
Rethinking Graph Transformers with Spectral
Attention

Anonymous Author(s)
Affiliation
Address
email

Abstract

In recent years, the Transformer architecture has proven to be very successful in1

sequence processing, but its application to other data structures, such as graphs,2

has remained limited due to the difficulty of properly defining positions. Here, we3

present the Spectral Attention Network (SAN), which uses a learned positional4

encoding (LPE) that can take advantage of the full Laplacian spectrum to learn the5

position of each node in a given graph. This LPE is then added to the node features6

of the graph and passed to a fully-connected Transformer. By leveraging the full7

spectrum of the Laplacian, our model is theoretically powerful in distinguishing8

graphs, and can better detect similar sub-structures from their resonance. Further,9

by fully connecting the graph, the Transformer does not suffer from over-squashing,10

an information bottleneck of most GNNs, and enables better modeling of physical11

phenomenons such as heat transfer and electric interaction. When tested empirically12

on a set of 4 standard datasets, our model performs on par or better than state-of-the-13

art GNNs, and outperforms any attention-based model by a wide margin, becoming14

the first fully-connected architecture to perform well on graph benchmarks.15

1 Introduction16

The prevailing strategy for graph neural networks (GNNs) has been to directly encode graph structure17

structure through a sparse message-passing process [15, 17]. In this approach, vector messages18

are iteratively passed between nodes that are connected in the graph. Multiple instantiations of19

this message-passing paradigm have been proposed, differing in the architectural details of the20

message-passing apparatus (see [17] for a review).21

However, there is a growing recognition that the message-passing paradigm has inherent limitations.22

The expressive power of message passing appears inexorably bounded by the Weisfeiler-Lehman iso-23

morphism hierarchy [27, 29, 38]. Message-passing GNNs are known to suffer from pathologies, such24

as oversmoothing, due to their repeated aggregation of local information [17], and over-squashing,25

due to the exponential blow-up in computation paths as the model depth increases [1].26

As a result, there is a growing interest in deep learning techniques that encode graph structure as a soft27

inductive bias, rather than as a hard-coded aspect of message passing [12, 22]. A central issue with28

message-passing paradigm is that input graph structure is encoded by restricting the structure of the29

model’s computation graph, inherently limiting its flexibility. This reminds us of how early recurrent30

neural networks (RNNs) encoded sequential structure via their computation graph—a strategy that31

leads to well-known pathologies such as the inability to model long-range dependencies [18].32

There is a growing trend across deep learning towards more flexible architectures, which avoid strict33

and structural inductive biases. Most notably, the exceptionally successful Transformer architecture34

removes any structural inductive bias by encoding the structure via soft inductive biases, such as35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

positional encodings [35]. In the context of GNNs, the self-attention mechanism of a Transformer36

can be viewed as passing messages between all nodes, regardless of the input graph connectivity.37

Prior work has proposed to use attention in GNNs in different ways. First, the GAT model [36]38

proposed local attention on pairs of nodes that allows a learnable convolutional kernel. The GTN39

work [41] has improved on the GAT for node and link predictions while keeping a similar architecture.40

More recently, the GT model [12] was proposed as a generalization of Transformers to graphs, where41

they experimented with sparse and full graph attention while providing low-frequency eigenvectors42

of the Laplacian as positional encodings.43

In this work, we offer a principled investigation of how Transformer architectures can be applied44

in graph representation learning. Our primary contribution is the development of novel and45

powerful learnable positional encoding methods, which are rooted in spectral graph theory. Our46

positional encoding technique — and the resulting spectral attention network (SAN) architecture —47

addresses key theoretical limitations in prior graph Transformer work [12] and provably exceeds the48

expressive power of standard message-passing GNNs. We show that full Transformer-style attention49

provides consistent empirical gains compared to an equivalent sparse message-passing model, and50

we demonstrate that our SAN architecture is competitive with or exceeding the state-of-the-art on51

several well-known graph benchmarks. An overview of the entire method is presented in Figure 1,52

with a link to the anonymous code here: https://anonymous.4open.science/r/SAN-5C8C.53

Node features

: Adjacency matrix

: Laplacian matrix

: number of nodes

: number of edges.

