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Abstract

Neural Architecture Search (NAS) has significantly improved productivity in1

the design and deployment of neural networks (NN). As NAS typically evaluates2

multiple models by training them partially or completely, the improved productivity3

comes at the cost of significant carbon footprint. To alleviate this expensive4

training routine, zero-shot/cost proxies analyze an NN at initialization to generate5

a score, which correlates highly with its true accuracy. Zero-cost proxies are6

currently designed by experts conducting multiple cycles of empirical testing on7

possible algorithms, data-sets, and neural architecture design spaces. This lowers8

productivity and is an unsustainable approach towards zero-cost proxy design9

as deep learning use-cases diversify in nature. Additionally, existing zero-cost10

proxies fail to generalize across neural architecture design spaces. In this paper, we11

propose a genetic programming framework to automate the discovery of zero-cost12

proxies for neural architecture scoring. Our methodology efficiently discovers an13

interpretable and generalizable zero-cost proxy that gives state of the art score-14

accuracy correlation on all data-sets and search spaces of NASBench-201 and15

Network Design Spaces (NDS). We believe that this research indicates a promising16

direction towards automatically discovering zero-cost proxies that can work across17

network architecture design spaces, data-sets, and tasks.18

1 Introduction19

The manual trial-and-error method of designing neural network architectures and assessing whether20

it meets performance and accuracy requirements is not scalable to complex neural architecture design21

spaces and hardware deployment scenarios. Neural Architecture Search is intended to address this22

problem of iterative and expensive design by automating the search of neural network architectures.23

Enabling such automation requires accurate and efficient prediction of the accuracy of candidate24

neural network architectures. The process of predicting the accuracy often involves partial or complete25

training of many neural network architectures in the search space. Such methods are infeasible for26

very large architecture design spaces, as considerable sampling and training of neural networks27

would be required to sufficiently describe the entire design space. Popular NAS techniques often28

involve generating and training neural network architectures and using this accuracy to train accuracy29

predictors to serve as feedback in the search algorithm. This architecture generation and feedback30

methodology can be leveraged by algorithms such as reinforcement learning Luo et al. [2019] and31

evolutionary algorithms Real et al. [2019]. One-shot methods Cai et al. [2019, 2020], Xie et al.32

[2020], Yang et al. [2020], Liu et al. [2019] maintain a super-network, from which sub-networks are33

sampled. The weights are shared between the sub-networks which reduces NAS cost as there are34

lesser parameters to train.35
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The primary challenge of Neural Architecture Search is the evaluation of candidate architectures,36

which can take hours to days to estimate Abdelfattah et al. [2021]. Further, practical deployment37

of neural networks is no longer limited to accuracy-oriented neural architecture design. The need38

for efficient deployment has given rise to significant literature in co-design of hardware and neural39

network architectures Choi et al. [2021], Akhauri et al. [2021], Zhang et al. [2020]. However,40

hardware performance metrics in such co-design tasks are often non-differentiable in nature due to41

factors such as memory access patterns and cache hierarchy. The interaction between the workload42

and the hardware makes this optimization problem significantly more complex, and being able to score43

neural network architectures without the expensive training step would allow for the development of44

more efficient co-design algorithms.45

Zero-cost proxies utilize a single minibatch of data and a single forward/backward propagation pass46

to score a neural network Abdelfattah et al. [2021]. We refer to algorithms that score neural network47

architectures without training as Zero-Cost Neural Architecture Scoring Metrics (ZC-NASM). Design48

of existing ZC-NASMs are driven by human intuition or are theoretically inspired. These algorithms49

attempt to quantify the trainability and expressivity of neural networks. The primary hurdle with50

existing ZC-NASM design is that they are not generalizable to different neural architecture design51

spaces.52

In this paper, we introduce a genetic programming driven methodology to automatically discover53

ZC-NASMs that are interpretable, generalizable and deliver state of the art score-accuracy correlation.54

