
Under review as a conference paper at ICLR 2023

IS SYNTHETIC DATA FROM GENERATIVE MODELS
READY FOR IMAGE RECOGNITION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent text-to-image generation models have shown promising results in gener-
ating high-fidelity photo-realistic images. Though the results are astonishing to
human eyes, how applicable these generated images are for recognition tasks re-
mains under-explored. In this work, we extensively study whether and how syn-
thetic images generated from state-of-the-art text-to-image generation models can
be used for image recognition tasks, and focus on two perspectives: synthetic data
for improving classification models in data-scarce settings (i.e. zero-shot and few-
shot), and synthetic data for large-scale model pre-training for transfer learning.
We showcase the powerfulness and shortcomings of synthetic data from existing
generative models, and propose strategies for better applying synthetic data for
recognition tasks. Our code will be released.

1 INTRODUCTION

Over the past decade, deep learning powered by large-scale annotated data has revolutionized the
field of image recognition. However, it is costly and time-consuming to manually collect a large-
scale labeled dataset, and recent concerns about data privacy and usage rights further hinder this
process. In parallel, generative models which aim to model real-data distributions can now produce
high-fidelity photo-realistic images. Especially, recent text-to-image generation models (Nichol
et al., 2021; Ramesh et al., 2022; Saharia et al., 2022b) have made major breakthroughs in syn-
thesizing high-quality images from text descriptions. This promotes us to ask: is synthetic data from
generative models ready for image recognition tasks?

There are a few early attempts in exploring synthetic data from generative models for image recog-
nition tasks. Besnier et al. (2020) use a class-conditional GAN (BigGAN (Brock et al., 2018) trained
for ImageNet-1000 classes) to generate images for training image classifiers. Zhang et al. (2021)
leverage StyleGAN (Karras et al., 2019) to produce synthetic labeled data for object-part segmen-
tation. Jahanian et al. (2021) manipulate the latent space of a GAN model to produce multi-view
images for contrastive learning. Albeit promising, early works either address tasks at a small scale or
only for a specific setting. Besides, they all focus on GAN-based models and none have explored the
recent revolutionary text-to-image generation models, which hold more promises to benefit recog-
nition tasks.

In this paper, we present the first study on the state-of-the-art text-to-image generation models for
image recognition. With the power of text-to-image generation, we could hopefully not only gener-
ate massive high-quality labeled data, but also achieve domain customization by generating synthetic
data targeted for a specific label space, i.e. the label space of a downstream task. Our study is car-
ried out on one open-sourced text-to-image generation model, GLIDE (Nichol et al., 2021) 1. We
attempt to uncover the benefits and pitfalls of synthetic data for image recognition through the lens
of investigating the following two questions: 1) is synthetic data from generative models ready for
improving classification models? 2) whether synthetic data can be a feasible source for transfer
learning (i.e. model pre-training)? It is worth noting that for 1), our study is only conducted on the
zero-shot and few-shot settings because we observe the positive impact of synthetic data diminishes
as more shots are present. And, we build most of our investigations on the state-of-the-art method

1At the beginning of this project, GLIDE is the only open-sourced text-to-image synthesis model that also
delivers high-quality synthesis results.
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CLIP (Radford et al., 2021) with the feature extractor initialized with large-scale pre-trained weights
frozen.

Our Findings. First, in the zero-shot setting, i.e. no real-world data are available, we demonstrate
that synthetic data can significantly improve classification results on 17 diverse datasets: the per-
formance is increased by 4.31% in top-1 accuracy on average, and even improved by as much as
17.86% on the EuroSAT dataset. To better leverage synthetic data in this setting, we also investigate
useful strategies to increase data diversity, reduce data noise, and enhance data reliability. This is
achieved by designing diversified text prompts and measuring the correlation of text and synthesized
data with CLIP features.

Second, in the few-shot setting, i.e. a few real images are available, albeit not as significant as that
in the zero-shot task, synthetic data are also shown to be beneficial and help us achieve a new state
of the art. Our observation shows that domain gap between synthetic data and down-stream task
data is one challenge on further improving the effectiveness of synthetic data on classifier learning.
Fortunately, in this setting, the accessibility of real data samples can provide useful information
about data distribution of the down-stream task. We thus propose to use real images as a guidance
of the generation process to reduce domain gaps and improve effectiveness.

