamo miniAnonymous

Ldet
gpd−L2 Ldet

ikd−L2 Ldet
loc−geo

Train
time, h Ldet

gpd−L2 Ldet
ikd−L2 Ldet

loc−geo
Train

time, h
Encoder
blocks

Decoder
blocks

3 0 1.54e-3 4.59e-3 0.2485 91 1.05e-3 3.65e-3 0.1939
3 1 1.35e-3 4.34e-3 0.2433 95 0.93e-3 3.52e-3 0.1895
3 2 1.34e-3 4.24e-3 0.2397 102 0.93e-3 3.34e-3 0.1840
3 3 1.36e-3 4.16e-3 0.2381 106 0.93e-3 3.28e-3 0.1817
5 0 1.27e-6 4.20e-3 0.2399 144 0.84e-3 3.27e-3 0.1824
5 1 1.28e-3 4.30e-3 0.2390 148 0.81e-3 3.24e-3 0.1818
5 2 1.15e-3 4.02e-3 0.2345 153 0.77e-3 3.10e-3 0.1791
5 3 1.18e-3 4.03e-3 0.2351 157 0.82e-3 3.07e-3 0.1785
7 0 1.13e-3 4.00e-3 0.2355 196 0.74e-3 2.98e-3 0.1762
7 1 1.23e-3 4.16e-3 0.2356 200 0.79e-3 3.07e-3 0.1780
7 2 1.13e-3 4.51e-3 0.2383 205 0.78e-3 3.10e-3 0.1780
7 3 1.15e-3 3.98e-3 0.2352 209 0.82e-3 3.14e-3 0.1783

I ABLATION OF THE PROTOTYPE-SUBTRACT-ACCUMULATE STACKING
PRINCIPLE

Here we compare the proposed Prototype-Subtract-Accumulate (PSA) residual stacking scheme
described in equations (2)-(5) against the ResPointNet (Niemeyer et al., 2019) stacking scheme:
Maxpool-Concat Daisy Chain (MCDC). To implement the MCDC stacking proposed by Niemeyer
et al. (2019) we modify our encoder as follows.

• Equation (2) is replaced with the concatenation of the output of the previous block, br, with
the maxpool of the previous block output along axis 1 (we use batch, effector, channels
convention for tensor axes 0,1,2; respectively)

• In equation (4) we only compute br, since fr is not used

• Equation (5) is removed

• The final pose embedding is created using the maxpool along axis 1 of br at the last encoder
block

• We use the same decoder with the MCDC encoder to make sure we exactly match the overall
architecture capacity with that of ProtoRes. However, note that decoder is not part of the
original design by Niemeyer et al. (2019) and without it, the overall performance degrades
further. Here we focus exclusively on the effects of stacking within the encoder.

• Hyperparameters of both architectures are taken from Table 3 in Appendix C

We show that our stacking scheme is more accurate and allows stacking deeper networks effectively.
Quantitative results are shown in Table 6. It is clear that the proposed stacking approach provides
gain in setups with varying number of encoder blocks. More importantly, when stacking more
blocks our approach provides more gain, whereas for the Maxpool-Concat daisy chain approach
of (Niemeyer et al., 2019), the gain saturates at 3 blocks and adding more blocks beyond this does
not help. Moreover, we can see on the second dataset, miniAnonymous, that become worse, this is
the result of less stable convergence of the MCDC stacking. In some cases with large number of
encoder blocks, we observe that the MCDC approach converges to a noticeably worse generalization
performance. We attribute this to convergence issues, since for larger number of blocks, MCDC
stacking approach results in both higher generalization errors and training losses. The proposed PSA
approach is significantly more robust when used with deeper architectures as well as offers better
generalization performance in general. We conclude that the proposed approach is more effective,

21

Under review as a conference paper at ICLR 2022

Table 6: Ablation of the Prototype-Subtract-Accumulate. Random benchmark, lower values are
better.