We refer to our method as EZNAS (Evolutionarily Generated Zero-Cost Neural Architecture Scoring55

Metric). Our approach is:56

• Interpretable: We discover ZC-NASMs as expression trees that explicitly indicate which57

NN features and mathematical operations are being utilized.58

• Generalizable: The ZC-NASM discovered by EZNAS delivers SoTA score-accuracy59

correlation on unseen neural architecture design spaces and data-sets (NASBench-201,60

NDS & NATS-Bench). Our framework utilizes simple mathematical operations and an61

expression tree structure that can be trivially extended to implement arbitrarily complex62

ZC-NASMs63

• Efficient: We are able to discover our SoTA ZC-NASM on an Intel(R) Xeon(R) Gold64

6242 CPU in under 24 hours. This requires 12.5× lesser CO2e than a NAS search. Our65

ZC-NASM is generalizable to multiple design spaces, increasing the end-to-end efficiency66

of NN architecture search by over two orders of magnitude.67

2 Related Work68

Neural Architecture Search (NAS) was proposed to reduce the human effort that goes into69

designing complex neural network architectures. Early efforts in the field of NAS adopted brute force70

methods by training candidate architectures and using the obtained accuracy as a proxy to discover71

better architectures. AmoebaNet Real et al. [2019] utilized Evolutionary Algorithm (EA) and 315072

GPU days of compute to achieve 74.5% top-1 accuracy on the ImageNet dataset. Many EA and73

Reinforcement Learning (RL) driven methods have since significantly improved the efficiency of74

the search process Yang et al. [2020], Liu et al. [2018], Tan et al. [2019], Zoph et al. [2018]. These75

methods often require sampling and training of several candidate architectures. One-shot Hu et al.76

[2020], Xie et al. [2020], Cai et al. [2019] methods of NAS do not require training of candidate77

architectures to completion, but train large super-networks and identify sub-networks that can give78

high accuracy. Such super-networks can be generated automatically from pre-trained models Muñoz79

et al. [2021]. These improvements have significantly reduced the cost of NAS. However, as the80

search space continues to get larger with new architectural innovations, we need more efficient81

methods to predict the accuracy of neural networks in intractably large design spaces.82

83

Zero-Cost Neural Architecture Scoring is a promising paradigm which explores zero-cost proxies84

for estimating the true accuracy of neural networks. Majority of research in this field introduces novel85

methods of scoring neural networks at initialization along with a theoretical or intuitive explanation86

of their scoring strategy. For instance, Abdelfattah et al. [2021] empirically studies metrics such as87

synflow, SNIP and FISHER. Figure 2 depicts the expression tree representations of these metrics.88

NASWOT Mellor et al. [2021] works by treating the output of each layer as a binary indicator (zero89
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Figure 2: (A): Collecting neural network statistics for the ZC-NASM. The D input tensor represents
a single mini-batch from the data-set serving as input to the neural network. N represents a randomly
initialized noise tensor. P represents an input to the neural network which is a data-sample perturbed
by noise. NN statistics are collected for each of the D, N and P inputs. (B): The ZC-NASM is
applied to each ReLU-Conv2D-BatchNorm2D (RCB) instance of the neural network. The ZC-NASM
has 22 tensors available to it as arguments in each RCB instance, generated by collecting intermediate
tensors of the neural network for the three types of input (D, N , P). The ZC-NASM depicted above
only utilizes 2 intermediate tensors (T3 and T4GP ) in each layer to generate a score.

if value is negative, one if value is positive) and using the hamming distance between two binary90

codes induced by an untrained network at two inputs as a measure of dissimilarity. The intuition here91

is that the more similar two inputs are, the more challenging it is for the network to learn how to92

separate them. Other works such as TENAS Chen et al. [2021] are motivated by creating proxies for93

trainability and expressivity of neural networks to rank them.94

Figure 1: Expression tree representation of existing
ZC-NASMs. T3GD represents the Conv2D weight
gradient for a mini-batch of data, T3D represents
the weights of Conv2D. T4GD represents the activa-
tion gradient and T4D represents the corresponding
activation. T3GN represents the Conv2D weight
gradient for a mini-batch of random noisy tensor,
T3N represents the weights of Conv2D. Each pro-
gram is applied to all layers of the neural network,
and the output is aggregated to generate the final
score. Further details of this program representation
is explained later.