Third, in large-scale model pre-training for transfer learning, our study shows that synthetic data
are suitable and effective for model pre-training, delivering superior transfer learning performance
and even outperforming ImageNet pre-training. Especially, synthetic data work surprisingly well in
unsupervised model pre-training. We also demonstrate that by increasing the label space (i.e. text
prompts) for data generation, the enlarged data amount and diversity could further bring performance
boosts. Besides, synthetic data can work collaboratively with real data (i.e. ImageNet) where we
obtain improved performance when the model is initialized with ImageNet pre-trained weights.

2 RELATED WORKS

Synthetic Data for Image Recognition. There are mainly two forms of synthetic data for image
recognition, i.e. 1) synthetic datasets generated from a traditional simulation pipeline; 2) synthetic
images output from generative models.

The first type, synthetic datasets (Dosovitskiy et al., 2015; Peng et al., 2017; Richter et al., 2016), are
usually generated from a traditional pipeline with a specific data source, e.g.synthetic 2D renderings
of 3D models or scenes from graphics engines. However, this traditional way of generating synthetic
datasets has several drawbacks: 1) manually defined pipeline generated synthetic data may exist
certain gap with real-world data; 2) taking up huge physical space to store and huge cost to share
and transfer; 3) data amount and diversity bounded by the specific data source.

Compared with synthetic datasets, generative models are a more efficient way of synthetic data rep-
resentation, exhibiting favorable advantages: 1) could produce high-fidelity photorealistic images
closer to real data since they are trained on real-world data; 2) highly condensed compared to syn-
thetic data itself, and take up much reduced storage space; 3) potentially unlimited synthetic data
size. Only recently, few works attempt to explore synthetic data generated from generative models
for image recognition. Besnier et al. (2020) use a class-conditional GAN to train classifiers of the
same classes. Zhang et al. (2021) leverage the latent code of StyleGAN (Karras et al., 2019) to
produce labels for object part segmentation. While they achieve promising results, both works are
task-wise and only employed at a small scale. Jahanian et al. (2021) use a GAN-based generator
to generate multiple views to conduct unsupervised contrastive representation learning. However,
these works explore upon the traditional GAN-based models; in contrast, our work investigates with
the best released text-to-image generation model, which demonstrates new customization ability for
different downstream label space.

Text-to-Image Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Nichol & Dhariwal, 2021) have recently emerged as a class of promising and powerful generative
models. As a likelihood-based model, the diffusion model matches the underlying data distribution
q(x0) by learning to reverse a noising process, and thus novel images can be sampled from a prior
Gaussian distribution via the learned reverse path. Because of the high sample quality, good mode
coverage and promising training stability, diffusion models are quickly becoming a new trend in
both unconditional (Ho et al., 2020; Nichol & Dhariwal, 2021; Ho et al., 2022) and conditional
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(Dhariwal & Nichol, 2021; Rombach et al., 2022; Lugmayr et al., 2022; Saharia et al., 2022a; Meng
et al., 2021; Saharia et al., 2022c) image synthesis fields.

Especially, text-to-image generation can be treated as a conditional image generation task that re-
quires the sampled image matches the given natural language description. Based upon the formu-
lation of diffusion model, several text-to-image models such as Stable diffusion (Rombach et al.,
2022), DALL-E2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022b) and GLIDE (Nichol et al.,
2021) deliver unprecedented synthesis quality, largely facilitating the development of the AI-for-Art
community. Despite achieving astonishing perceptual results, their potential utilization for high-
level tasks is yet under-explored. In this paper, we utilize the state-of-the-art model GLIDE and
showcase its powerfulness and shortcomings for synthesizing data for recognition tasks.

3 IS SYNTHETIC DATA READY FOR IMAGE RECOGNITION?

In the following sections, we answer the question by studying whether synthetic data can benefit
recognition tasks and how to better leverage synthetic data to address different tasks. We carry out
our exploration through the lens of two basic settings with three tasks: synthetic data for improving
classification models in the data-scarce setting (i.e. zero-shot and few-shot) (see Sec. 3.1 and Sec.
3.2) and synthetic data for model pre-training for transfer learning (see Sec. 3.3).