miniMixamo miniAnonymous
Ldet

gpd−L2 Ldet
ikd−L2 Ldet

loc−geo Ldet
gpd−L2 Ldet

ikd−L2 Ldet
loc−geo

Stacking scheme Encoder
blocks

MCDC 3 1.39e-3 4.27e-3 0.2403 0.92e-3 3.23e-3 0.1818
MCDC 5 1.30e-3 4.19e-3 0.2394 0.88e-3 3.22e-3 0.1809
MCDC 7 1.32e-3 4.26e-3 0.2399 0.99e-3 3.49e-3 0.1864
PSA (ours) 3 1.36e-3 4.16e-3 0.2381 0.91e-3 3.19e-3 0.1810
PSA (ours) 5 1.18e-3 4.03e-3 0.2351 0.82e-3 3.07e-3 0.1785
PSA (ours) 7 1.15e-3 3.98e-3 0.2352 0.82e-3 3.14e-3 0.1783

because it has higher accuracy for computationally efficient configuration with 3 blocks and it results
in even more accuracy gain when more encoder blocks are stacked together.

J VIDEOS AND DEMONSTRATIONS

We provide here descriptions related to each video found in the supplementary materials. Note that
most of the demonstrations are done using a ProtoRes model trained on a large internal dataset not
evaluated in this work. One of our demonstrations, described below in Appendix J.5 qualitatively
shows some of the most severe impacts of training on ablated datasets.

J.1 PROTORES DEMO

The video presents an overview of the integration of ProtoRes as a posing tool inside the Unity game
engine, showcasing how different effector types can be manipulated and how they can influence
the resulting pose. In this demo, a user-defined configuration is presented in the UI, allowing one
to choose which effectors are enabled within that configuration. Note that this configuration could
contain more or less effectors of each type, and can be built for specific posing needs. The most
generic configuration would present all possible effectors inside each effector type sub-menu.

J.2 POSING FROM IMAGES

This video presents screen recordings of a novice user using ProtoRes to quickly prototype poses
taken from 2D silhouette images. Note that one can reach satisfactory results in less than a minute in
each case, with a relatively low number of manipulations. Note also that fine-tuning the resulting
poses can always be achieved by adding more effectors and applying more manipulations.

J.3 LOSS ABLATION

This recording shows a setup where different models are used with identical effector setup. Both
models use the ProtoRes architecture. On the left, the model uses the total loss presented in Algorithm
1, whereas the right-hand side model uses positional losses only (GPD and IKD positional losses)
and both local and global rotational losses, as well as look-at losses are disabled. This demonstration
clearly shows how positional constraints, even when respected, do not suffice to produce realistic
human poses. Joint rotations have to be modeled as well.

J.4 FINALIK COMPARISON

This recording shows a setup where ProtoRes is compared to a full body biped IK system provided
by FinalIK RootMotion (2020), with an identical effector setup. Note that FinalIK solves constraints
by modifying the current pose, often resulting in smaller changes in the output, when compared to
ProtoRes that predicts a full pose at each update. The lack of a learned model of human poses in
FinalIK becomes quickly noticeable when manipulating effectors significantly.

22

Under review as a conference paper at ICLR 2022

J.5 DATASETS COMPARISON

In these demonstrations, we showcase how training ProtoRes on different datasets can impact
the results. We showcase models trained on the two ablated datasets presented in this work, i.e.
miniAnonymous (left) and miniMixamo (right). We also show performance of a model trained on
the full Mixamo Adobe Inc. (2020) dataset (center) to qualitatively show how performance can be
improved with more training data. In all of these recordings, one can notice differences in the resulting
poses, emphasizing the fact that human posing from few effectors, when no extra conditioning signals
are used, is an ambiguous task that will be influenced by the training data.

The first sequence makes this fact especially obvious on the finger joints and the head’s look-at
direction. The second sequence shows how good data coverage in the training set can significantly
impact performance in special or rare effector configurations. Finally, the third sequence shows a
similar pattern for look-at targets, where the difference in training data can be noticed in the general
posture of the character and the varying levels of robustness with respect to those targets.

J.6 LIMITATIONS

The final video shows examples of some specific limitations of the approach that are listed in
Appendix K. Namely, we first expose specific consequences of the lack of temporal consistency in
our problem formulation, where smoothly moving an effector can cause flickering on some joints,
such as the fingers. We also show how between some effector configurations, the character must
be flipped completely to stay in a plausible pose, and how it’s possible to place some effectors to
reach an invalid pose coming from that flip region of the latent manifold. Finally, we showcase
some problematic behaviors that can be caused by extreme look-at targets. In some cases, especially
with many other constraints, ProtoRes will tend to produce a plausible pose that will not respect
the look-at constraint. In other cases, the extreme look-at target may cause an unrealistic pose, e.g.
by causing the character to have an impossible neck rotation. It is interesting to note how invalid
poses from look-at effectors tend to happen more often than from other effector types with novice
users. We hypothesize that the plausible region of a look-at target, given a current character pose, is
less intuitive to grasp than for other effector types. Indeed, the current pose of the character seems
to guide more precisely the placement of positional and rotational effectors than look-at effectors,
leading more often to configurations outside of the training distribution for look-at effectors.