Program Synthesis: Program synthesis is the task95

of automatically discovering programs that satisfy96

user constraints. AutoML-Zero Real et al. [2020]97

evolves entire machine learning algorithms from98

scratch with little restrictions on form and using99

only simple mathematical operations. The algo-100

rithms are learnt symbolically, representing pro-101

grams as a sequence of instructions. We posit that102

the current endeavor of identifying fundamental103

architectural properties that correlate strongly with104

testing accuracy can benefit from a methodology105

that minimizes human bias and intervention in a106

similar fashion. This stems from the observation107

that majority of the existing ZC-NASMs can be108

represented as simple programs that utilize the109

neural network statistics as inputs which can be110

discovered with genetic programming.111

3 Evolutionary Framework112

EZNAS uses evolutionary search to discover programs that can score neural network architectures113

such that it correlates highly with accuracy. In this section, we detail the specifics of how ZC-NASM114

programs are constructed, evaluated and evolved with EZNAS.115
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3.1 Program Representation116

Algorithm 1 EZNAS Search Algorithm
1: evol_space = [NN1,enas, NN2,enas,... NNN,enas]
2: population = gen_random_valid_population(n)
3: # Evaluate and assign fitness over evol_space.
4: population = evaluate(population)
5: for gen=1:T do
6: offspring = []
7: while len(offspring) < ⌊n/2⌋ do
8: # Variation Function
9: children = VarOr(population)

10: offspring.append(selectValid(children))
11: new_c = gen_random_valid_population(⌊n/2⌋)
12: offspring.append(new_c)
13: population = evaluate(offspring)

Each individual ZC-NASM has to be evaluated on117

tens of gigabytes of tensors of NN architectures118

with no approximations to generate precise ZC-119

NASM score-accuracy correlation to serve as the120

measure of fitness. To make such search compu-121

tationally tractable, it is crucial to not introduce122

redundant operations in the program. Our ini-123

tial attempt described in the appendix resembled124

that of AutoML-Zero Real et al. [2020] where125

ZC-NASMs were represented as a sequence of126

instructions and a memory space to store interme-127

diate tensors. This led to discovery of ZC-NASMs128

with many redundant computations due to pro-129

gram length bloating and an intractably large run-130

time. To reduce the complexity of search, we necessitate a expression tree structure on the ZC-NASM131

program to capture the executional ordering of the program. The program output appears at a root132

node, and the child (terminal) nodes are the arguments of the expression tree. These arguments are133

the network statistics. The advantage of this program representation is that there is only a single root134

node with dense connectivity from the root to the terminal nodes, leading to fewer redundancies.135

3.2 Neural Network Statistics Generation136

Each ZC-NASM requires a set of arguments as inputs. These arguments are the intermediate137

tensors of the neural network. As depicted in Figure 2, for any sampled neural network from the138

NDS or NASBench-201 spaces, we identify every ReLU-Conv2D-BatchNorm2D (RCB) instance at139

initialization, and register the activations, weights and the corresponding gradients for three types140

of network inputs (a mini-batch of data (D), a random noisy tensor (N ), and a mini-batch of data141

perturbed by random noise (P)).142

We collect T1{D,N,P}, T2{D,N,P}, T3, T4{D,N,P} (10 tensors) and T1G{D,N,P}, T2G{D,N,P},143