Model Setup for Data-scarce (i.e. Zero-shot and Few-shot) Image Classification. As CLIP
(Radford et al., 2021) is the state-of-the-art approach for zero-shot learning, we conduct our study for
zero-shot and few-shot settings upon pre-trained CLIP models, aiming to better understand synthetic
data upon strong baselines. There have been a few attempts on better tuning pre-trained CLIP for
data-scarce image classification, such as CoOp (Zhou et al., 2022b), CLIP Adapter (Gao et al., 2021),
and Tip Adapter (Zhang et al., 2022), where the image encoder is frozen for better preserving the pre-
trained feature space. We argue that different tuning methods could all be regarded as different ways
of learning classifier weights, e.g. CoOp optimizes learnable prompts for better learning classifiers.
Here, we adopt a simple tuning method, Classifier Tuning (CT) (Wortsman et al., 2022), which
directly tunes a classifier attached to CLIP image encoder and initializes the classifier weights with
pre-trained text embedding. We empirically show that CT performs comparably with other CLIP
tuning methods. Compared with complex designed tuning methods, we hope to use a simpler tuning
method for better investigate the effectiveness of synthetic data.

3.1 IS SYNTHETIC DATA READY FOR ZERO-SHOT IMAGE RECOGNITION?

Our aim is to investigate to what degree synthetic data are beneficial to zero-shot tasks and how to
better leverage synthetic data for zero-shot learning.

Zero-shot Image Recognition. We study the inductive zero-shot learning setting where no real
training images of the target categories are available. CLIP models are pre-trained with large-scale
image-caption pairs, and the similarities between paired image features (from an image-encoder g)
and text features (from a text-encoder h) are maximized during pre-training. The pre-trained feature
extractor can then be used to solve zero-shot tasks where given an image, its features from g are
compared with text features of different classes from h and the image is further assigned to the class
that has the largest similarity in the CLIP text-image feature space.

Synthetic Data for Zero-shot Image Recognition. Though CLIP models exhibit strong zero-shot
performance thanks to the large-scale vision-language dataset for pre-training, there are still several
shortcomings when the model is deployed for a downstream zero-shot classification task, which
may be attributed to unavoidable data noise in CLIP’s pre-training data or the label space mismatch
between pre-training and the zero-shot task. Hence, with a given label space for a zero-shot task, we
study whether synthetic data can be used to better adapt CLIP models for zero-shot learning.

How to generate the data? Given a pre-trained text-to-image generation model, to synthesize novel
samples, the basic (B) strategy is to use the label names of the target categories to build the language
input and generate a corresponding image. Then, the paired label names and synthesized data can
be employed to train the classifier with the feature extractor frozen.

How to enrich diversity? Only using the label names as inputs might limit the diversity of synthe-
sized images and cause bottlenecks for validating the effectiveness of synthetic data. Hence, we
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Dataset Task CLIP CLIP+SYN
CIFAR-10 object-level 70.31 80.06 (+9.75)
CIFAR-100 object-level 35.35 45.69 (+10.34)
Caltech101 object-level 86.09 87.74 (+1.65)
Caltech256 object-level 73.36 75.74 (+2.38)
ImageNet object-level 60.33 60.78 (+0.45)
SUN397 scene-level 58.51 60.07 (+1.56)
Aircraft fine-grained 17.34 21.94 (+4.60)
Birdsnap fine-grained 34.33 38.05 (+3.72)

Cars fine-grained 55.63 56.93 (+1.30)
CUB fine-grained 46.69 56.94 (+10.25)

Flower fine-grained 66.08 67.05 (+0.97)
Food fine-grained 80.34 80.35 (+0.01)
Pets fine-grained 85.80 86.81 (+1.01)
DTD textures 42.23 43.19 (+0.96)

EuroSAT satellite images 37.51 55.37 (+17.86)
ImageNet-Sketch robustness 33.29 36.55 (+3.26)

ImageNet-R robustness 56.16 59.37 (+3.21)
Average / 55.13 59.47 (+4.31)

Table 1: Main Results on Zero-shot Image Recognition. All results are top-1 accuracy on test set.

leverage an off-the-shelf word-to-sentence T5 model (pre-trained on “Colossal Clean Crawled Cor-
pus” dataset (Raffel et al., 2020) and finetuned on CommonGen dataset (Lin et al., 2019)) to increase
the diversity of language prompts and the generated images, namely language enhancement (LE),
hoping to better unleash the potential of synthesized data. Concretely, we input the label name of
each class to the word-to-sentence model which generates diversified sentences containing the class
names as language prompts for the text-to-image generation process. For example, if the class label
is “airplane”, then the enhanced language prompt from the model could be “a white airplane hover-
ing over a beach and a city”. The enhanced text descriptions introduce rich context descriptions.

