
Under review as a conference paper at ICLR 2022

ON REDUNDANCY AND DIVERSITY IN CELL-BASED
NEURAL ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Searching for the architecture cells is a dominant paradigm in NAS. However,
little attention has been devoted to the analysis of the cell-based search spaces
even though it is highly important for the continual development of NAS. In this
work, we conduct an empirical post-hoc analysis of architectures from the popular
cell-based search spaces and find that the existing search spaces contain a high
degree of redundancy: the architecture performance is minimally sensitive to
changes at large parts of the cells, and universally adopted designs, like the explicit
search for a reduction cell, significantly increase the complexities but have very
limited impact on the performance. Across architectures found by a diverse set of
search strategies, we consistently find that the parts of the cells that do matter for
architecture performance often follow similar and simple patterns. By explicitly
constraining cells to include these patterns, randomly sampled architectures can
match or even outperform the state of the art. These findings cast doubts into our
ability to discover truly novel architectures in the existing cell-based search spaces,
and inspire our suggestions for improvement to guide future NAS research.

1 INTRODUCTION

Neural Architecture Search (NAS), which automates designs of neural networks by task, has seen
enormous advancements since its invention. In particular, cell-based NAS has become an important
technique in NAS research: in contrast to attempts that directly aim to design architectures at once
and inspired by the classical manually-designed architectures like VGGNet and ResNet that feature
repeated blocks, cell-based NAS similarly searches for repeated cells only and later stack them into
full architectures. This simplification reduces the search space (but still highly complex), and allows
easy transfer of architectures across different tasks/datasets, application scenarios and resources
constraints (Elsken et al., 2019). Indeed, it has received an extraordinary amount of research attention:
based on our preliminary survey, almost 80% of the papers (detailed in App C) proposing new NAS
methods published in the top machine learning conferences (ICLR, ICML, NEURIPS) in the past year
show at least one part of their major results in standard Differentiable Architecture Search (DARTS)
cell-based spaces and/or highly related ones, and approx. 60% demonstrate results in such spaces
only; it is fair to state that such cell-based spaces currently dominates.
However, the lagging understanding of these architectures and the search space itself stands in stark
contrast with the volume and pace of new search algorithms. The literature on understanding why
this dominant search space works and comparing what different NAS methods have found is much
more limited in depth and scope, with most existing works typically focusing exclusively on a few
search methods or highlighting high-level patterns only (Shu et al., 2020; Zela et al., 2020) We
argue that strengthening such an understanding is crucial on multiple fronts, and the lack thereof
is concerning: first, studying a diverse set of architectures enables us to discover patterns shared
across the search space, the foundation of comparison amongst search methods that heavily influences
the resultant performances (Yang et al., 2020a): if the search space itself is flawed, designing and
iterating new search methods on it, which is typically computationally intensive, can be misleading
and unproductive. Conversely, understanding any pitfalls of the existing search spaces informs
us on how to design better search spaces in the future, which is critical in advancing the goal of
NAS in finding novel and high-performing architectures, not only in conventional CNNs but also in
emerging NAS paradigms such as transformers (which may also take the form of a cell-based design
space). Second, opening the NAS black box enables us to distill the essence of the strong-performing
NAS architectures beneath their surface of complexity. Unlike manually designed architectures

1

Under review as a conference paper at ICLR 2022

where usually designers attribute performance to specific designs, currently owing to the apparent
complexity of the design space, the NAS architectures, while all discovered in a similar or identical
search space, are often compared to in terms of final performance on a standard dataset only (e.g.
CIFAR-10 test error). This could be problematic, as we do not necessarily understand what NAS
has discovered that led to the purported improvements, and the metric itself is a poor one on which
external factors such as hyperparameter settings, variations in training/data augmentation protocols
and even just noise could exert a greater influence than the architectural design itself (Yang et al.,
2020a). However, by linking performance to specific designs, we could more ascertain whether any
performance differences stem from the architectures rather than the interfering factors.

We aim to address this problem by presenting a post-hoc analysis of the well-performing architectures
produced by technically diverse search methods. Specifically, we utilise explainable machine learning
tools to open the NAS black box by inspecting the good- and bad-performing architectures produced
by a wide range of NAS search methods in the dominant DARTS search space. We find:

• Performances of architectures can often be disproportionately attributed to a small number of simple
yet critical features that resemble known patterns in classical network designs;

• Many designs almost universally adopted simply contribute to complexity but not performance;
• The nominal complexity of the search spaces poorly reflects the actual diversity of the (high-

performing) architectures discovered, the functional parts of which are often very similar despite
the technical diversity in search methods and the seeming disparity in topology.

In fact, with few simple and human-interpretable constraints, almost any randomly sampled architec-
ture can perform on par or exceed those produced by the state-of-the-art NAS methods over varying
network sizes and datasets (CIFAR-10/IMAGENET). Ultimately, these findings prompt us to rethink
the suitability of the current standard protocol in evaluating NAS and the capability to find truly novel
architectures within the search space. We finally provide suggestions for prospective new search
spaces inspired by these findings.

2 PRELIMINARIES

input0

input1

0

1

2

3

out

avg_pool_3x3 (ap3)
max_pool_3x3 (mp3)
skip_connect (skip)
dil_conv_5x5 (d5)
dil_conv_3x3 (d3)
sep_conv_5x5 (s5)
sep_conv_3x3 (s3)

Figure 1: The DARTS cell. The solid black arrows de-
note the concatenation at output which is fixed. The
gray dashed arrows denote the 14 potential operation
locations. In a valid DARTS cell, 8 of which are filled
by one out of the seven candidate primitives listed to the
right, while the other 6 spots are disabled.

DARTS space (Fig 1) proposed by Liu et al.
(2019), which is in turn inspired from Zoph et al.
(2018); Pham et al. (2018), is the most influen-
tial search space in cell-based NAS: it takes a
form of a Directed Acyclic Graph (DAG), which
features 2 input (connected to the output of two
immediately preceding cells), 1 output and 4
intermediate nodes. The operation o(i,j) on the
(i, j)-th edge is selected from a set of candidate
primitives A with size K = 7 (shown in Fig
1) to transform the input to the operation x(i).
At each intermediate node, output from the op-
erations on all its predecessors are aggregated:
x(j) =

∑
i<j o

(i,j)(x(i)) and finally the out node concatenates all outputs from the intermediate
nodes. As shown in Fig 1, the DARTS cell allows for up to 14 possible spots to place operations. How-
ever, to ensure that all intermediate nodes are connected in the computational graph, each intermediate
node is constrained to have exactly 2 in-edges connected to it from 2 different preceding nodes. Lastly,
it is conventional to search for two cells, namely normal αn and reduce αr cells simultaneously,
with αr placed at 1/3 and 2/3 of the total depth of the networks and αn everywhere else. In total,
there are

∏4
k=1

72k(k+1)
2 ≈ 109 distinct cells without considering graph isomorphism, and since both

αn and αr are required to fully specify an architecture, there exist approx. (109)2 = 1018 distinct
architectures (Liu et al., 2019). Other cells commonly used in are almost invariably closely related
to, and can be viewed as simplified or more complicated variants of the DARTS space. For example,
NAS-Bench-201 (NB201) search space used in the NAS benchmark is similar to but simplified
from the DARTS cell (detailed and analysed in App D). Other works have increased the number of
intermediate nodes (Wang et al., 2021b), expanded the primitive pool A (Hundt et al., 2019) and/or
relaxed other constraints (e.g. Shi et al. (2020) allow both incoming edges of the intermediate nodes
to be from the same preceding nodes), but do not fundamentally differ from the DARTS space.

2

Under review as a conference paper at ICLR 2022

3 OPERATION-LEVEL ANALYSIS: REDUNDANCIES IN SEARCH SPACES

Cell-based NAS search space contains multiple sources of complexity (deciding both the specific
wiring and operations on the edges; searching for 2 cells independently, etc.), each expanding the
search space combinatorially. While this complexity is argued to be necessary for the search space
to be expressive for good-performing novel architectures to be found, it is unknown whether all
these sources of complexities are equally important, or whether the performance critically depend on
some sub-features only. We argue that answering this question, and identifying such features, if they
are indeed present, are highly significant: it enables us to separate the complexities that positively
contribute to performances from those that do not, and subsequently would fundamentally affect the
design of search methods. At individual architectures, it helps us understand what NAS has truly
discovered, by removing confounding factors and focusing on the key aspects of the architectures.

bananas
darts
de
drnas

gdas
local_search
pc_darts
random

re
rs
tpe

Figure 2: The top archs provides a
good coverage of the search space
and are seemingly diverse: the
t-SNE plot of the top 5% archs
(colored markers; grouped by dif-
ferent search methods. Details in
App B.1) and randomly sampled
archs in the DARTS search space
(gray markers).

For findings to be generally applicable, we aim to be not specific
to any search method; this requires us to study a large set of archi-
tectures that are high-performing but technically diverse in terms
of the search methods that produce them. Fortunately, the training
set of NAS-Bench-301 (NB301) (Siems et al., 2020), which include
>50,000 architecture-performance pairs in the DARTS space using
a combination of random sampling and more than 10 state-of-the-art
yet technically diverse methods (detailed in App. B.1), could be
used for such an analysis: to build a surrogate model that accurately
predicts architecture performance across the entire space. We primar-
ily focus on the top-5% (or top-2,589) architectures of the training
set since we overwhelmingly care about the good-performing archi-
tectures by definition in NAS, although as we will show, the main
findings hold true also for architectures found by methods not cov-
ered by NB301 and for other search spaces like the NB201 space.
As shown in Fig 2, the top architectures are well-spread out in the
search space and are well-separated by search methods, seemingly
suggesting that the architectures discovered by different methods are
diverse in characteristics. Lastly, the worse-performing cells could
also be of interest, as any features observed could be the ones we
would actively like to avoid, and we analyse them in App. A.