K LIMITATIONS

The limitations of our work can be summarized as follows:

• Constraints are not satisfied exactly, as opposed to the conventional systems. This is the price
to pay for the ability of the model to inject the data-driven inductive bias that can be used
to reconstruct pose from very sparse inputs. This could be mitigated using a conventional
solver on top of the trained model. In this case, the model will produce a globally plausible
pose, whereas the solver will only do the final pass to strictly satisfy certain constraints.
Also, to provide additional flexibility in solving some of the constraints more strictly than
the others, our model provides an effector tolerance mechanism that can help the user trade
off the strictness of satisfying certain effectors vs. some others.

• Lack of temporal consistency. Our work solves the problem of creating a discrete pose.
Therefore, it is limited in how it can be applied to modify an underlying smooth animation
clip. For example, we can see flickering of joints (especially fingers) when effectors follow
an underlying smooth animation (the finger embedding space is not smooth and has a high
ambiguity). This happens to a smaller degree with the head when it is not constrained with
look-at or rotation inputs.

• Exotic poses significantly deviating from the the training data distribution (a common
ML/DL problem) may be hard to achieve. For example, the Lotus yoga pose is very hard to
achieve with small number of effectors. Extreme or rare effector configurations may not be
respected. Extreme look-at targets may not be followed or can cause artifacts in the resulting
pose.

23

Under review as a conference paper at ICLR 2022

• Some effector displacement can cause a complete flip in the final pose as it makes more
sense to be e.g. left-oriented or right-oriented to reach a hand position. This is normal,
but we can sometimes reach ”in-between” poses on the boundary of the hand effector that
causes the flip, leading to weird poses

• We also noted a limitation as ”aiming” poses (holding something in the hands). For example,
Finger poses are generally wrong w.r.t. to a gun without additional finger constraints. It may
be cumbersome to place hands + look-at for each aiming pose/angle?

• Runtime. In its current state, the model allows interactive real-time rate (about 100 FPS).
This is very good for the primary application area of the model in the interactive pose
design. However, the current model cannot be used for runtime applications such as driving
charachters directly in real-time games, because it would consume too high of a time budget
(about 10ms, which is too much to be usable in the game runtime context).

• No contextual input is supported (text description or environment awareness), in particular
for finger posing and feet collisions

• Single skeleton layout with specific bone offsets is currently supported. A new skeleton
requires either a re-trained model, or a retargeting pass, which may be expensive and has the
potential to reduce the realism of the reconstructed pose.

• The approach relies on MOCAP data. This type of data may be hard to obtain for certain
charachters, for example an octopus.

• Good for realism, but might limit creativity. In particular, no bone stretching support, which
is sometimes used by animators to add more expressiveness to non-realistic characters.

• The current model struggles when a large number of fine-grain controls, especially fingers
are used simultaneously. Perhaps, a more structured hierarchical approach can be used to
enable this functionality.

24

	
	Introduction
	Background
	Related Work
	Summary of Contributions

	ProtoRes
	Losses
	Training Methodology

	Empirical Results
	Datasets
	Training and Evaluation Setup
	Key Results
	Ablation Studies

	Conclusions
	Supplementary Material

	 Supplementary Material for ProtoRes: Proto-Residual Network for Pose Authoring via Learned Inverse Kinematics
	Architecture Details
	Effector noise model
	Position effector noise model
	Rotation effector noise model
	Look-at effector noise model

	Training Methodology: Details
	Datasets: Details
	Training Setup: Details
	Masked-FCR baseline architecture
	Transformer baseline architecture
	Ablation of the Decoder: Details
	Ablation of the Prototype-Subtract-Accumulate stacking principle
	Videos and demonstrations
	ProtoRes Demo
	Posing from Images
	Loss Ablation
	FinalIK Comparison
	Datasets Comparison
	Limitations

	Limitations