: Number of input
node features

: Number of input edge
features

: Computa�on
complexity

(a)

Pre-computed steps Learned posi�onal encoding (LPE) steps

max0-max
Node colormap

Input graph

The normalized eigenvectors
of are computed and

sorted such that has the
lowest eigenvalue and
has the -th lowest.

The complexity is .

(b)
Compute the first

eigenvectors
(c)

Generate node-wise
eigenvector PE

: The -th lowest eigenvalue

: The normalized
eigenvector associated to

: The -th row of

For each node , generate an
ini�al posi�onal encoding (PE)
using the -first and .

If a graph has less than
nodes, add a masked padding.

(d)
Generate node-wise
embedding

For each node , generate a
learned posi�onal embedding
(LPE) of size .

A linear layer is applied,
followed by a mul�-layer
Transformer encoder with
self-a�en�on on the
sequence length of size .

Seq
u

en
ce len

gth

(e) Pool the LPE

Use a sum or mean pooling on
the dimension of size of the
node-wise embedding.

The result is the LPE matrix,
where each line represents
the learned posi�onal
encoding of the -th node.

LPE
Number of features

+

Main Transformer steps

Graph

1

2

⋮⋮ ⋮

Edge features

1

2

3

⋮⋮ ⋮

(f)
Fully connect the

graph
An edge is added to all pairs
of disconnected nodes and
given its own embedding.

The size of the edge embed-
ding dic�onary increases by
1, and the number of edges
becomes .

Add an MLP or linear layer
for both the node and edge
features.

(g)
Input layers for the

feature

⋮⋮ ⋮

Concatenate the node
features from the MLP to
those from the LPE.

(h)
Concatenate node

features
A�en�on between all pairs of
nodes features and the edge
between them. Different
linear projec�ons are
used to compute a�en�on for
real edges and added edges.

(i)
Apply the main

transformer

OutputPredic�on
layer

MLP

MLP

Transformer
encoders

on the dimension of
size

𝑗

𝝓𝑚−1,𝑗𝜆𝑚−1

𝝓0,𝑗𝜆0

𝑗

Linear Transformer

: hidden dimension

Figure 1: The proposed SAN model with the node LPE, a generalization of Transformers to graphs.

2 Theoretical Motivations54

There can be a significant loss in structural information if naively generalizing Transformers to graphs.55

To preserve this information as well as local connectivity, previous studies [36, 12] have proposed to56

use the eigenfunctions of their Laplacian as positional encodings. Taking this idea further by using57

the full expressivity of eigenfunctions as positional encodings, we can propose a principled way58

of understanding graph structures using their spectra. The advantages of our methods compared to59

previous studies [36, 12] are shown in Table 1.60

2

https://anonymous.4open.science/r/SAN-5C8C

Table 1: Comparison of the properties of different graph Transformer models.

MODELS GAT [36] GT sparse [12] GT full [12] SAN (Node LPE)
Preserves local structure in attention 3 3 7 3
Uses edge features 7 3 7 3
Connects non-neighbouring nodes 7 7 3 3
Uses eigenvector-based PE for attention 7 3 3 3
Use a PE with structural information 7 3 71 3
Considers the ordering of the eigenvalues 7 3 3 3
Invariant to the norm of the eigenvector - 3 3 3
Considers the spectrum of eigenvalues 7 7 7 3
Considers variable # of eigenvectors - 7 7 3
Aware of eigenvalue multiplicities - 7 7 3
Invariant to the sign of the eigenvectors - 7 7 7

2.1 Absolute and relative positional encoding with eigenfunctions61

The notion of positional encodings (PEs) in graphs is not a trivial concept, as there exists no canonical62

way of ordering nodes or defining axes. In this section, we investigate how eigenfunctions of the63