T3G{D,N,P}, T4G{D,N,P} (12 tensors) from each RCB instance. T3 represents the Conv2D weights144

and does not change for the network input type, thus giving us 22 tensors for each RCB instance.145

We present an alternate formulation by identifying Conv2D-BatchNorm2D-ReLU (CBR) instance for146

network statistics generation to demonstrate that the evolutionary framework is not restricted to a147

RCB structure in the appendix.148

3.3 Mathematical Operations149

The expression tree describes the execution order of the mathematical operations available to us. It is150

crucial to provide a varied set of operations to process the neural network statistics effectively. We151

provide 34 unique operations in our program search space. We include basic mathematical operations152

(Addition, Product) as well as some advanced operations such as Cosine Similarity and Hamming153

Distance. We provide the full list of mathematical operations in the supplementary material.154

3.4 Program Application155

Majority of the neural network architectures available in NASBench-201 and NDS have over 100156

instances of ReLU-Conv2D-BatchNorm2D. This may mean that an expression tree would have as157

many as 2200 (22× 100) possible arguments (terminal nodes), each of which can be used multiple158

times. This would result in a computationally intractable expression tree. To simplify the search159

problem, we generate a single expression tree with 22 possible inputs. It is not necessary that the160

root node of an expression tree would give a scalar value, so we add a to_scalar operation above161

the root node of the expression tree. As seen in Figure 2 the expression tree is then applied on every162

ReLU-Conv2D-BatchNorm2D instance and the output is aggregated across all instances using an163

aggregation_function. This serves as the ’score’ of the the sampled neural network architecture.164

In EZNAS-A, the aggregation_function and to_scalar are both mean. In the appendix, we165

explore L2-Norm as a to_scalar function as well and find that we are able to discover effective166

ZC-NASMs.167
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3.5 Evolutionary Algorithm168

Figure 3: Variation of expression trees every gen-
eration. The x signs denote point of cross-over or
mutation.

Our search algorithm discovers programs by mod-169

ifying the expression tree representation of the170

population by variation_functions. A fit-171

ness score is generated for every expression172

tree in the population at each generation. The173

variation_function (VarOr) is then used to174

generate new offspring. We describe our search175

algorithm in Algorithm 1176

3.5.1 Population Initialization177

We initialize a population of n programs. We do178

not impose any restrictions on the operations the179

nodes can use in the expression tree. Due to this,180

the number of valid expression trees is several181

orders of magnitude lesser than the total number182

of expression trees that can be generated with our183

mathematical operators and network statistics. To increase search efficiency, we would like to ensure184

that we sample and evolve only valid expression trees. To enable this, we ensure that all individuals185

in the population are valid programs by testing program execution on a small sub-set of network186

statistics data. All programs that produce outputs with inf , nan or fail to execute are replaced by187

new randomly initialized valid programs.188

3.5.2 Fitness Objective189

As the goal of zero-cost NAS is to be able to rank neural network architectures well, we utilize the190

Kendall Tau rank correlation coefficient as the fitness objective. The search objective is to maximize191

the Kendall Tau rank correlation coefficient between the scores generated by a program and the test192

accuracy of the neural networks in the evol_space.193

3.5.3 Variation Algorithms194

In our tests, we utilize the VarOr implementation from Distributed Evolutionary Algorithms in195

Python (DEAP) Fortin et al. [2012] framework for variation of individual programs. We generate n196

(hyper-parameter) offspring programs at each generation. ⌊n/2⌋ offspring are generated as a result of197

three operations; crossover, mutation or reproduction. These variations are depicted in Figure 3.4.198

For crossover, two individual programs are randomly selected from the population and mated. Our199

mating function randomly selects a crossover point from each individual and exchanges the sub-trees200

with the selected point as root between each individual. The first child is appended to the offspring201

population. For mutation, we randomly select a point in the individual program, and replace the202

sub-tree at that point by a randomly generated expression tree. We repeat the variation algorithm on203

the population till ⌊n/2⌋ valid individuals are generated. To encourage diversity, we also randomly204

generate ⌊n/2⌋ valid individuals. We have placed static limits on the height of all expression trees at205