How to reduce noise and enhance robustness? It’s unavoidable that the synthesized data may contain
low-quality samples. This is even more severe in the setting with language enhancement as it may
introduce undesired items into language prompts (see Appendix for more examples). Therefore,
we introduce a CLIP Filter (CF) strategy to rule out these samples. Specifically, CLIP zero-shot
classification confidence is used to assess the quality of synthesized data, and the low-confidence
ones are removed which have a high potential to be unreliable. Besides, as soft-target is more robust
than hard-target in countering sample noise, we study whether soft cross-entropy loss (SCE, details
in Appendix) which uses the normalized clip scores as a target could be used to enhance robustness
against data noise.

Experiment Setup. We select 17 diverse datasets covering object-level (CIFAR-10 and CIFAR-100
((Krizhevsky et al., 2009), Caltech101 (Fei-Fei et al., 2006), Caltech256 (Griffin et al., 2007), Im-
ageNet (Deng et al., 2009)), scene-level (SUN397 (Xiao et al., 2010)), fine-grained (Aircraft (Maji
et al., 2013), Birdsnap (Berg et al., 2014), Cars (Krause et al., 2013), CUB (Wah et al., 2011),
Flower (Nilsback & Zisserman, 2008), Food (Bossard et al., 2014), Pets (Parkhi et al., 2012)), tex-
tures (DTD (Cimpoi et al., 2014)), satelite images (EuroSAT (Helber et al., 2019)) and robustness
(ImageNet-Sketch (Wang et al., 2019), ImageNet-R (Hendrycks et al., 2021)) for zero-shot image
classification. For synthetic data amount, we generate 2000 synthetic images for each class in B and
LE. For LE, we generate 200 sentences for each class name.

Main Results: 1) zero-shot classification results on 17 datasets; 2) study of synthetic data diversity;
3) study of synthetic data reliability; 4) study of model/classifier tuning; 5) study of the behavior of
synthetic data for zero-shot classification in the training from scratch settings.

Synthetic data can significantly improve the performance of zero-shot learning. Our main studies in
zero-shot settings are conducted with CLIP-RN50 (ResNet-50 (He et al. (2016)) as CLIP backbone),
and we report results with our best strategy of LE+CF+SCE. As shown in Table 1, on 17 diverse
downstream zero-shot image classification datasets, we achieve a remarkable average gain of 4.31
in terms of top-1 accuracy. Significantly, on EuroSAT dataset, we achieve the largest performance
boost of 17.86 in top-1 accuracy. We notice that the performance gain brought by synthetic data
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Dataset CLIP B LE LE+CF
CE SCE CE SCE CE SCE

CIFAR-10 70.31 77.39 (+7.08) 78.23 (+7.92) 77.20 (+6.89) 77.55 (+7.24) 80.01 (+9.70) 80.06 (+9.75)
CIFAR-100 35.35 43.99 (+8.64) 44.25 (+8.90) 44.08 (+8.73) 44.91 (+9.56) 44.55 (+9.20) 45.69 (+10.34)
EuroSAT 37.51 45.64 (+8.13) 48.23 (+10.72) 53.26 (+15.75) 54.94 (+17.43) 54.75 (+17.24) 55.37 (+17.86)

Table 2: Ablation study on Language Enhancement (LE), CLIP-based Filtering (CF), and Soft-
target Cross-Entropy (SCE).

varies differently across datasets, which may be caused by the difference in the generation ability of
the generative model for different label spaces.

Language diversity matters. By introducing more linguistic context into the text input, LE helps
increase the diversity of synthetic data. As shown in Table 2, LE can achieve additional performance
gains upon B in most cases (0.66↑ on CIFAR-100, 6.71↑ on EuroSAT), which demonstrates the
efficacy of LE and the importance of synthetic data diversity for zero-shot classification.

Reliability matters. While LE could help increase the diversity of synthetic data, it also introduces
the risks of noisy samples. Observed on CIFAR-10 in Table 2, LE sometimes even brings perfor-
mance drops compared with B (0.68% ↓ on CIFAR-10), which may attribute to the noise introduced
by enhanced language prompts, e.g. the sentence extended from the class name word may contain
other class names or confusing objects. Fortunately, with CF to filter out unreliable samples, LE+CF
yields consistent improvement upon B. Moreover, SCE generally achieves better performance than
CE, showing its better adaptation with label noise.