Laplacian can be used to define absolute and relative PEs in graphs, to measure physical interactions64

between nodes, and to enable ”hearing” of specific sub-structures - similar to how the sound of a65

drum can reveal its structure.66

2.1.1 Eigenvectors equate to sine functions over graphs67

In the Transformer architecture, a fundamental aspect is the use of sine and cosine functions as PEs68

for sequences [35]. However, sinusoids cannot be clearly defined for arbitrary graphs, since there is69

no clear notion of position along an axis. Instead, their equivalent is given by the eigenvectors φ of70

the graph Laplacian L. Indeed, in a Euclidean space, the Laplacian (or Laplace) operator corresponds71

to the divergence of the gradient and its eigenfunctions are sine/cosine functions, with the squared72

frequencies corresponding to the eigenvalues (we sometimes interchange the two notions from here73

on). Hence, in the graph domain, the eigenvectors of the graph Laplacian are the natural equivalent of74

sine functions, and this intuition was employed in multiple recent works which use the eigenvectors75

as PEs for GNNs [13], for directional flows [4] and for Transformers [12].76

Being equivalent to sine functions, we naturally find that the Fourier Transform of a function F [f]77

applied to a graph gives F [f](λi) = 〈f,φi〉, where the eigenvalue is considered as a position in the78

Fourier domain of that graph [6]. Thus, the eigenvectors are best viewed as vectors positioned on the79

axis of eigenvalues rather than components of a matrix as illustrated in Figure 2.80

Figure 2: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors φi viewed as vectors
positionned on the axis of frequencies (eigenvalues).

2.1.2 What do eigenfunctions tell us about relative positions?81

In addition to being the analog of sine functions, the eigenvectors of the Laplacian also hold important82

information about the physics of a system and can reveal distance metrics. This is not surprising as83

the Laplacian is a fundamental operator in physics and is notably used in Maxwell’s equations [14]84

and the heat diffusion [6].85

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathematics as the Green’s86

function of the Laplacian [8], represents the electrostatic potential of a given charge. In a graph, the87

same concept uses the pseudo-inverse of the LaplacianG and can be computed by its eigenfunctions.88

See equation 1 , where G(j1, j2) is the electric potential between nodes j1 and j2, φ̂i and λ̂i are89

the i-th eigenvectors and eigenvalues of the symmetric LaplacianD
−1
2 LD

−1
2 , andD is the degree90

1Presented results add full connectivity before computing the eigenvectors, thus losing the structural informa-
tion of the graph.

3

matrix, and φ̂i,j the j-th row of the vector.91

G(j1, j2) = d
1
2
j1
d

−1
2
j2

∑
i>0

(φ̂i,j1φ̂i,j2)
2

λ̂i
(1)

Further, the original solution of the heat equation given by Fourier relied on a sum of sines/cosines92

known as a Fourier series [7]. As eigenvectors of the Laplacian are the analogue of these functions in93

graphs, we find similar solutions. Knowing that heat kernels are correlated to random walks [6, 4],94

we use the interaction between two heat kernels to define in equation 2 the diffusion distance dD95

between nodes j1, j2 [6, 9]. Similarly, the biharmonic distance dB was proposed as a better measure96

of distances [26]. Here we use the eigenfunctions of the regular Laplacian L.97

d2D(j1, j2) =
∑
k>0

e−2tλi(φi,j1 − φi,j2)2 , d2B(j1, j2) =
∑
i>0

(φi,j1 − φi,j2)2

λ2i
(2)

There are a few things to note from these equations. Firstly, they highlight the importance of pairing98

eigenvectors and their corresponding eigenvalues when supplying information about relative positions99

in a graph. Secondly, we notice that the product of eigenvectors is proportional to the electrostatic100

interaction, while the subtraction is proportional to the diffusion and biharmonic distances. Lastly,101

there is a consistent pattern across all 3 equations: smaller frequencies/eigenvalues are more heavily102

weighted when determining distances between nodes.103

2.1.3 Hearing the shape of a graph and its sub-structures104

Another well-known property of eigenvalues is how they can be used to discriminate between different105

graph structures and sub-structures, as they can be interpreted as the frequencies of resonance106

of the graph. This led to the famous question about whether we can hear the shape of a drum107

from its eigenvalues [21], with the same questions also applying to geometric objects [11] and 3D108

molecules [32]. Various success was found with the eigenfunctions being used for partial functional109

correspondence [31], algorithmic understanding geometries [24], and style correspondence [11].110

Examples of eigenvectors for molecular graphs are presented in Figure 3.111

Figure 3: Examples of eigenvalues λi and eigenvectors φi for molecular graphs. The low-frequency
eigenvectors φ1,φ2 are spread accross the graph, while higher frequencies, such as φ14,φ15 for the
left molecule or φ10,φ11 for the right molecule, often resonate in local structures.