10.206

3.6 Program Evaluation Methodology207

At each generation, the fitness of the entire population is invalidated and recalculated. Calculating the208

fitness of each program on the entire dataset (which can be approximately 1 TB) is computationally209

infeasible. Further, we may want to find generalized programs that give high fitness on many different210

architecture design spaces and datasets. This would translate to evaluating each individual on over 7211

TB of data on the NDS and NASBench-201 search spaces.212

Reducing the computation by evaluating the fitness of the population on a single small fixed sub-set of213

neural networks from the search space causes discovered programs to trivially over-fit to the sub-set214

statistics in our tests. To address over-fitting of programs to small datasets of network statistics while215

minimizing compute resources required for evaluating on the entire dataset of network statistics,216

we generate an evolution task dataset. This is generated by randomly sampling 80 neural networks217
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SPEARMAN ρ CF10 CF100 IN16-120

EZNAS-A 0.83 0.82 0.78

synflow 0.74 0.76 0.75
jacob_cov 0.73 0.71 0.71
FLOPs 0.75 0.72 0.69
Params 0.75 0.72 0.69
grad_norm 0.58 0.64 0.58
snip 0.58 0.63 0.58
grasp 0.48 0.54 0.56
fisher 0.36 0.39 0.33

Table 1: Spearman ρ for NASBench-
201.

SPEARMAN ρ CF10 CF100 IN16-120

EZNAS-A 0.89 0.74 0.81

NASWOT 0.45 0.18 0.41

Table 2: Spearman ρ for NATS-Bench-
SSS.

KENDALL τ CF10 CF100 IN16-120

EZNAS-A 0.65 0.65 0.61

NASWOT 0.57 0.61 0.55
AngleNAS 0.57 0.60 0.54
FLOPs 0.56 0.54 0.50
Params 0.56 0.54 0.50

Table 3: Kendall τ for NASBench-201.

KENDALL τ DARTS Amoeba ENAS PNAS NASNet

EZNAS-A 0.56 0.45 0.52 0.51 0.44

NASWOT 0.47 0.22 0.37 0.38 0.30
grad_norm 0.28 -0.1 -0.02 -0.01 -0.08
synflow 0.37 -0.06 0.02 0.03 -0.03
FLOPs 0.51 0.26 0.47 0.34 0.20
Params 0.50 0.26 0.47 0.32 0.21

Table 4: Kendall τ for NDS CIFAR-10.

from each available search space (NASBench-201 and NDS) and dataset (CIFAR-10, CIFAR-100,218

ImageNet-16-120). We evaluate individuals by randomly choosing s search spaces, and sampling219

20 neural networks from each of the chosen search spaces. We take the minimum fitness achieved220

by the individual program on the s spaces. We consider s as a hyper-parameter. In our tests, this is221

consistently kept at 4.222

3.7 Program Testing Methodology223

At the end of the evolutionary search, our primary goal is to test whether the programs discovered224

are able to provide high fitness on previously unseen neural network architectures. We test the fittest225

program from our final population as well as the two fittest programs encountered through-out the226

evolutionary search. At test time, we take the program and find the score-accuracy correlation over227

4000 neural network architectures sampled from the NASBench-201 and NDS design spaces.228

4 Evaluation229

As described in Algorithm 1, we search for effective ZC-NASMs on every design space from NDS230

CIFAR-10 and the NASBench-201 data-sets. Each search takes approximately 24 hours on a Intel(R)231

Xeon(R) Gold 6242 CPU with 1 terabyte of RAM.232

Figure 4: Search speedup with EZNAS-A on CIFAR-
10 NAS-Bench-201. The average best test accuracy is
taken over 10 repeated experiments.