Classifier tuning is enough for CLIP. Here, we investigate if only tuning the final classifier is the
optimal solution in our setting with synthetic data. As shown in Table 3, we tune different propor-
tions of the full model parameters on synthetic data for EuroSAT (0.02% corresponds to our default
case where only the classifier is tuned), and report the zero-shot performance on the test set of Eu-
roSAT. The best results are obtained by only tuning the classifier, and the performance gradually
decreases as we gradually incorporate more parameters in the feature extractor for optimization,
which agrees with the traditional strategy. The potential reason that tuning the feature extractor with
synthetic data will not bring additional performance gains or might degrade model performance for
zero-shot learning, is that pre-trained CLIP models already present good feature space which could
be potentially corrupted due to the quality of synthetic data.

Param Tuned (%) 0 0.02 0.04 62.50 64.06 69.53 82.81 92.19
Acc 37.51 55.37 55.11 55.28 54.56 54.34 53.63 52.09

Table 3: Parameters tuned v.s. Accuracy. Dataset: EuroSAT.

Real shot 1 16 32 64 80 90 95 100
Acc 2.48 10.4 14.95 21.96 24.4 25.52 27.99 29.95

Table 4: Setting when training from scratch. Dataset: CIFAR-100.

Synthetic data deliver inferior performance in the training from scratch setting and are much less
data-efficient than real data. To exclude the influence of powerful CLIP initialization in our study of
synthetic data, we also conduct a from-scratch setting on the CIFAR-100 dataset, where we optimize
a ResNet-50 model from random initialization. Given the label space of CIFAR-100 dataset, we
generate a synthetic dataset of 50k (500 images per class) to train a ResNet-50 model from scratch
for image classification. We achieve a performance of 28.74% top-1 accuracy on CIFAR-100 test
set, which is much lower than the performance of the pre-trained CLIP model (see Table 1). Further,
we hope to investigate how many real in-domain training data can match the performance of our 50k
synthetic data. As shown in Table 4, training with 95 images per category (95 × 100 = 9.5k) will
achieve comparable performace as that of 50k synthetic data. This manifests that synthetic data are
not as not efficient and effective as real data when solving downstream tasks. It requires around 5
times more data in order to achieve a comparable performance as that of real data.

Summary. Current synthetic data from text-to-image generation models could indeed bring sig-
nificant performance boosts for a wide range of zero-shot image classification tasks, and is readily
applicable with carefully designed strategies such as large-scale pre-trained models. Diversity and
reliability matter for synthetic data when employed for zero-shot tasks. When the model is trained
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from scratch with synthetic data, synthetic data cannot deliver satisfactory performance and are
much less data-efficient and effective for solving the classification task in comparison with real data.

3.2 IS SYNTHETIC DATA READY FOR FEW-SHOT IMAGE RECOGNITION?

In this section, we explore the effectiveness of synthetic data for few-shot tasks and how synthetic
data impact the performance as more and more shots are included. Also, we design effective strate-
gies to better leverage synthetic data.

Few-shot Image Recognition. We adopt the CLIP-based method as the model for few-shot image
recognition due to its state-of-the-art performance (Radford et al., 2021). As discussed previously,
various prompt learning based methods can be treated as tuning the classifier weights. We thus study
how to tune the classifier weights with synthetic data. In an N-way M-shot case, we are given M
real images of each test class, where M ∈ {1, 2, 4, 8, 16} in our experiments. With a total of N×M
training samples, we hope to achieve favorable performance on a hold-out test set of the N classes.

Synthetic Data for Few-shot Image Recognition. While there have been a few attempts in studying
how to better adapt CLIP models for few-shot tasks (Zhou et al., 2022b;a; Zhang et al., 2022), they
all focus on the model optimization level, and none have explored from the data level. Here, we
systematically study whether and how synthetic data can be employed for solving few-shot image
recognition tasks.

With the experience from synthetic data for zero-shot tasks, we adopt the best strategy (i.e. LE+CF)
in the zero-shot setting as the basic strategy (B). Further, as the few-shot real samples can provide
useful information on the data distribution of the classification task, we develop two new strategies
leveraging the in-domain few-shot real data for better using synthetic data: 1) Real Filtering (RF):
given synthetic data of one class c, we use the features of few-shot real samples to filter out synthetic
images whose features are very close to the features of real samples that belong to other categories
different from class c; 2) Real guidance (RG): we use the few-shot real samples as a guidance to
generate synthetic images where the few-shot real samples (added noise) replace the random noise
at the beginning of the generation to guide the diffusion process (details in Appendix).