2.2 Laplace Eigenfunctions etiquette112

In Euclidean space and sequences, using sinusoids as PEs is trivial: we can simply select a set of113

frequencies, compute the sinusoids, and add or concatenate them to the input embeddings, as is done114

in the original Transformer [35]. However, in arbitrary graphs, reproducing these steps is not as115

simple since each graph has a unique set of eigenfunctions. In the following section, we present116

key principles from spectral graph theory to consider when constructing PEs for graphs, most of117

which have been overlooked by prior methods. They include normalization, the importance of the118

eigenvalues and their multiplicities, the number of eigenvectors being variable, and sign ambiguities.119

Our LPE architectures, presented in section 3, aim to address them.120

Normalization. Given an eigenvalue of the Laplacian, there is an associated eigenspace of dimension121

greater than 1. To make use of this information in our model, a single eigenvector has to be chosen.122

In our work, we use the L2 normalization since it is compatible with the definition of the Green’s123

function (1). Thus, we will always chose eigenvectors φ such that 〈φ,φ〉 = 1.124

Eigenvalues. Another fundamental aspect is that the eigenvalue associated with each eigenvector125

supplies valuable information. An ordering of the eigenvectors based on their eigenvalue works in126

4

sequences since the frequencies are pre-determined. However, this assumption does not work in127

graphs since the eigenvalues in their spectrum can vary. For example, in Figure 3, we observe how an128

ordering would miss the fact that both molecules resonate at λ = 1 in different ways.129

Multiplicities. Another important problem with choosing eigenfunctions is the possibility of a130

high multiplicity of the eigenvalues, i.e. when an eigenvalue appears as a root of the characteristic131

polynomial more than once. In this case, the associated eigenspace may have dimension 2 or132

more as we can generate a valid eigenvector from any linear combination of eigenvectors with the133

same eigenvalue. This further complicates the problem of choosing eigenvectors for algorithmic134

computations and highlights the importance of having a model that can handle this ambiguity.135

Variable number of eigenvectors. A graphGi can have at mostNi linearly independent eigenvectors136

with Ni being its number of nodes. Most importantly, Ni can vary across all Gi in the dataset. Prior137

work [12] elected to select a fixed number k eigenvectors for each graph, where k ≤ Ni,∀i. This138

produces a major bottleneck when the smallest graphs have significantly fewer nodes than the largest139

graphs in the dataset since a very small proportion of eigenvectors will be used for large graphs. This140

inevitably causes loss of information and motivates the need for a model which constructs fixed PEs141

of dimension k, where k does not depend on the number of eigenvectors in the graph.142

Sign invariance. As noted earlier, there is a sign ambiguity with the eigenvectors. With the sign of143

φ being independent of its normalization, we are left with a total of 2k possible combination of signs144

when choosing k eigenvectors of a graph. Previous work has proposed to do data augmentation by145

randomly flipping the sign of the eigenvectors [4, 13, 12], and although it can work when k is small,146

it becomes intractable for large k.147

3 Model Architecture148

In this section, we propose an elegant architecture that can use the eigenfunctions as PEs while149

addressing the concerns raised in section 2.2. Our Spectral Attention Network (SAN) model inputs150

eigenfunctions of a graph and projects them into a learned positional encoding (LPE) of fixed size.151

The LPE allows the network to use up to the entire Laplace spectrum of each graph, learn how the152

frequencies interact, and decide which are most important for the given task.153

We propose a two-step learning process summarized earlier in Figure 1. The first step, depicted by154

blocks (c-d-e) in the figure, applies a Transformer over the eigenfunctions of each node to generate155

an LPE matrix for each graph. The LPE is then concatenated to the node embeddings (blocks g-h),156

before being passed to the Graph Transformer (block i). If the task involves graph classification or157

regression, the final node embeddings are subsequently passed to a final pooling layer.158