We choose the most consistent ZC-NASM233

(EZNAS-A, discovered by evolving pro-234

grams on the NDS-DARTS CIFAR-10235

search space) from our evolutionary search236

and compare it with existing ZC-NASMs237

from recent works. We report both the238

Kendall τ rank correlation coefficient and239

the Spearman ρ rank-order correlation co-240

efficient to fairly compare EZNAS-A with241

a broad set of ZC-NASMs from recent lit-242

erature. We provide our Spearman ρ cor-243

relation on the NATS-Bench SSS search244

space and NDS ImageNet design spaces as245

well.246

NASBench-201: We report our score-247

accuracy correlation by scoring all neural248
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networks in the NASBench-201 design space. As seen in Table 3, we obtain the highest score-249

accuracy Kendall Tau Ranking Correlation on all data-sets. We also benchmark our work against250

the pruning based saliency metrics formalized in Abdelfattah et al. [2021] and find that our program251

EZNAS-A has the highest Spearman ρ among the ZC-NASMs in Table 1.252

NDS: We report our score-accuracy correlation by scoring all neural networks in the NDS design253

space for the CIFAR-10 data-set and scoring 40 random neural networks over 5 seeds for the ImageNet254

data-set (Table 5). We find that EZNAS-A has the highest score accuracy Kendall Tau Ranking255

Correlation on each of the design spaces of NDS CIFAR-10 in Table 4.256

NATS-Bench: We report our score-accuracy correlation by scoring 200 randomly sampled neural257

networks in the NATS-Bench TSS (Same as NB-201) and SSS Dong et al. [2021] design space258

averaged over 5 seeds for the CIFAR-10, CIFAR-100 and ImageNet16-120 data-set in Table 2.259

Neural Architecture Search Integration: We integrate our ZC-NASMs EZNAS-A with the Aging260

Evolution (AE) Search algorithm from Real et al. [2019]. Our evolutionary search discovers a261

ZC-NASM that is competitive in search efficiency with existing ZC-NASMs in Figure 4.262

5 Examination Of Best Programs263

SPEARMAN ρ DARTS Amoeba PNAS ENAS NASNet

EZNAS-A 0.70 0.58 0.43 0.43 0.31

Figure 5: Spearman ρ for NDS ImageNet.

EZNAS discovers a set of ZC-NASMs at the264

end of the evolutionary search. In this sec-265

tion, we analyze two of the best ZC-NASMs266

discovered by our method to give a deeper un-267

derstanding of the nature of programs. We268

refer to these programs as EZNAS-A and EZNAS-B. For each program, we generate random input269

tensors of varying sizes and average the ZC-NASM score 5000 times. This is an approximate method270

to understand how the ZC-NASM responds to change in architectural parameters (kernel size, number271

of channels, activation size).272

EZNAS-A: The evolution task dataset for discovering this program was NDS-DARTS. The input to273

the ZC-NASM in Figure 6 is the T3GN (Weight Gradient with Random Noise Input) tensor. We find274

that the score increases as the number of channels or depth increases, we also observe that kernel275

sizes of 1 and 7 give higher scores than 3 and 5 with the lowest score being assigned to kernel of size276

3. It is interesting to see that the expectation value of EZNAS-A in Figure 6 translates to a weighted277

form of parameter counting, with a non-linear monotonically increasing scaling of score with the278

number of input/output channels and a locally parabolic relationship between the score and the kernel279

size with the minimum score at kernel size of 3.280

EZNAS-B: The evolution task dataset for discovering this program was NDS-ENAS. The input to the281

ZC-NASM in Figure 6 is T1GP (Difference in pre-activation gradients for a noise perturbed data282

mini-batch). We find that the activation map size is exponentially more influential to the score when283

compared to the number of channels.284

Through this analysis, we see that EZNAS-A & EZNAS-B generate a score which is correlated with the285

activation or weight sizes. It is interesting to note that when compared to ZC-NASMs from recent286

literature, this form of weighted parameter counting works more consistently. This is supported by287

our finding that FLOPs and Params are more generalizable than ZC-NASMs which work on the288