Experiment Setup. For datasets, we carefully select 8 image classification datasets from recent
works (Zhou et al., 2022b;a; Zhang et al., 2022) that conduct few-shot learning upon CLIP: Ima-
geNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2006), Pets (Parkhi et al., 2012), Cars (Krause
et al., 2013), Aircraft (Maji et al., 2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014),
EuroSAT (Helber et al., 2019). For synthetic image number, we generate 800 images per class for
RG method to approximately match the number of images in B and RF.

Main Results: 1) few-shot classification results on 8 datasets; 2) ablation study of training strategy;
3) ablation study of synthetic data generation strategy; 4) ablation study of BN strategy.

Synthetic data can boost few-shot learning and the positive impact of synthetic data will gradually
diminish with the increase of real data shots. As shown in Figure 1 (results of more datasets are in
the Appendix), with only few-shot real images for training, our implemented CT w. init (classifier
weights initialized from CLIP text embeddings) performs comparably with the state-of-the-art CLIP
tuning methods Tip Adapter (Zhang et al., 2022) and CoOp (Zhou et al., 2022b). CT w. Syn rep-
resents our results of applying synthetic data with mix training, real image as guidance, and freezing
BN strategies. With the help of generated synthetic data, CT w. Syn achieves noticeable perfor-
mance gains upon CT w. init, and achieves a new state-of-the-art few-shot learning performance
across different datasets. We argue that for data-scarce few-shot classification, synthetic data could
help address the insufficient data problem to boost performance. Besides, we notice that the boost
from synthetic data gradually diminishes as the real shot number increases, which further validates
that synthetic data work complementarily with real-world data for few-shot classification.

Mix Training fits few-shot learning with synthetic data. Now that we have two parts of data, i.e.
few-shot real data and synthetic data, we could either 1) phase-wise train on each part of data with
two training phases, or 2) adopt mix training that simultaneously utilize two parts of data to update
the model in each iteration. We provide the results in Table 7: we study on EuroSAT dataset and use
synthetic data generated from the RG method; under different shot number settings, mix training
performs consistently better than two phase-wise strategies. We suggest that mix training could help
learn better classifiers since each part could function as a regularization for another: synthetic data
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Figure 1: Results for few-shot image recognition. Results on all 8 datasets are provided in Appendix.

help alleviate instabilities brought by limited real samples, and real data help address the noise and
domain gap of synthetic data.

Employing real data as guidance can alleviate domain differences and boost performance. We
compare three strategies of synthetic data generation for few-shot tasks. As shown in Table 5,
both RF and RG provide performance gains upon B which is the best strategy in the zero-shot
setting. This demonstrates that the importance of utilizing the domain knowledge from few-shot
images for preparing the synthetic data. Further, RG significantly outperforms RF, yielding the
best performance. This demonstrates utilizing real data as a guidance of the diffusion process help
reduce the domain gap (visual illustrations in the Appendix).

B RF RG
87.1 87.33 88.47

Table 5: Ablation for
Basic strategy (B), Real
Filtering (RF), Real
Guidance (RG) on
EuroSAT, 16 shot.

Train data Freeze BN? Test Acc
Real 75.31
Real ✓ 85.63
Syn 44.73
Syn ✓ 55.37

Table 6: Frozen BN works better
for 16-shot settings on EuroSAT.

M-shot Phase-wise Mix
trainingsyn → real real → syn

1 63.01 63.32 64.36
2 72.24 72.85 73.62
4 78.88 79.21 79.88
8 83.64 83.99 84.57
16 87.10 87.44 88.47

Table 7: Mix training works bet-
ter for few-shot tasks on EuroSAT.

Frozen BN works better. Lastly, we investigate batch normalization (BN) strategy for our few-shot
settings with synthetic data. As shown in Table 6, for both real and synthetic data, freezing the
BN layers yields much better performance. We analyse that for real data, it is hard to get a good
estimation of BN statistics when the number of images is limited. As for synthetic data, we attribute
this to the statistical difference from different domains. Hence, we freeze BN layers during tuning
for few-shot settings.

Summary. Synthetic data from text-to-image generation models could readily benefit few-shot
learning and achieve a new state-of-the-art few-shot classification performance with strategies we
present in this paper. However, the positive impact of synthetic data will diminish as more shots of
real data are available which further confirms our previous claim that synthetic data are still not as
effective as real data in training classification models.