Operation Importance To untangle the influence of each part of
the architecture, we introduce Operation Importance (OI), which measures the incremental effect of
the individual operations, which are the smallest possible features, to the overall performance. We
quantify this via measuring the expected change in the performance by perturbing the type or wiring
of the operation in question: considering an edge-attributed cell α with edge ei,j currently assigned
with primitive ok, then the operation importance of ok on that edge of cell α is given by:

OI(α, ei,j := ok) =
1

|N (α, ei,j := ok)|

|N (α,ei,j :=ok)|∑
m=1

[
y(αm)

]
− y(α), (1)

where y(α) denotes the validation accuracy or another appropriate performance metric of the fully-
trained architecture induced by cell α. We are interested in measuring the importance of both
the primitive choice and where the operation is located relative to the entire cell, and we use
N (α, ei,j = ok) to denote a set of neighbour cells that differ to α only with the edge in question
assigned with another primitive: ei,j ∈ A \ {ok}, or with the same primitive ok but with one end
node of ei,j being rewired to another node, subjected to any constraints in the search space. It is
worth noting that OI is an instance of the Permutation Feature Importance (PFI)(Breiman, 2001;
Fisher et al., 2019; Molnar, 2019). Given the categorical nature of the “features” in this case, we may
enumerate all permutations on the edge in question instead of having to rely on random sampling as
conventional PFI does. An important operation by Eq (1) would therefore be accorded with an OI
with a large magnitude in either direction, whereas an irrelevant one would have a value of zero since
altering it on expectation leads to no change in architecture performance.
We compute the OI of each operation of 2,589 architectures, and to circumvent the computational
challenge of having to train all neighbour architectures of α (which are outside the NB301 training
set) from scratch to compute y(·), we use the performance prediction ỹ(·) from NB301. However, as

3

Under review as a conference paper at ICLR 2022

Normal Reduce0

2000

4000

6000

8000

10000

Nu
m

be
r o

f o
cc

ur
re

nc
es

(a) All operations

Normal Reduce0

2000

4000

6000

8000

10000

Nu
m

be
r o

f o
cc

ur
re

nc
es s3

s5
d3
d5
skip
mp3
ap3

(b) Important operations

Figure 3: Distribution of (a) all and (b) important op-
erations by the primitive types of the top-performing
archiectures, organised by primitive type.

s3 s5 d3 d5 skipmp3ap30.002

0.001

0.000

0.001

0.002

0.003

0.004

Op
er

at
io

n
im

po
rta

nc
e

(a) Normal cells

s3 s5 d3 d5 skipmp3ap30.002

0.001

0.000

0.001

0.002

0.003

0.004

Op
er

at
io

n
im

po
rta

nc
e

(b) Reduce cells

Figure 4: OI distribution in (a) normal and (b) reduce
cells. The important operations are shown outside the
gray shaded area.

we will show, we validate all key findings by actually training some architectures to ensure that they
are not artefacts of the statistical surrogate (training protocols detailed in App. B.2).

Findings The most natural way to group the operations is by their primitive and cell (i.e. normal or
reduce) types, and we show the main results in Figs. 3 and 4. In Fig. 3(b), we discretise the OI scores
using the threshold 0.001 (0.1%), which is similar to the observed noise standard deviation of the
better-performing architectures from NB301 which quantifies the expected variation in performance
if an identical architecture is re-trained from scratch, to highlight the important operations with
|OI| ≥ 0.001: these the ones we could more confidently assert to affect the architecture performance
beyond noise effects. We summarise the key findings below:

2 4 6 8
Number of operations disabled
6

5

4

3

2

1

0

 in
 te

st
 a

cc
 (%

)

Most impt
Least impt

Figure 5: Ground-truth change
in accuracy by successively dis-
abling the most/least important
ops, ordered by their OI. Medians
and interquartile ranges shown;
stars denote that the drop in ac-
curacy is significant at p ≤ 0.01
in the Wilcoxon signed-rank test.

(#1) Only a fraction of operations is critical for good performance
within cells: If all operations need to be fully specified (i.e., with
both the primitive choice and the specific wiring determined) for
good performance, perturbing any of them should have led to sig-
nificant performance deterioration. However, this is clearly not the
case in practice: comparing Fig. 3(a) and (b), we observe that only
a fraction of the operations are important based on our definition.
To verify this directly beyond predicted performances, we randomly
select 30 architectures from the top 5% training set. Within each
cell, we sort their 16 operations by their OI in both ascending and
descending orders. We then successively disable the operations by
zeroising them, and train the resulting architectures with increasing
number of operations disabled from scratch1 until there are only half
of the active operations remain (Fig. 5). The results largely confirms
our findings and shows that the OI, although computed via predicted
performance, is accurate in representing the ground-truth importance
of the operations: on average, we need to disable 6 low-OI operations to see a statistically significant
drop in performance, and almost half of the operations to match the effect of disabling just 2 high-OI
ones. On the other hand, disabling the high-OI operations quickly reduce the performance and in
some cases stall the training altogether: noting that the overall standard deviation of the entire NB301
training set is just approx. 0.8%, the drop in performance is quite dramatic.
(#2) Reduce cells are relatively unimportant for good performance: Searching independently for
reduce cells scale the search space quadratically, but Fig. 3(b) shows that they contain much fewer
important operations, and Fig. 4 shows that the OI distribution across all primitives are centered close
to zero in reduce cells: both suggest that reduce cell is less important to the architecture performance.
To verify this, we draw another 30 random architectures. For each of the them, we construct and train
from scratch the original architecture and 4 derived ones, with (a) reduce cell set identical to normal
cell, (b) reduce cell with all operations set to parameterless skip connections, (c) normal cell set
identical to reduce cell and (d) normal cell with operations set to skip connections. As shown in Fig.
6: setting reduce cell to be identical to the normal cell leads to no significant change in performance,
while the reverse is not true. A more extreme example is that while setting cells to be consisted
of skip connections only is unsurprisingly sub-optimal in both cases, doing so on the reduce cells
harms the performance much less – this suggests that while searching separately for reduce cells are
well-motivated, the current design, which places much fewer reduce cells than normal cells in the
overall architecture yet treats them equally in search might be a sub-optimal trade-off, and searching

1Note that we may not obtain NB301 performance prediction on these architectures, as NB301 requires all
16 operations to be enabled with valid primitives.

4

Under review as a conference paper at ICLR 2022

two separate cells may yield little benefits over the simple strategy of searching for one graph only
and applying it on both normal and reduce cells.

ori
gin

al

red
<-no

r

no
r<

-re
d

red
<-sk

ip

no
r<

-sk
ip

5

6

7

8

Te
st

 e
rro

r (
%

)

* * *

Figure 6: Ground-truth test er-
rors (i.e. not predicted by
NB301) of the original archs
(original), archs with reduce
cells set identical to their nor-
mal cells (red<-nor)/normal
cells set identical to their reduce
cells (nor<-red) and archs
with normal/reduce cells fully
replaced by skip connections
(nor<-skip/red<-skip). ∗
denotes that the performance dis-
tribution significantly differs from
original at p ≤ 0.01 in the
Wilcoxon signed-rank test.

(#3) Different primitives have vastly different importance profiles
with many of them redundant: The set of candidate primitives
A consists of operators that are known to be useful in manually-
designed architectures, with the expectation that they should also
be, to varying degrees, useful to NAS. However, this is clearly
not the case: while it is already known that some primitives are
favoured more by certain search algorithms (Zela et al., 2020), the
observed discrepancy in the relative importance of the primitives is,
in fact, more extreme: the normal cells (which are also the important
cells by Finding 2) across the entire spectrum of good performing
architectures overwhelmingly favour only 3 (separable convolutions
& skip connection) out of 7 possible primitives (Fig. 3(a)). Even
when the remaining 4 primitives are occasionally selected, they are
almost never important (Fig. 3(b)) – this is also observed in Fig. 4(a)
which shows that only they all have distributions of OI close to 0.
As we will show later in Sec 4, we could essentially remove these
primitives from A without impacting the performances. Even within
the 3 favoured primitives, there is a significant amount of variation.
First, comparing Figs 1(a) and (b), skips, when present in good
architectures, are very likely to be important. We also note that the
distribution of OI of skip has a higher variance – these suggest that
the performance of an architecture is highly sensitive towards the
specific locations and patterns of skip connections, a detailed study
of which we defer to Sec. 4. On the other hand, while both separable convolutions (s3 and s5) are
highly over-represented in the good-performing architectures, it seems that they are less important
on an operation level than skip. A possible explanation is that while their presence is required for
good performance, their exact locations in the cell matter less which we again verify in Sec. 4.