NASBench-201 space but fail on the NDS space.289

6 Discussion and Future Work290

With the EZNAS formulation, we discover effective ZC-NASMs which generalize across design291

spaces and data-sets, as well as give SoTA score-accuracy correlation. This is a promising new292

direction, but there is much work to be done. In this section, we discuss the current limitations of293

EZNAS with scope for future work.294

295

Program Design: To simplify the search problem, we take a mean (aggregation_function)296

of the scores generated across all ReLU-Conv2D-BatchNorm2D instances. This formulation297

does not take layer connectivity patterns into account explicitly. Extending our evolutionary298
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Figure 6: (Left) Analysis of our best program (EZNAS-A) on the Image Classification task. to_scalar
is not required as the output is already a scalar. (Right) Analysis of our second best program (EZNAS-B)
on the Image Classification task.

search to take into account the global connectivity pattern of the neural networks or learning299

weighted averaging techniques for the individual layer (RCB instance) scores could help us300

discover better ZC-NASMs. Further, we impose structural restrictions on our program by ne-301

cessitating a fixed structure (ReLU-Conv2D-BatchNorm2D). We have to truncate instances of302

ReLU-Conv2D-Conv2D-BatchNorm2D from the NDS space by ignoring the second convolution.303

As more diverse architectures are introduced in the field, we must re-formulate collection of network304

statistics in a more robust manner. Note that NASWOT measures the similarity in the binary codes305

generated from the ReLU units for two different inputs. Our program design limits us to only306

using a single mini-batch of inputs and does not compare inputs directly. Thus, we would not be307

able to discover the NASWOT ZC-NASM metric with our approach. Fortunately, integrating such308

functionality into the program design space is feasible and is an interesting line of future work to309

generate more complex metrics.310

It is also important to have a robust and diverse set of mathematical operations to discover effective311

ZC-NASMs. We utilize 34 mathematical operations inspired by AutoML-Zero Real et al. [2020] and312

operations found in existing ZC-NASMs. None of our operations or network statistics generation have313

any scalar hyper parameters. For example, the Power operation is fixed to do an element-wise square,314

and the noise generation for input tensor is fixed to N (0, 1). Optimizing these values dynamically315

and ensuring a sufficiently diverse set of operations may enable discovery of better ZC-NASMs.316

Network Statistics: Due to the computational resources required to generate network statistics,317

we have to pre-compute them and use the generated data as an evolutionary task dataset. We only318

use network statistics with input batch-size of 1 for evolution. A single sample statistic of a neural319

network is insufficient to describe the architecture, as evidenced by our increase in score-accuracy320

correlation with the batch size in Figure 7. Further, from Figure 7 we observe high variance in the321

fitness of a ZC-NASM when evaluated for multiple seeds with a batch size of 1. Testing over a large322

number of seeds or increasing the batch-size would cause a linear increase in memory requirement as323

well as increase in run-time of the evolutionary search.324

Ranking Architectures: It is interesting to observe that in the entire neural architecture design space,325

FLOPs and Params are competitive proxies and sometimes better than many existing ZC-NASMs. A326

deeper investigation reveals that ranking the top 10% of the neural networks in the design space is a327

significantly more difficult task. In the top 10% of neural networks, FLOPs and Params are extremely328

weak proxies. Further, Abdelfattah et al. [2021] finds that among their ZC-NASMs, synflow is329

the only one which is able to serve as a weak correlator for performance in top 10% of the neural330

networks on the NASBench-201 CIFAR-100 and ImageNet16-120 design spaces. However, synflow331

is not able to rank networks effective in the top 10% of CIFAR-10 NASBench-201 and the entire332

NDS design space.333
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Figure 7: (Left) Effect on score-accuracy correlation of EZNAS-A with respect to batch size. This
test was done on the NDS PNAS design space over 7 seeds for 400 Neural Networks.(Right) Effect
of seed on our score-accuracy correlation of EZNAS-A with a batch size of 1. CIFAR and ImageNet
abbreviated as CF and IN respectively. This test was done on each design space over 7 seeds for 400
Neural Networks.