3.3 IS SYNTHETIC DATA READY FOR PRE-TRAINING?

Finally, we study whether synthetic data are effective in large-scale pre-training whose aim is to
learn transferable representation. We also present effective strategies to better leverage synthetic
data for model pre-training.

Pre-training for Transfer Learning. Recently, it has become a common practice to first pre-train
models on large-scale datasets to obtain a well-trained feature extractor and then fine-tune the pre-
trained models on a downstream task with labeled data (a.k.a transfer learning). There have been
various successful pre-training methods, including supervised pre-training (Joulin et al., 2016; Li
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Syn data size w/o ImageNet-1K pretrain w. ImageNet-1K pretrain
/ 78.83 84.50

1.2M 83.90 (+5.07) 84.90 (+0.40)
2.4M 85.03 (+6.20) 85.32 (+0.82)
3.6M 85.24 (+6.41) 85.52 (+1.02)

Table 8: Downstream-aware synthetic pre-training. Transfer results on CIFAR-100.

et al., 2017; Mahajan et al., 2018; Sun et al., 2017; Kolesnikov et al., 2020), self-supervised pre-
training (Chen et al., 2020a; He et al., 2020; Caron et al., 2020; Grill et al., 2020; Chen & He, 2021;
Zbontar et al., 2021; Ye et al., 2019), and semi-supervised pre-training (Xie et al., 2020; Pham et al.,
2021).

Synthetic data for Pre-training. Since data amount and diversity play important roles in pre-
training, we adopt the synthetic data generation strategy LE solely to maximize the scale of syn-
thetic pre-training data. We study two settings for generating synthetic data for pre-training: 1)
downstream-aware, where we have access to the label space of the downstream task, and thus we
generate synthetic data according to the label space of the downstream task; 2) downstream-agnostic,
where we have no access to downstream tasks in the pre-training stage, and we turn to a relatively
general and diverse label space such as ImageNet-1K. For pre-training methods, we experiment with
supervised pre-training and self-supervised pre-training methods.

Experiment Setup. We compare synthetic pre-trained models with models of random initial-
ization and models of ImageNet-1K pre-training in terms of their transfer learning abilities. For
downstream-aware settings: we conduct supervised pre-training on synthetic data generated accord-
ing CIFAR-100 label space and then transfer to CIFAR-100 through finetuning for evaluation.

For downstream-agnostic settings: we perform supervised pre-training and self-supervised pre-
training (we adopt Moco v2 (Chen et al., 2020b) framework for its simplicity and reproducibility)
on synthetic data generated from ImageNet-1K label space and evaluate the transfer performance by
finetuning the pretrained models on a object detection dataset – PASCAL VOC (Everingham et al.,
2010). Further, we experiment with ImageNet-2K label space (original ImageNet-1K and another
non-overlapping 1K label names randomly selected from ImageNet-21K) to study the factors of data
diversity and amount in synthetic pre-training. We use ResNet-50 as the backbone.

Results for Downstream-aware settings. We generate synthetic data of different size from CIFAR-
100 label space, i.e. 1×, 2×, 3× ImageNet-1K data size, concretely 1.2M, 2.4M, 3.6M. We pre-train
the on the generated synthetic labeled set in a supervised manner, and then perform evaluation after
finetuning the model on CIFAR-100. As shown in Table 8, with an equivalent amount of data as
that of ImageNet-1k (1.2M), namely 1×, synthetic data for pre-training can largely reduce the gap
between training from scratch (78.83) and ImageNet- pre-trained model (84.50). Moreover, with 2×
and 3× synthetic data, pre-training on synthetic data outperforms ImageNet-1K pre-training with a
noticeable margin. In addition, when we initialize the model from ImageNet-1K pre-trained weights
when pre-training the model on synthetic dataset, we obtain extra boosts upon both results.

We conclude that for downstream-aware synthetic pre-training, synthetic data deliver close perfor-
mance as that of ImageNet-1K pretraining with the same amount of data, synthetic data amount
helps improve the results to outperforming ImageNet-1K pre-training, and synthetic pre-training
could further benefit from ImageNet-1K pre-training.

Results for Downstream-agnostic settings. We first experiment with ImageNet-1K label space
with 1× or 2× ImageNet-1K data size, i.e. 1.2M/2.4M IN-1K Syn. We perform supervised pre-
training and self-supervised pre-training (i.e. Moco v2) on the generated synthetic data, and evaluate
the pre-training results by transferring to the PASCAL VOC detection task. As it is too costly to
validate all settings (e.g., it takes more than 1 week to train Moco v2 on 4.0M synthetic data), we
select several representative settings of interest to validate the effectiveness of synthetic data without
hurting our conclusion.