Discussions The operation-level findings essentially confirm that both the search space and the
cells are rampant with various redundancies that increase the search complexity but do not actually
contribute as much to the performance, and good performance most often does not depend on an
entire cell but a few key features and primitives in both individual cells and in the search space. This
clearly shows that the search space design can be further optimised, but consequently, many beliefs
often ingrained in existing search methods can also be sub-optimal or unnecessary. For example,
barring a few exceptions (and none to our knowledge in the standard cell-based design space) (Xie
et al., 2019a; You et al., 2020; Ru et al., 2020), the overwhelming majority of the current approaches
aims to search for a single, fully deterministic architecture over a huge search space, and this often
results in high-dimensional vector encoding of the cells (e.g. the path encoding of DARTS cell in
White et al. (2021) is > 104 dimensions without truncation); this affects the performance in general
(White et al., 2020a) and impedes the applications of methods that suffer from curse of dimensionality,
such as Gaussian Processes, in particular. However, exact encoding could be in fact unnecessary if
good performance simply hinges upon only a few specific key designs while the rest does not matter
as much; it might make more sense to find relevant low-dimensional compressed representations such
as approximate encoding instead.

4 SUBGRAPH-LEVEL ANALYSIS: ARE WE TRULY FINDING NOVEL CELLS?

Sec 3 demonstrates the presence of the critical sub-features within good performing architectures;
in this section we aim to find what they actually are and whether there are commonalities amongst
the architectures found by technically diverse methods. Towards this goal, operation-level analysis
is insufficient as the performance of neural networks also depends on the architecture topology and
graph properties of the wiring between the operations (Xie et al., 2019a; Ru et al., 2020).

Frequent Subgraph Mining (FSM) FSM aims to “to extract all the frequent subgraphs, in a given
data set, whose occurrence counts are above a specified threshold” (Jiang et al., 2013). This is
immensely useful for our use-case, as any frequent subgraphs mined on the architectures represented
by DAGs would naturally represent the interesting recurring structures in the good-performing

5

Under review as a conference paper at ICLR 2022

s3 skip

s3s5input2

1

s3
ski

p

s5
input1

2

skip s3

s3input2

3

s3

s5

s5
input1

4

s3 s3
skip

s5

input2

5

skip s3

s5input1

6

skip s3

s5input2

7

s3

s5input1

8

s3
skip

s5
input2

9

s3
s3ski

p
input2

10

skip

s5input2

11

skip

s5input1

12

s3
skip

s3
input2

13

skip s3

s3input1

14

s3
skip

s3
input1

15

No. # # Support Support Ratio
nodes edges in impt in ref

1 5 4 0.0815 0.000386 231
2 4 3 0.0672 0.000772 87.0
3 4 3 0.0579 0.000772 75.0
4 4 3 0.0556 0.000772 72.0
5 5 4 0.0745 0.00116 64.3
6 4 3 0.219 0.00425 51.6
7 4 3 0.239 0.00579 41.3
8 3 2 0.215 0.00966 22.2
9 4 3 0.188 0.00888 21.3
10 4 3 0.103 0.00541 19.1
11 3 2 0.572 0.0339 16.8
12 3 2 0.336 0.0220 15.2
13 4 3 0.141 0.00927 15.2
14 4 3 0.0560 0.00386 14.5
15 4 3 0.0734 0.00541 13.6

Figure 7 & Table 1: Frequent subgraphs in the good-performing architectures ranked by ratio of supports
between the important subgraphs and the reference and properties of the discovered frequent subgraphs. Almost
all subgraphs feature skip primitive links with additional connections with 1 or more separable convolutions
and neither dilated convolutions nor other parameterless operations.

architectures, and subgraphs are also widely used for generating explanations (Ying et al., 2019b). In
our specific case, we 1) convert the computing graphs corresponding to the topology of the same set
of top-performing architectures in Sec. 3 into DAGs, 2) within each DAG, we retain only the important
operations defined in Sec 3 and 3) run an adapted version of the gSpan algorithm (Yan & Han, 2002)
for DAGs on the set of all architecture cell graphs {G1, ..., GT } to identify a set of the most frequent
subgraphs Gf = {gf1 , ..., g

f
M} where each subgraph must have a minimum support S(·) of σ = 0.05:

Sgfi
=
|δ(gfi)|
T

≥ σ ∀gfi ∈ G
f , where δ(gfi) = {Gj |g

f
i ⊆ Gj}

T
j=1. (2)

One caveat with the above metric is that it favours simpler subgraphs, which naturally are more likely
to be present in a graph by random sampling than more complicated subgraphs. To account for this
bias, we use the same DAG representation of all architectures used earlier, but instead of retaining
the important operations, we retain ki randomly sampled operations in each dag to build a reference
set, where ki is the number of important operations present in architecture i. We then run gSpan
again to obtain the supports of the reference frequent subgraphs Gc = {gc1, ..., gcN}. The ratio of the
two supports quantifies the amount of over- or under-representation of subgraphs over their “natural”
level of occurrence and corrects the aforementioned bias.

in0 in1 others all
0.002

0.000

0.002

0.004

0.006

0.008

Op
er

at
io

n
Im

po
rta

nc
e

Figure 8: skips are only use-
ful when they form residual links:
in0 and in1 denote the residual
links formed with either inputs,
others denote the skip connec-
tions not forming residual links
and all is the overall distribution
of OI of skip connections.

Findings (#4) Functional parts of many good-performing archi-
tectures are structurally similar to each other and to elements of
classical architectures. We show the top subgraphs in terms of
the ratio of supports in Fig. 7, and an immediate insight is that the
top frequent subgraphs representing the common traits across the
entire good-performing region of the search space are highly over-
represented over reference and non-diverse: almost all subgraphs
can be characterised with skip connections forming residual links
between one or both input nodes with an operation node, combined
with different number and/or sizes of separable convolutions. In
fact, we find that this ResNet-style residual link is present in 98.5%
(or 2,815) of the 2,859 top architectures (as a comparison, if we
sample randomly, only approximately half of the architectures are
expected to contain this feature). In fact, with reference to Fig 8,
the residual links drive the importance of skip in Fig 3 – this suggests skip connections do not
just benefit optimisation of NAS supernets but also actively contribute to generalisation if they posit
as residual connections. The propensity of certain NAS methods into collapsing into cells almost
entirely consisting of skip is well-known with many possible explanations and remedies, but here
we provide an alternative perspective independent of search methods: more fundamentally, skip
is the only primitive whose exact position greatly impacts the performances in both positive and
negative directions and thus it is more difficult for search methods learn such a relation precisely.
The consensus in preferring the aforementioned pattern also extends beyond the training set of
NB301: with reference to Fig 9, we select some of the architectures produced by the most recent
works that are not represented in the NB301 training set, and it is clear that despite the different
search strategies, functional parts of resulting architectures are all characterised by the this pattern of
residual connections and separable convolutions, a combination already well-known and well-used

6

Under review as a conference paper at ICLR 2022

skip

s5

skips3

s3

s5

s5skipinput1

input2 0

1

23

(a) White et al. (2021)

s3

skip

s5

s3

s3

s3

s3

d5

input1

input2 0

1

23

(b) Chen et al. (2021b)

skip

s3

skip

s3 s3

s5s5

s5

input1

input2 0

1

23

(c) Li et al. (2021)

s3

mp3

s3

skip

s3

s5

s3 d5input1

input2 0

1

23

(d) Ru et al. (2021)

s3

s3

skip

s3

s3

s3

skip

skip

input1

input2 0

1

23

(e) Wang et al. (2021c)

skip

skip

s5

s5

s3 d3
s5s5

input1

input2 0

1

23

(f) Chen et al. (2021a)

Figure 9: Normal cells of various SoTA (left to right: BANANAS, DRNAS, GAEA, NAS-BOWL, DARTS_PT and
TE-NAS) architectures with the important operations highlighted (the connections to output are omitted since
they are all identical across the DARTS search space). Note all cases considered are consistent with the residual
link + separable convolution patterns identified, even though the cells and search methods are very different and
except for BANANAS, none of the methods here was used to generate the NB301 training set.

both in parts and in sum in successful manually designed networks (e.g. Xception (Chollet, 2017)
uses both ingradients). In this sense, many of the existing NAS methods might not have discovered
much more novel architectures beyond what we already know; the functional parts of many SoTA
NAS architectures could be regarded as variations of the classical architectures, whereas the apparent
diversity like the one shown in Fig 2 is often caused by differences in the non-functional parts of the
architectures that in fact minimally influence the performances.

Random Skip PrimPrimSkip
5.0

5.5

6.0

6.5

7.0

7.5

8.0

Pr
ed

ic
te

d
te

st
 e

rr
(%

) y

(a) Predicted
Random Skip Prim PrimSkip

5.0

5.5

6.0

6.5

7.0

Ac
tu

al
 te

st
 e

rr
(%

) y

(b) Actual

Figure 10: Distribution of (a) NB301 predicted and
(b) actual test error of archs sampled. Random: ran-
dom archs without constraints; Skip: archs with resid-
ual links and otherwise randomly sampled; Prim:
random archs using {s3, s5, skip} only. Prim-
Skip: archs satisfying both Skip and Prim.