EZNAS-A is able to rank neural networks robustly across both the NASBench-201 and NDS design334

spaces, but does not rank the top 10% of neural networks effectively. We discover alternative335

ZC-NASMs that can weakly rank the top 10% of neural networks, but such ZC-NASMs fail to336

generalize across neural architecture design search spaces. This ability to identify good architectures337

but inability to distinguish between the best architectures may be an inherent limitation of ZC-NASMs.338

Alternatively, improvements to our evolutionary framework may result in robust ZC-NASMs that339

can rank the top 10% neural networks effectively. This is an interesting research direction and may340

require creation of more neural architecture design spaces like NASBench-201/NDS which exhibit341

lower correlation with FLOPs/Params.342

Evolutionary Search: In this paper, we introduce an intuitive program representation and appropriate343

variation methodologies to enable discovery of ZC-NASMs with minimal human intervention.344

However, recent advances in the field of Neuro-Symbolic Program Synthesis Parisotto et al. [2017] to345

learn mappings from input-output examples (neural network statistics to neural architecture scores)346

can motivate improvements in our evolutionary search. Further, exploring architecture connectivity347

encodings White et al. [2021] for neural architecture search and discovering programs to rank348

neural architecture encodings may enable discovery of effective connectivity patterns to enable a349

deeper understanding of important features in neural architecture design beyond those contained in350

activations maps and weights.351

Efficiency: EZNAS is able to discover a set of ZC-NASMs on a single CPU in under 24 hours,352

which translates to 358.6 g of CO2e Lannelongue et al. [2020]. In comparison, a single NAS search353

(assuming 8 GPU days Zhou et al. [2020]) can take over 4.49 kg of CO2e. Recent works integrate354

their zero-cost proxies with differentiable architecture search Xiang et al. [2021] to deliver 40× NAS355

speed-up. As the architecture design spaces that ZC-NASMs need to be discovered on diversify, the356

efficiency of our methodology must be improved to scale to larger problems. Seeding the initial357

population with viable candidates can enable faster discovery of robust ZC-NASMs. The search358

process can be made more efficient by using lower precision numerical formats, or exploring proxy359

tasks on smaller datasets (down-sampled image datasets, smaller neural network design architecture360

etc.).361

7 Conclusion362

In this paper, we present EZNAS, a novel genetic programming driven approach to discover Zero-Cost363

Neural Architecture Scoring Metrics (ZC-NASMs). The key advantage of EZNAS is that it is an364

interpretable approach to discover generalizable methods to rank neural networks. Generalizability365

of a ZC-NASM is crucial for its practical utility, as a robust ZC-NASM should be able to rank NNs366

in previously unseen neural architecture search spaces.367

With our approach, we are able to discover a ZC-NASM (EZNAS-A) which evolved only on the NDS368

DARTS space, but delivers state of the art score-accuracy correlation across both the NASBench-369

201 and NDS design space. We also demonstrate the generalizability of EZNAS-A by providing370

extremely strong correlation results on NATS-Bench as well as NDS ImageNet. We demonstrate371

competitive search efficiency of EZNAS-A by integrating our metric with the Aging Evolution (AE)372

search algorithm from Abdelfattah et al. [2021]. Further, we provide an in-depth analysis of the373

nature of programs we have discovered, along with a detailed account of existing limitations of our374

methodology to motivate future work in this direction. EZNAS has the potential to reduce human375

bias in design of ZC-NASMs, and aid in discovery of programs that provide deeper insights into376

properties that make a neural network perform well.377
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