As shown in Table 9 and 10, with 1.2M IN-1K Syn, both supervised pre-training (79.00%) and
self-supervised pre-training (81.55%) could largely approach their IN-1K Real counterparts (su-
per.:81.3%; self-super.:82.44%) and largely outperforms the result without pre-training (66.08%).
When increasing the data amount to 2.4M, the transferred results further increases, and the unsu-

8



Under review as a conference paper at ICLR 2023

Data pre-trained
on IN-1k?

Syn. images amount
0 1.2M 2.4M 4.0M

(None) 66.08 - - -
IN-1K Syn - 79.00 80.00 -
IN-2K Syn - - 80.54 80.72

(None) ✓ 81.30 - - -
IN-1K Syn ✓ - - 81.78 -
IN-2K Syn ✓ - - 81.87 81.91

Table 9: Results for object detection on PAS-
CAL VOC with supervised pre-training, all
results are reported in AP50.

Data pre-trained
on IN-1k?

Syn. images amount

0 1.2M 2.4M 4.0M

(None) 66.08 - - -

IN-1K Syn - 81.55 82.13 -

IN-2K Syn - - 82.22 82.29

(None) ✓ 82.44 - - -

IN-1K Syn ✓ - - 82.47 -

Table 10: Results for object detection on PAS-
CAL VOC when pre-trained with Moco v2,
all results are reported in AP50.

pervised pre-training method, i.e. Moco v2, performs better in utilizing our synthetic data thanks
to its independence of labels, yielding a 82.13% transferred performance which surpasses super-
vised pre-training on IN-1K Real (81.30%) and is on par with its Moco v2 counterpart at IN-1K
Real (82.44%). Next, we expand the label space by adding another 1K categories, producing IN-2K
Syn. The enlarged diversity and data amount further bridge the gap between synthetic pre-training
results and IN-1K Real pre-training results. Noticeably, the unsupervised pre-trained model Moco
v2 (82.29%) largely approaches the IN-1K Real counterpart (82.44%) with negligible performance
drop of 0.15%. Furthermore, when initialized from IN-1K Real pre-trained weights, both supervised
and self-supervised pre-training improve upon both pure real data and synthetic data for pre-training.

Conclusion. In terms of transfer abilities, synthetic data from text-to-image generation models show
surprisingly promising results for model pre-training, which is comparable to the standard ImageNet
pre-training. We conclude our findings as follows:

1. Data amount has positive impacts on synthetic pre-training; performance could be improved
by increasing synthetic data size, but the performance gradually saturates as the amount of data
increases.

2. Synthetic data for pre-training is orthogonal to real data for pre-training.

3. For downstream-aware synthetic pre-training, we significantly outperform IN-1K Real (1.2M)
pre-training with 2.4M/3.6M synthetic data on CIFAR-100.

4. For downstream-agnostic synthetic pre-training, we achieve comparable results with ImageNet
(IN-1k) Real pre-training; self-supervised pre-training performs better than supervised pre-training.
Besides, increasing the label space size could further improve the performance.

4 CONCLUSION

We systematically investigate whether synthetic data from current state-of-the-art text-to-image gen-
eration models are readily applicable for image recognition. Our extensive experiments demonstrate
that synthetic data are beneficial for classifier learning in zero-shot and few-shot recognition, bring-
ing significant performance boost and yielding new state-of-the-art performance. Further, current
synthetic data show strong potential for model pre-training, even surpassing the standard ImageNet
pre-training. We also point out limitations and bottlenecks for applying synthetic data for image
recognition, hoping to arouse more future research in this direction.

Limitations. In all investigated settings, we observe improved performance as the data amount and
diversity (label space) increases. However, due to our limited computational resource, we are not
able to further scale up data amount, which may take months to train one model. Besides, we are
also not able to investigate larger model sizes and advanced architectures in the current investigation
which is also worth exploring in the future. We present more discussions on limitations and future
directions in the appendix.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L. Alexander, David W. Jacobs, and Peter N.
Belhumeur. Birdsnap: Large-scale fine-grained visual categorization of birds. In Proc. Conf.
Computer Vision and Pattern Recognition (CVPR), June 2014.

Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord, and Patrick Pérez. This dataset does
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