Generating SoTA architectures We showed
that many NAS architectures share similar traits,
but a stronger test is whether these simple patterns
alone are sufficient for good performance. We con-
struct architectures simply by random sampling,
but with 2 constraints, without additional search:
1. Normals cell must contain residual link: for ar-

chitecture generation, we simply manually wire
2 skips from both inputs to intermediate node
0 (Skip constraint);

2. The other operations are selected from {s3,
s5} only, with all other primitives removed
(Prim constraint).

While it takes a thorough analysis to study the pat-
terns, the constraints which encode our findings
themselves are simple, human-interpretable and moderate (note that only Skip is a “hard” constraint
specifying exact wiring; Prim simply constrains sampling to a smaller subspace). We then sample 50
architectures within both constraints with the same rule for both normal and reduce cells and report
their predicted test errors in Fig 10(a). To ensure that we are not biased by the NB301 surrogate, we
actually train 30 of the 50 architectures from scratch (protocols specified in App. B.2) and report
results in Fig 10(b). To verify the relative importance of each constraint, we also sample the same
number of architectures with no constraints or with either constraint activated. We note that both
constraints effectively narrow the spread of both predicted and actual test errors, with almost any
architecture in the PrimSkip group performing similarly to the SoTA – only <1% of the training
set of NB301 perform better than the mean predicted test error of the PrimSkip group (5.24%) in
Fig 10(a), while only 5% perform better than the worst (5.46%). Apart from the two constraints,
the architectures produced are in fact rather varied otherwise in terms of metrics like depth/width
and exact wiring (see App. E) – this shows that the two moderate constraints already determine the
performance to a great extent, potentially eclipsing other factors previously believed to influence
performance. We believe that it might even be possible to fully construct architectures manually from
the identified patterns to achieve better results, but the main purpose of this experiment is to show
that we may narrowly constrain performance to a very competitive range using very few rules without
exactly specifying the cells, instead of aiming for the absolute best architecture in an already noisy
search space. Lastly, we analyse NB201 space similarly in App. D and very similar findings hold.

Large architectures We have so far followed the standard NB301 training protocol featuring
smalled architectures trained with fewer (100) epochs, generalisation performance on which does
not necessarily always transfer to larger architectures (Yang et al., 2020a; Shu et al., 2020). Since
the computational cost is much larger, here we first evaluate on 2 randomly selected PrimSkip
architectures from Sec 4, but stack it into a larger architectures and train longer to make the results
comparable those reported the literature. To ensure that the results are completely comparable, on
CIFAR-10 experiments we do not simply take the baseline results from the original papers; instead,

7

Under review as a conference paper at ICLR 2022

Table 2: Test error of the state-of-the-art architectures on CIFAR-10 and IMAGENET (mobile setting).
(a) CIFAR-10. All baselines are re-evaluated using the procedure in
App. B.2) to ensure the results are completely comparable.

Architecture Top-1 test error (%) Edit
Original Edited dist.

DARTSv2 (Liu et al., 2019) 2.44 2.36(−0.08) 1
BANANAS (White et al., 2021) 2.39 2.42(+0.03) 1
DrNAS (Chen et al., 2021b) 2.27 2.31(+0.04) 1
GAEA (Li et al., 2021) 2.31 2.18(−0.13) 0
NAS-BOWL (Ru et al., 2021) 2.33 2.23(−0.10) 2
NoisyDARTS (Chu et al., 2020) 2.57 2.42(−0.15) 4
DARTS_PT (Wang et al., 2021c) 2.33 2.35(+0.02) 2
SDARTS_PT (Wang et al., 2021c) 2.46 2.36(−0.10) 4
SGAS_PT (Wang et al., 2021c) 2.92 2.48(−0.44) 3

PrimSkip Arch 1 2.27 - -
PrimSkip Arch 2 2.29 - -

(b) glsImageNet. All baselines are taken from the original papers as
re-evaluation is too costly in this case.

Architecture Test error (%) Params
Top-1 Top-5 (M)

DARTSv2 (Liu et al., 2019) 26.7 8.7 4.7
SNAS (Xie et al., 2019b) 27.3 9.2 4.3
GDAS (Dong & Yang, 2020) 26.0 8.5 5.3
DrNAS† (Chen et al., 2021b) 24.2 7.3 5.2
GAEA(C10) (Li et al., 2021) 24.3 7.3 5.3
GAEA(ImageNet)† (Li et al., 2021) 24.0 7.3 5.6
PDARTS (Chen et al., 2019) 24.4 7.4 4.9
PC-DARTS(C10) (Xu et al., 2020) 25.1 7.8 5.3
PC-DARTS(ImageNet)† (Xu et al., 2020) 24.2 7.3 5.3

PrimSkip Arch 1 24.4 7.4 5.7
PrimSkip Arch 2 23.9 7.0 5.7
†: searched directly on ImageNet.

we obtain the cell specifications provided in some of the most recent papers (see App. E for detailed
specifications), re-train each from scratch using a standardised setup (See App. B.3 for details),
and show the performance comparison in the “Original” column of Table 2a: Recognising that
the performance on CIFAR-10 is usually quite noisy (existing papers usually report noise standard
deviation of around 0.05− 0.1%), the sampled architectures perform at least on par with the SoTA
architectures produced from much more sophisticated search algorithms.
To further verify our findings, we conduct an additional experiment where we edit the SoTA ar-
chitectures minimally to make them comply to the PrimSkip constraints: whenever a cell contains
primitives outside {s3, s5, skip}, we replace them with ones that are in this set, and we always
set the reduce cell to be identical to the normal cell (see App. E for detailed specifications of the
architectures). We also create residual links if they are not present, and replace non-residual skips
with s3/s5 between operations, if any; we do not alter any wiring. Most architectures are already
close to conforming to the constraints, so the number of edits required is often small (the edit distance
between the editted and original architectures is under “Edit dist.” column in Table 2a); in fact, the
GAEA cell is already fully-compliant and we only replace its reduce cell with the normal cell). We
show the test errors of the edited architectures along with the percentage change from the original
ones in “Edited” column of Table 2a: the edits result in an improvement in test error up to 0.44%
in 6/9 cases, and even where test errors increase after the edits, the differences are very small and
probably within margins of error. This shows that at least for the architectures we consider, the SoTA
architectures can all be consistently explained by the same simple pattern identified. We finally train
the same sampled PrimSkip architecture ImageNet using a training protocol strictly comparable to the
literature (App. B.3) and the results are shown in Table 2b. Accounting for the estimated evaluation
noise on ImageNet2, it is fair to say that both PrimSkip architectures perform on par to, if not better
than, the SoTA, even though some of the SoTA architectures are searched on ImageNet directly, an
extremely expensive procedure in terms of computational costs.

Discussions We find that the despite the different search strategies and the belief that the search
space contains diverse solutions, the key features of many top architectures in the DARTS (and
NB201) space are largely similar to each other, and may collectively be viewed as variants to classical
architectures. This suggests a gap between the apparent and effective diversity of the search space,
potentially explaining the discrepancy between the huge search space and the small performance
variability. We also show highly complicated SoTA methods fail to significantly outperform random
search with few mild constraints, further demonstrating that it is these simple traits, instead of other
complexities, that drives the performance.
As a result, we argue that we should rethink the roles the existing cell-based search spaces play as
the key (and sometimes the only) venue on which the search methods develop and iterate. While
it is somewhat reassuring we find elements which are known to perform well, this should serve no
more than a toy experiment and over-relying on such search spaces could impede progress in NAS:
the fact that many algorithms find similar architectures in disguise makes it difficult to conclusively
differentiate amongst them. Also, while we do not rule out the possibility that there could be other
good-performing architectures not represented by the patterns identified, it is doubtful whether
the search space, while nominally diverse, truly contains any novel good-performing architectures
beyond what we already know. Consequently, spending vast resources into such a search space seems
contradictory to the ambitious goal of NAS to discover novel and diverse architectures beyond manual
design.

2Most NAS papers do not run ImageNet experiments with multiple seeds, but comparable works (Xie et al.,
2019a; Goyal et al., 2017) estimate a noise standard deviation of 0.2− 0.5% in Top-1 error.

8

Under review as a conference paper at ICLR 2022

5 RELATED WORKS

There are multiple previous works that also aim to explain and/or find patterns in cell-based NAS: Shu
et al. (2020) find search methods in the DARTS space to favour shallow and wide cells but conclude
they do not necessarily generalise better, and hence the pattern does not explain performances. Ru
et al. (2021) also use subgraphs to explain performances, but only consider first-order Weisfeiler-
Lehman (WL) features which could be overly restrictive (note that most subgraphs we find in Fig 7 are
not limited to 1-WL features) and specific to the search method proposed. Zela et al. (2020) account
for failure mode of differentiable NAS, but ultimately focus on a family of related search methods
while the current work is search method-agnostic. On a search space level, a closely related work is
Yang et al. (2020a), findings from whom we use extensively, but they mainly identify problems, not
explanations; Xie et al. (2019a); Ru et al. (2020) and You et al. (2020) relate performances with graph
theoric properties of networks, but it is unclear to what extent do these apply to standard cell-based
NAS as the search spaces considered are significantly different (e.g. they typically feature much
fewer primitive choices). Lastly, in constructing NAS benchmarks, Dong & Yang (2020); Siems
et al. (2020); Ying et al. (2019a) have also provided various insights and patterns, but current work
advances such understanding further via a comprehensive and experimentally validated investigation.

6 SUGGESTIONS FOR FUTURE NAS PRACTICES

We believe this work to be useful as an investigation of the existing cell-based NAS as well as to
inspire future ones, not only on conventional CNNs but also emerging architectures like transformers.
On a search space level, we find a mismatch between the nominal and the effective complexity:
complexities are as useful as they contribute to performance and novelty, and thus in a hypothetical
new space, we should aim to be aware of these non-functional complexities, and not simply augment
the number of primitives available and/or expanding the sizes of the cells. However, identifying such
redundancies in a new search space is very challenging a-priori, but fortunately the analysis tools used
in this paper are model-agnostic, and thus could be applied to any new search space candidates. Also,
while we use the NB301 predictors which train a huge number of architectures to ensure the findings
are as representative as possible, we show in App. F that combined with an appropriate surrogate
regression model, we may reproduce most findings by training as few as 200 architectures (or 0.4%
of the full training set); this suggests that the techniques used could also be cost-effective tools to
inspect new search spaces. Another under-explored possibility would be iterative search-and-prune at
the search space level, as opposed to the architecture level which is relatively well studied. Using the
tools and metrics we introduced to incrementally grow the search space from simpler structures and
prune out those redundant ones in a principled manner.
We believe that a possible reason for many of the current problems is the over-engineered cells and
the under-engineered macro-connections. While the cells are more complex than necessary, the
connections between them are currently manually fixed in a way that is heavily borrowed from the
classical networks. For instance, the manually inserted pooling layers between cells might have
rendered pooling within cells redundant or even harmful, and by adopting macro structures inspired
by the manually designed networks, we might also be creating biases that implicitly encourage
search methods to discover patterns similar to them. A possible way forward could therefore be
simplifying the cells but incorporating variations of connections between the different cells in the
search space. The fact that performances depend on a small number of operations suggests that cells
may be simplified without sacrificing performance and expressiveness. With a simplified cell, more
attention could be shifted to searching for the connections between cells. Such a search space could
offer a more expressive range of possible architectures and potentially allow truly novel architectures
and/or patterns to be discovered independently from manual designed networks.

7 CONCLUSION

We present a post-hoc analysis of architectures in the most popular cell-based search spaces. We find a
mismatch between the huge nominal complexity and the effective diversity, as many good-performing
architectures, despite discovered by very different search methods, share similar traits. We also
find many of the design options almost universally adopted to be redundant, as performances of the
architectures disproportionately depend on certain operation and connection patterns while the rest
are often irrelevant. We conclude that like the rapidly iterating search methods, the search spaces also
need to evolve to match the progress of NAS and we provide suggestions based on the main findings
in the paper, the latter of which also form some of the most evident directions of future work.

9

Under review as a conference paper at ICLR 2022

REFERENCES

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization.
Advances in neural information processing systems, 24, 2011.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four gpu hours: A
theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021a.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural
architecture search. International Conference on Learning Representations (ICLR), 2021b.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging the depth
gap between search and evaluation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1294–1303, 2019.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Xiangxiang Chu, Bo Zhang, and Xudong Li. Noisy differentiable architecture search. arXiv preprint
arXiv:2005.03566, 2020.

Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan. {DARTS}-: Robustly step-
ping out of performance collapse without indicators. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=KLH36ELmwIB.

Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, and Peter AN Bosman. Local search is a remarkably
strong baseline for neural architecture search. In International Conference on Evolutionary Multi-Criterion
Optimization, pp. 465–479. Springer, 2021.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search.
International Conference on Learning Representations (ICLR), 2020.

Łukasz Dudziak, Thomas Chau, Mohamed S Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D Lane.
Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing Systems (NeurIPS) 33,
2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The Journal of
Machine Learning Research, 20(1):1997–2017, 2019.

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful: Learning a
variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res.,
20(177):1–81, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Andrew Hundt, Varun Jain, and Gregory D Hager. sharpdarts: Faster and more accurate differentiable architecture
search. arXiv preprint arXiv:1903.09900, 2019.

Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph mining algorithms. The
Knowledge Engineering Review, 28(1):75–105, 2013.

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to generate
graphs from datasets. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=rkQuFUmUOg3.

Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware gradient algorithms
for neural architecture search. International Conference on Learning Representations (ICLR), 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. International
Conference on Learning Representations (ICLR), 2019.

Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised neural architecture
search. arXiv preprint arXiv:2002.10389, 2020.

Christoph Molnar. Interpretable Machine Learning. 2019. https://christophm.github.io/
interpretable-ml-book/.

10

https://openreview.net/forum?id=KLH36ELmwIB
https://openreview.net/forum?id=rkQuFUmUOg3
https://openreview.net/forum?id=rkQuFUmUOg3
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Under review as a conference paper at ICLR 2022

Niv Nayman, Yonathan Aflalo, Asaf Noy, and Lihi Zelnik-Manor. Hardcore-nas: Hard constrained differentiable
neural architecture search. International Conference on Machine Learning, 2021.

Vu Nguyen, Tam Le, Makoto Yamada, and Michael A Osborne. Optimal transport kernels for sequential and
parallel neural architecture search. In International Conference on Machine Learning, pp. 8084–8095. PMLR,
2021.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In International Conference on Machine Learning, pp. 4095–4104. PMLR, 2018.

Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential evolution: a practical approach to global
optimization. Springer Science & Business Media, 2006.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
architecture search. In Proceedings of the aaai conference on artificial intelligence, volume 33, pp. 4780–4789,
2019.

Binxin Ru, Pedro Esperanca, and Fabio Carlucci. Neural architecture generator optimization. Advances in
Neural Information Processing Systems (NeurIPS) 33, 2020.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture search via
bayesian optimisation with weisfeiler-lehman kernels. International Conference on Learning Representations
(ICLR), 2021.

Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T Kwok, and Tong Zhang. Bridging the gap between
sample-based and one-shot neural architecture search with bonas. Advances in Neural Information Processing
Systems, 2020.

Yao Shu, Wei Wang, and Shaofeng Cai. Understanding architectures learnt by cell-based neural architecture
search. International Conference on Learning Representations (ICLR), 2020.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter. Nas-bench-301 and
the case for surrogate benchmarks for neural architecture search. arXiv preprint arXiv:2008.09777, 2020.

Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Locally free weight
sharing for network width search. International Conference on Learning Representations, 2021a.

Xiu Su, Shan You, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. K-shot nas:
Learnable weight-sharing for nas with k-shot supernets. International Conference on Machine Learning,
2021b.

Dilin Wang, Chengyue Gong, Meng Li, Qiang Liu, and Vikas Chandra. Alphanet: Improved training of supernet
with alpha-divergence. International Conference on Machine Learning, 2021a.

Jiaxing Wang, Haoli Bai, Jiaxiang Wu, Xupeng Shi, Junzhou Huang, Irwin King, Michael Lyu, and Jian Cheng.
Revisiting parameter sharing for automatic neural channel number search. Advances in Neural Information
Processing Systems, 33, 2020.

Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. Sample-efficient neural architecture
search by learning action space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021b.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking architecture
selection in differentiable nas. International Conference on Learning Representations (ICLR), 2021c.

Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural architecture
search. Advances in Neural Information Processing Systems, 2020a.

Colin White, Sam Nolen, and Yash Savani. Local search is state of the art for nas benchmarks. arXiv preprint
arXiv:2005.02960, 2020b.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural architectures for
neural architecture search. AAAI Conference on Artificial Intelligence, 1(2), 2021.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural networks
for image recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1284–1293, 2019a.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. International
Conference on Learning Representations (ICLR), 2019b.

11

Under review as a conference paper at ICLR 2022

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc-darts:
Partial channel connections for memory-efficient architecture search. International Conference on Learning
Representations (ICLR), 2020.

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture representation learning
help neural architecture search? Advances in Neural Information Processing Systems, 33, 2020.

Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In 2002 IEEE International
Conference on Data Mining, 2002. Proceedings., pp. 721–724. IEEE, 2002.

Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustratingly hard. International
Conference on Learning Representations (ICLR), 2020a.

Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, and Zhouchen Lin. Ista-nas: Efficient and consistent
neural architecture search by sparse coding. Advances in Neural Information Processing Systems (NeurIPS)
33, 2020b.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-bench-101:
Towards reproducible neural architecture search. In International Conference on Machine Learning, pp.
7105–7114. PMLR, 2019a.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnn explainer: A tool for post-hoc
explanation of graph neural networks. arXiv preprint arXiv:1903.03894, 2019b.

Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural networks. In International
Conference on Machine Learning, pp. 10881–10891. PMLR, 2020.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter. Understanding
and robustifying differentiable architecture search. International Conference on Learning Representations
(ICLR), 2020.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Zongyuan Ge, and Steven Su. Differentiable neural
architecture search in equivalent space with exploration enhancement. Advances in Neural Information
Processing Systems, 33, 2020.

Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-shot neural architecture
search. In International Conference on Machine Learning, pp. 12707–12718. PMLR, 2021.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H. Hoi. Theory-inspired path-regularized differential
network architecture search. Advances in Neural Information Processing Systems, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable
image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
8697–8710, 2018.

12

Under review as a conference paper at ICLR 2022

A ANALYSIS ON WORST-PERFORMING ARCHITECTURES

Normal Reduce0

1000

2000

3000

4000

5000

Nu
m

be
r o

f o
cc

ur
re

nc
es

(a) All operations

Normal Reduce0

1000

2000

3000

4000

5000

Nu
m

be
r o

f o
cc

ur
re

nc
es

(b) Important operations

Figure 11: Distribution of (a) all and (b) important op-
erations by the primitive type of the worst-performing
cells. The gray dashed line in (a) denotes the expected
number of occurrences if the operations are uniformly
sampled in each cell.

s3 s5 d3 d5 skipmp3ap30.020

0.015

0.010

0.005

0.000

0.005

0.010

Op
er

at
io

n
im

po
rta

nc
e

(a) Normal cells

s3 s5 d3 d5 skipmp3ap30.020

0.015

0.010

0.005

0.000

0.005

0.010

Op
er

at
io

n
im

po
rta

nc
e

(b) Reduce cells

Figure 12: Box-and-whisker plots showing the distri-
bution of the operations importance in (a) normal and
(b) reduce cells by primitive types. The important oper-
ations by the definition of the paper are shown outside
the gray shaded area.

We also conduct operation-level analysis on the worst 5% performing architectures of the NB301
training data and the results are shown in Figs 11 and 12, and we find that both pooling operators
almost never contribute to good performing architectures as shown in Sec 3, but they actively hurt
performance in the poor architectures: from Fig 11, it is clear that the worst performing cells are
both characterised by large number of pooling operators (Fig 11(a) and a large number of important
pooling operators actively degrading performance: this is unsurprising and also pointed out in the
analysis in the original NB301 paper (Siems et al., 2020) as cells with a large number of pooling
operations aggressively cause loss of information. Other than that, both dilated convolution operations
remain rather neutral and the separable convolutions remain positive in operation importance even
in poorly-performing architectures. Skip connections in this case are quite negative in general but
still have a very large spread – this could be either due to a large number of skip connections in the
cell which is a known failure mode of many differentiable NAS algorithms Zela et al. (2020) or that
skip connections need to be paired with separable convolutions as shown in Fig 7 for positive effects,
which is not the case in these poor architectures where separable convolutions are underrepresented.
We also repeat the subgraph-level analysis on these architectures (Fig 13). An interesting insight is
that the poorly performing subgraphs are much more “diverse” than the good ones, and the primitives
in the two groups almost never overlap: the none of positive subgraphs in 7 contains {d3, d5,
mp3, ap3}, whereas none of the negative subgraphs contains {s3, s5}. This shows that in the
present search space the primitives are somewhat “separable” and the redundant primitives {d3,
d5, mp3, ap3} may simply be discarded without affecting the resulting performances – we argue
this should not be the case in a well-designed ideal search space. In principle, every primitive should
be a building block that that potentially contribute to architectures positively at least in some cases.

mp3 mp3

mp3
input2

1

mp3 mp3

mp3
input1

2

d5

mp3
3

ap3

ap
3

ap
3

input2

4

mp3

mp3

mp3
input2

5

ap3

ap
3

ap
3

input1

6

mp3

mp3

mp3
input1

7

ap3

d5
input2

8

d3

d5
input2

9

mp3

skipinput1

10

ap3

mp3
11

d3

mp3
12

mp3

mp3
13

mp3

ap3

14

d3

d5
input1

15

Figure 13: Frequent subgraphs in the good-performing architectures ranked by ratio of supports between
the important subgraphs and the reference and properties of the discovered frequent subgraphs in the worst-
performing architectures.

13

Under review as a conference paper at ICLR 2022

B IMPLEMENTATION DETAILS

B.1 DATA

We primarily use the data from the training set of the NB301 benchmark (Siems et al., 2020),
available at the official repository at https://github.com/automl/nasbench301. To
obtain a sound performance surrogate over the entire DARTS search space, NB301 trains more
than 50,000 architectures using the protocol listed in App B.2, and use the architectures and their
corresponding test performance on CIFAR-10 as inputs and labels to train a number of surrogate
models as performance predictors, including GIN, XGBoost and LGBoost (in this paper, we always
use the XGBoost surrogate as it is shown to be the best on balance according to Siems et al.
(2020)). The architectures are produced from a number of technically diverse methods representing
almost all mainstream genres of cell-based NAS like gradient-based methods, Bayesian optimisation,
reinforcement learning and simpler methods like local search and random search: DARTS (Liu et al.,
2019), DRNAS (Chen et al., 2021b), GDAS (Dong & Yang, 2020), reinforcement learning (RL) (Zoph
& Le, 2016), differential evolution (DE) (Price et al., 2006), PC_DARTS (Xu et al., 2020), Tree parzen
estimator (TPE) (Bergstra et al., 2011), local search (LS) (Den Ottelander et al., 2021; White et al.,
2020b) and regularised evolution (RE) (Real et al., 2019).

B.2 TRAINING PROTOCOLS ON DARTS ARCHITECTURES

We exactly follow the NB301 protocols for all experiments involving architecture training (except for
the larger architectures on CIFAR-10 and ImageNet, which we outline below at App B.3). Specifically,
we train architectures obtained from stacking the cells 8 times (8-layer architectures) with initial
channel count of 32 on the CIFAR-10 dataset using the standard train/val split, and we use the
hyperparameters below on a single NVIDIA Tesla V100 GPU:

Optimizer: SGD
Initial learning rate: 0.025
Final learning rate: 1e-8
Learning rate schedule: cosine annealing
Epochs: 100
Weight decay: 3e-4
Momentum: 0.9
Auxiliary tower: True
Auxliary weight: 0.4
Cutout: True
Cutout length: 16
Drop path probability: 0.2
Gradient clip: 5
Batch size: 96
Mixup: True
Mixup alpha: 0.2

B.3 EVALUATION PROTOCOLS ON DARTS ARCHITECTURES

CIFAR-10 For the evaluation, we use larger architectures obtained from stacking the cells 20 times
(20-layer architectures) with an initial channel count of 36 on the CIFAR-10 dataset. The other
hyperparameters (mostly consistent with those used in App B.2 except for the number of epochs
trained) used are:

Optimizer: SGD
Initial learning rate: 0.025
Final learning rate: 1e-8
Learning rate schedule: cosine annealing
Epochs: 600
Weight decay: 3e-4
Momentum: 0.9
Auxiliary tower: True
Auxliary weight: 0.4
Cutout: True
Cutout length: 16

14

https://github.com/automl/nasbench301

Under review as a conference paper at ICLR 2022

Drop path probability: 0.2
Gradient clip: 5
Batch size: 96
Mixup: True
Mixup alpha: 0.2

This protocol is identical to the original DARTS protocol (Liu et al., 2019), with the only exception
that to be consistent with the NB301 protocol, we also incorporate the Mixup regularisation (Zhang
et al., 2017) during evaluation. This accounts for the fact that the accuracy reported in this paper is
generally better than those reported in the literature. However, as mentioned in the main text, we
re-train every architectures from the scratch, including the baselines, using the identical protocol listed
above, instead of simply taking the numbers from the original papers. As a result, no architecture has
been given unfair advantage because of the more effective regularisation used in this paper. We also
conduct all experiments on a single NVIDIA Tesla V100 GPU.

ImageNet On ImageNet, we use a protocol that is identical to Chen et al. (2021b). It is also almost
identical to those used in Xu et al. (2020); Chen et al. (2019); Liu et al. (2019) except for batch
sizes (which depend on the availability of hardware; larger batch size is only available for a parallel
many-GPU setup) and the corresponding linear scaling in learning rates. Specifically, we form
14-layer architectures with an initial channel count of 48 using 8× NVIDIA Tesla V100 GPUs. Note
that since we are unable to re-evaluate all the baselines using a standardised training protocols in this
case due to the extreme computational cost, we use a protocol that strictly adheres to the existing
works with the additional Mixup regularisation in CIFAR-10 disabled in the ImageNet experiments
to ensure the comparability of the results. The other hyperparameters are as followed:

Optimizer: SGD
Initial learning rate: 0.5
Learning rate schedule: linear annealing
Epochs: 250
Weight decay: 3e-5
Momentum: 0.9
Auxiliary Tower: True
Auxliary weight: 0.4
Cutout: True
Cutout length: 16
Drop path probability: 0
Gradient clip: 5
Label smoothing: 0.1
Mixup: False
Batch size: 768

C LIST OF REFERENCED PAPERS

We present the details covered in our preliminary survey on the NAS search methods papers published
in top machine learning conferences during the past year in Table 3.

15

Under review as a conference paper at ICLR 2022

Table 3: A list of NAS methods papers (i.e. excluding, e.g. review or benchmark papers) published in the past
year in top machine learning conferences. Cells-based means the work demonstrates at least one part of the
major results in the DARTS cell-based search space and/or highly related ones (such as the various NAS-Benches
and/or those otherwise highly resemble DARTS). Cells-only means the works only demonstrate the results in
aforementioned search space(s). Whenever a paper is not cell-based or cells-only, other spaces evaluated shows
the alternative spaces the papers report results on. The list is potentially incomplete, as we only select papers
that explicitly mention NAS in the title and/or the abstract.

Venue Name Reference Cells-based Cells-only Other spaces evaluated
NeurIPS 2020 BRP-NAS Dudziak et al. (2020) X X

NAGO Ru et al. (2020) NAGO space
ISTA-NAS Yang et al. (2020b) X X
arch2vec Yan et al. (2020) X X
- White et al. (2020a) X X
PR-DARTS Zhou et al. (2020) X X
E2NAS Zhang et al. (2020) X X
APS Wang et al. (2020) Channel/width search
SemiNAS Luo et al. (2020) X MobileNet space
BONAS Shi et al. (2020) X X

ICLR 2021 NAS-BOWL Ru et al. (2021) X X
DrNAS Chen et al. (2021b) X X
GAEA Li et al. (2021) X X
DARTS- Chu et al. (2021) X X
TE-NAS Chen et al. (2021a) X X
DARTS_PT, etc Wang et al. (2021c) X MobileNet space
MetaD2A Lee et al. (2021) X MobileNet space
CafeNet Su et al. (2021a) Channel/width search

ICML 2021 BO-TW/kDPP Nguyen et al. (2021) X X
AlphaNet Wang et al. (2021a) MobileNet space
CATE Wang et al. (2021a) X X
HardCoRe-NAS Nayman et al. (2021) MobileNet space
K-Shot NAS Su et al. (2021b) X MobileNet space
Few-shot NAS Zhao et al. (2021) X ProxylessNAS space, RNN, AutoGAN

Total 24 19 (79%) 14 (58 %)

D ANALYSIS ON NAS-BENCH-201

0 1

2

3
conv_3x3 (c3)

conv_1x1 (c1)

skip_connect (skip)

avg_pool_3x3 (ap3)

Figure 14: The NB201 (Dong & Yang, 2020) cell, which
is highly similar to the DARTS space but much simpler.
All 6 locations (denoted by gray dashed arrows) are
available for search, and each is filled by one out of the
four candidate primitives (or None, which disables the
edge).

Fig 14 shows the NB201 search space, a popular
NAS benchmark commonly used that is highly
similar to the DARTS cell, but 1) only one cell
(instead of two) is searched, 2) each cell is con-
nected to its immediate preceding layer only,
and 3) is with a reduced set of primitives. Also,
unlike the DARTS cell, all edges in the NB201
cell are enabled.
We also conduct a brief analysis in a similar
manner to the main text on top 5% performing
architectures on NB201 dataset, and we show
the operation importance distribution of each
primitive in Fig 15. We observe that due to
the smaller cell size and the primitive set, the
operations in a NB201 cell is typically more
important and the only redundant operations is ap3. We hypothesise that the reason is similar to the
DARTS search space as the manually specified macro connection between the cells already include
pooling operations, rendering them unncessary within the cells.
The second experiment to conduct is verifying whether in the NB201 search space the good performing
cells are also characterised by the patterns we identified in Sec 4. To do so, we adapt the Skip and
Prim constraints in the NB201 space:

1. Skip constraint: in the NB201 search space, the only way to form a residual connection is to
place skip on edge 0→ 3 (with reference to Fig 14.

2. Prim constraint: apart from the manually specified edge, all other operations are sampled
from the reduced primitive set {c1, c3} consisting of convolutions only.

Similar to our procedure in Sec 4, we sample 50 architectures within each group (no constraint, either
constraint and both constraints), and we show their test performance in Fig 16. It is also worth noting

16

Under review as a conference paper at ICLR 2022

c1 c3 skip ap30.01

0.00

0.01

0.02

0.03

0.04

0.05

Op
er

at
io

n
im

po
rta

nc
e

(a) CIFAR-10

c1 c3 skip ap3

0.02

0.00

0.02

0.04

0.06

Op
er

at
io

n
im

po
rta

nc
e

(b) CIFAR100
c1 c3 skip ap3

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Op
er

at
io

n
im

po
rta

nc
e

(c) ImageNet16-120

Figure 15: Box-and-whisker plots showing the distribution of the operation distribution in NB201 benchmark
on (a) CIFAR-10, (b) CIFAR-100 and (c) ImageNet16-120 datasets. The gray shaded areas denote the noise
standard deviation which differs in each dataset.

that the ground-truth optimum in each dataset is known in NB201 and is accordingly marked in Fig
16. Differing from the observations in DARTS search space results, in this case Skip constraint alone
does not impact the performance significantly, but again the PrimSkip group with both constraints
activated perform in a range very close to the optimum: in fact, the optimal architectures in all 3
datasets, while different from each other, all belong to the PrimSkip group and are found by random
sampling with fewer than 50 samples. This again confirms that our findings in the main text similarly
generalise to NB201 space.

Random Skip PrimPrimSkip
0.05

0.10

0.15

0.20

0.25

Te
st

 e
rro

r (
%

) y
 (C

IF
AR

-1
0)

(a) CIFAR-10

Random Skip PrimPrimSkip
0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 e
rro

r (
%

) y
 (C

IF
AR

-1
00

)

(b) CIFAR100

Random Skip PrimPrimSkip

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 e
rro

r (
%

) y
 (I

m
ag

eN
et

16
-1

20
)

(c) ImageNet16-120

Figure 16: Distribution of the test errors on (a) CIFAR-10, (b) CIFAR-100 and (c) ImageNet of NB201
architectures. Note that since NB201 is a tabular benchmark that exhaustively trains and evaluates all the
architectures within its search space, all test errors reported here are actual, not predicted.

E ARCHITECTURE SPECIFICATIONS

In this section, we show the specifications of (a.k.a genotypes) the different architectures in the
DARTS search space.

E.1 ORIGINAL AND EDITED GENOTYPES FROM BASELINE PAPERS

Here we show the genotypes original and edited (corresponding to the results in the “Edited” column
in Table 2a) architectures (Fig. 17 – 24). In all figures, “Normal” and “Reduce” denote the normal
and reduce cells of the Original architectures where “Edited” denote the normal and reduce cells of
the edited architectures (note that the edited architectures always have identical normal and reduce
cells).

c_{k-2}

0

skip_connect

1

sep_conv_5x5

2

skip_connect

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

skip_connect

c_{k}

(a) Normal

c_{k-2}

0

max_pool_3x3 1
max_pool_3x3

c_{k-1} sep_conv_3x3

none

3sep_conv_3x3

2dil_conv_3x3 c_{k}

sep_conv_5x5

sep_conv_5x5

(b) Reduce

c_{k-2}

0

skip_connect

1

sep_conv_5x5

2

skip_connect

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

sep_conv_3x3

c_{k}

(c) Edited

Figure 17: Genotypes of BANANAS architecture (White et al., 2021)

17

Under review as a conference paper at ICLR 2022

c_{k-2}

0

sep_conv_3x3

2skip_connect

c_{k-1} sep_conv_5x5
1

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3sep_conv_3x3

c_{k}

dil_conv_5x5

(a) Normal

c_{k-2}
0

max_pool_3x3

c_{k-1}

sep_conv_5x5

1sep_conv_5x5

2
sep_conv_5x5

3
sep_conv_5x5

dil_conv_5x5

c_{k}dil_conv_5x5

skip_connect

(b) Reduce

c_{k-2}

0

sep_conv_3x3

2skip_connect

c_{k-1} sep_conv_5x5
1

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3sep_conv_3x3

c_{k}

sep_conv_5x5

(c) Edited

Figure 18: Genotypes of DRNAS architecture (Chen et al., 2021b)

c_{k-2}
0

skip_connect

2sep_conv_3x3

c_{k-1}

skip_connect

1
sep_conv_3x3 sep_conv_3x3

sep_conv_5x5

3sep_conv_5x5
c_{k}sep_conv_5x5

(a) Normal

c_{k-2} 0sep_conv_3x3

c_{k-1}

max_pool_3x3

1sep_conv_5x5
2sep_conv_3x3

3sep_conv_5x5

dil_conv_5x5

max_pool_3x3
c_{k}sep_conv_3x3

(b) Reduce

c_{k-2}
0

skip_connect

2sep_conv_3x3

c_{k-1}

skip_connect

1
sep_conv_3x3 sep_conv_3x3

sep_conv_5x5

3sep_conv_5x5
c_{k}sep_conv_5x5

(c) Edited

Figure 19: Genotypes of GAEA architecture (Li et al., 2021). Note that the edited genotype is identical to the
original normal genotype as it is already compliant with both Prim and Skip constraints.

c_{k-2}

0

sep_conv_3x3
1

max_pool_3x3

2

sep_conv_3x3

c_{k-1} skip_connect

sep_conv_3x3

sep_conv_5x5

3
sep_conv_3x3

dil_conv_5x5

c_{k}

(a) Normal

c_{k-2}

0

sep_conv_3x3
1

max_pool_3x3

2

sep_conv_3x3

c_{k-1} skip_connect

sep_conv_3x3

sep_conv_5x5

3
sep_conv_3x3

dil_conv_5x5

c_{k}

(b) Reduce

c_{k-2}

0

sep_conv_3x3
1

skip_connect

2

sep_conv_3x3

c_{k-1} skip_connect

sep_conv_3x3

sep_conv_5x5

3
sep_conv_3x3

sep_conv_5x5

c_{k}

(c) Edited

Figure 20: Genotypes of NASBOWL architecture (Ru et al., 2021).

c_{k-2}
0sep_conv_3x3

c_{k-1}
sep_conv_3x3

1
skip_connect

2sep_conv_3x3

dil_conv_3x3 c_{k}

dil_conv_3x3

3dil_conv_3x3

dil_conv_3x3

(a) Normal

c_{k-2}

0

max_pool_3x3
1max_pool_3x3

c_{k-1} dil_conv_3x3

skip_connect
2skip_connect

3skip_connect
c_{k}

skip_connect

dil_conv_5x5

(b) Reduce

c_{k-2}
0sep_conv_3x3

c_{k-1}
sep_conv_3x3

1
skip_connect

2sep_conv_3x3

sep_conv_3x3 c_{k}

sep_conv_3x3

3sep_conv_3x3

sep_conv_3x3

(c) Edited

Figure 21: Genotypes of NOISYDARTS architecture (Chu et al., 2020)

c_{k-2}
0

sep_conv_3x3

1

sep_conv_3x3

2
skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3 3
sep_conv_3x3

skip_connect

c_{k}

skip_connect

(a) Normal

c_{k-2} 0avg_pool_3x3

c_{k-1}

sep_conv_5x5

1max_pool_3x3 2
dil_conv_5x5

skip_connect 3
sep_conv_5x5

c_{k}

max_pool_3x3

skip_connect

(b) Reduce

c_{k-2}
0

sep_conv_3x3

1

sep_conv_3x3

2
skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3 3
sep_conv_3x3

sep_conv_5x5

c_{k}

sep_conv_5x5

(c) Edited

Figure 22: Genotypes of DARTS_PT architecture (Wang et al., 2021c)

c_{k-2}

0

sep_conv_3x3
1skip_connect

2sep_conv_5x5

c_{k-1}
sep_conv_3x3

3

sep_conv_3x3

avg_pool_3x3
c_{k}

skip_connect dil_conv_3x3

(a) Normal

c_{k-2}

0

dil_conv_3x3
1

avg_pool_3x3

3

avg_pool_3x3

c_{k-1}

sep_conv_5x5

2max_pool_3x3

dil_conv_3x3

dil_conv_5x5

c_{k}

dil_conv_5x5

(b) Reduce

c_{k-2}

0

skip_connect
1skip_connect

2sep_conv_5x5

c_{k-1}
sep_conv_3x3

3

sep_conv_3x3

sep_conv_3x3
c_{k}

sep_conv_3x3 sep_conv_3x3

(c) Edited

Figure 23: Genotypes of SDARTS_PT architecture (Wang et al., 2021c)

18

Under review as a conference paper at ICLR 2022

c_{k-2}

0
sep_conv_3x3

3sep_conv_3x3

c_{k-1} sep_conv_3x3 1

max_pool_3x3

2

dil_conv_3x3

sep_conv_3x3

dil_conv_5x5

sep_conv_5x5
c_{k}

(a) Normal

c_{k-2}

0

dil_conv_5x5
1

max_pool_3x3

c_{k-1}

sep_conv_3x3
2max_pool_3x3

sep_conv_5x5

sep_conv_5x5

3sep_conv_5x5

c_{k}

avg_pool_3x3

(b) Reduce

c_{k-2}

0
sep_conv_3x3

3sep_conv_3x3

c_{k-1} sep_conv_3x3 1

skip_connect

2

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5
c_{k}

(c) Edited

Figure 24: Genotypes of SGAS_PT architecture (Wang et al., 2021c)

E.2 RANDOM GENOTYPES SAMPLED IN THE PRIMSKIP GROUP

We show some examples of the genotypes generated via the constrained random sampling in the
PrimSkip group in Sec 4 in Fig 25, while the two architectures selected for the CIFAR-10/ImageNet
experiments on the larger architectures is shown in Figs 26 and 27.

c_{k-2}

0

skip_connect
1sep_conv_3x3

c_{k-1} skip_connect

sep_conv_3x3

2sep_conv_5x5
sep_conv_3x3

3sep_conv_5x5
c_{k}

sep_conv_5x5 c_{k-2}

0

skip_connect

1
sep_conv_5x5

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_5x5

sep_conv_5x5

sep_conv_3x3 c_{k}

c_{k-2}

0

skip_connect
1

sep_conv_5x5

3

sep_conv_5x5

c_{k-1} skip_connect

sep_conv_3x3

2
sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

c_{k}

c_{k-2}

0

skip_connect

1

sep_conv_3x3
3

sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_3x3

2sep_conv_3x3
sep_conv_5x5

sep_conv_3x3

c_{k}

Figure 25: Some of the randomly sampled architectures in the PrimSkip group.

c_{k-2} 0
skip_connect

1
sep_conv_5x5

2sep_conv_5x5

3
sep_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

c_{k}

(a) Normal

c_{k-2}
0skip_connect

1

sep_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

2sep_conv_5x5

3
sep_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_3x3

(b) Reduce

Figure 26: Randomly selected PrimSkip architecture 1 for the experiments on the larger architectures

19

Under review as a conference paper at ICLR 2022

Normal Reduce0
250
500
750

1000
1250
1500
1750

Nu
m

be
r o

f o
cc

ur
re

nc
es

(a) All operations

Normal Reduce0
250
500
750

1000
1250
1500
1750

Nu
m

be
r o

f o
cc

ur
re

nc
es s3

s5
d3
d5
skip
mp3
ap3

(b) Important operations

Figure 28: Distribution of (a) all and (b) important
operations by the primitive types according to the BA-
NANAS surrogate. The gray dashed line in (a) denotes
the expected number of occurrences if the operations
are uniformly sampled.

s3 s5 d3 d5 skipmp3ap30.002

0.001

0.000

0.001

0.002

0.003

0.004

Op
er

at
io

n
im

po
rta

nc
e

(a) Normal cells

s3 s5 d3 d5 skipmp3ap30.002

0.001

0.000

0.001

0.002

0.003

0.004

Op
er

at
io

n
im

po
rta

nc
e

(b) Reduce cells

Figure 29: Box plots showing the distribution of the
operations importance in (a) normal and (b) reduce cells
according to the BANANAS surrogate. The important
operations by the definition of the paper are shown
outside the gray shaded area.

c_{k-2}

0

skip_connect

2sep_conv_5x5

c_{k-1} skip_connect
1

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3sep_conv_5x5

c_{k}

sep_conv_5x5

(a) Normal

c_{k-2}
0skip_connect

1

sep_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

2sep_conv_5x5

3
sep_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_3x3

(b) Reduce

Figure 27: Randomly selected PrimSkip architecture 2 for the experiments on the larger architectures

F REPRODUCING RESULTS WITH LESS TRAINING DATA

In this section, we show that it is possible to reproduce many results in the paper using less than
0.4% of the data compared to the full set of more than 50,000 architecture-performance pairs used in
the NB301 surrogate, thereby motivating the use of the tools introduced in this paper as a generic,
cost-effective search space inspector: For the experiments conducted, we use the surrogate from
BANANAS (White et al., 2021), which combines a neural ensemble predictor with path encoding of
the architectures – it is worth noting that alternative surrogates may also be used, but it is preferable
to use a sample-efficient surrogate that is capable of finding meaningful relations in the input data
with a modest number of evaluations. Specifically, we randomly sample 200 architectures from
the search space and query their NB301 predicted performance as a proxy for the ground-truth
performance. We then compute the path encoding of each architecture and train a predictor with the
default hyperparameters from White et al. (2021).
We first verify whether the surrogate using less data is able to learn meaningful patterns by drawing
another 200 random unseen architectures in the search space and compare the predictions by the neural
ensemble predictor vs the NB301 prediction (Fig 30) and it is clear that the regression performance is
already satisfactory (with a Spearman rank coefficient of 0.77) despite using much less data.

0.92 0.94
Surrogate Pred

0.91

0.92

0.93

0.94

NB
30

1
Pr

ed

Spearman = 0.999

(a) Train

0.92 0.94
Surrogate Pred

0.91

0.92

0.93

0.94

NB
30

1
Pr

ed

Spearman = 0.77

(b) Validation

Figure 30: Regression performance of the BANANAS predictor with 200 training data vs the NB301 surrogate
with more than 50,000 training data.

We then repeat the analysis in the main text, and show the operation-level findings (Sec 3) in Figs 28
and 29 and the important subgraphs corresponding to Sec 4 in Fig 31. It is worth noting that most of

20

Under review as a conference paper at ICLR 2022

the findings are already highly similar to those in the main text, although, for example, the operation
importance distributions in Fig 29 have a larger variance due to the less certain predictions. The
main purpose of this study is to show that combined with the explanability tools used in the present
work, an appropriate performance surrogate, which is only used as a vessel towards searching in
some search methods so far, can be itself valuable. We demonstrate that it could shed insights into
the strengths and weaknesses of an arbitrary search space with a modest number of observations –
for example, during design of a new search space, we may randomly sample and evaluate a modest
number of architectures and similarly fit a surrogate. We may then use the explainability tool to
inspect the search space in a similar procedure in this section – we believe this could potentially
prevent some of the pitfalls described in the existing cell-based search spaces to recur in prospective
new ones during the design process.

ski
p

1

21

s3

2

22

skip

s31

2

23

s5

2

24

skip

s51

2

25

s3

1

26

skip s3

s51

2

2

27

skip

s3
1

2

28

ski
p

0

29

skip

s3

s3
1

2

2

210

skip

s30

2

211

skip

s3

s5
1

2

2

212

skip

s50

2

213

skip s3

s50

2

2

214

s5

0

215

Figure 31: Frequent subgraphs in the good-performing architectures ranked by ratio of supports between the
important subgraphs and the reference and properties of the discovered frequent subgraphs according to the
BANANAS surrogate. Note that the residual link + separable convolution patterns are highly similar to those
identified in Fig 7 in the main text

21

	Introduction
	Preliminaries
	Operation-level Analysis: Redundancies in search spaces
	Subgraph-level Analysis: Are we truly finding novel cells?
	Related Works
	Suggestions for Future NAS Practices
	Conclusion
	Analysis on Worst-performing Architectures
	Implementation Details
	Data
	Training protocols on DARTS architectures
	Evaluation protocols on DARTS architectures

	List of Referenced Papers
	Analysis on NAS-Bench-201
	Architecture Specifications
	Original and Edited Genotypes from Baseline Papers
	Random Genotypes sampled in the PrimSkip Group

	Reproducing Results with less training data