3.1 LPE Transformer Over Nodes159

Using Laplace encodings as node features is ubiquitous in the literature concerning the topic. Here,160

we propose a method for learning node PEs motivated by the principles from section 2.2. The idea of161

our LPE is inspired by Figure 2, where the eigenvectors φ are represented as a non-uniform sequence162

with the eigenvalue λ being the position on the frequency axis. With this representation, Transformers163

are a natural choice for processing them and generating a fixed-size PE.164

The proposed LPE architecture is presented in Figure 4. First, we create an embedding matrix165

of size 2 × m for each node j by concatenating the m-lowest eigenvalues with their associated166

eigenvectors. Here, m is a hyper-parameter for the maximum number of eigenvectors to compute167

and is analog to the variable-length sequence for a standard Transformer. For graphs where m > N ,168

a masked-padding is simply added. Note that to capture the entire spectrum of all graphs, one can169

simply select m such that it is equal to the maximum number of nodes a graph has in the dataset.170

A linear layer is then applied on the dimension of size 2 to generate new embeddings of size k. A171

Transformer Encoder then computes self-attention on the sequence of length m and hidden dimension172

k. Finally, a sum pooling reduces the sequence into a fixed k-dimensional node embedding.173

The LPE model addresses key limitations of previous graph Transformers and is aligned with the174

first four etiquettes presented in section 2.2. By concatenating the eigenvalues with the normalized175

eigenvector, this model directly addresses the first three etiquettes. Namely, it normalizes the176

eigenvectors, pairs eigenvectors with their eigenvalues and treats the number of eigenvectors as a177

5

variable. Furthermore, the model is aware of multiplicities and has the potential to linearly combine178

or ignore some of the repeated eigenvalues.179

However, this method still does not address the limitation that the sign of the pre-computed eigenvec-180

tors is arbitrary. To combat this issue, we randomly flip the sign of the pre-computed eigenvectors181

during training as employed by previous work [13, 12], to promote invariance to the sign ambiguity.182

Figure 4: Learned positional encoding (LPE) architectures, with the model being aware of the graph’s
Laplace spectrum by considering m eigenvalues and eigenvectors, where we permit m ≤ N , with
N denoting the number of nodes. Since the Transformer loops over the nodes, each node can be
viewed as an element of a batch to parallelize the computation. Here φi,j is the j-th element of the
eigenvector paired to the i-th lowest eigenvalue λi.

3.2 LPE Transformer Over Edges183

Here we present an alternative formulation for Laplace encodings. This method addresses the same184

issues as the LPE over nodes, but also resolves the eigenvector sign ambiguity. Instead of encoding185

absolute positions as node features, the idea is to consider relative positions encoded as edge features.186

Inspired by the physical interactions introduced in 1 and 2, we can take a pair of nodes (j1, j2)187

and obtain sign-invariant operators using the absolute subtraction |φi,j1 − φi,j2 | and the product188

φi,j1φi,j2 . These operators acknowledge that the sign of φi,j1 at a given node j1 is not important, but189

that the relative sign between nodes j1 and j2 is important. One might argue that we could directly190

compute the deterministic values from equations (1, 2) as edge features instead. However, our goal is191

to construct models that can learn which frequencies to emphasize and are not biased towards the192

lower frequencies — despite lower frequencies being useful in many tasks.193

This approach is only presented thoroughly in appendix A, since it suffers from a major computational194

bottleneck compared to the LPE over nodes. In fact, for a fully-connected graph, there are N times195

more edges than nodes, thus the computation complexity is O(m2N2), or O(N4) considering all196

eigenfunctions. The same limitation also affects memory and prevents the use of large batch sizes.197

3.3 Main Graph Transformer198

Our attention mechanism in the main Transformer is based on previous work [12], which attempts199

to repurpose the original Transformer to graphs by considering the graph structure and improving200

attention estimates with edge feature embeddings.201

In the following, note that hli is the i-th node’s features at the l-th layer, and eij is the edge feature202

embedding between nodes i and j. Our model employs multi-head attention over all nodes:203

ĥl+1
i = Ol

h

Hn

k=1

(
∑
j∈V

wk,lij V
k,lhlj) (3)

where Ol
h ∈ Rd×d, V k,l ∈ Rdk×d, H denotes the number of heads, L the number of layers, and

f
204

concatenation. Note that d is the hidden dimension, while dk is the dimension of a head (dH = dk).205

A key addition from our work is the design of an architecture that performs full-graph attention while206

preserving local connectivity with edge features via two sets of attention mechanisms: one for nodes207

connected by real edges in the sparse graph and one for nodes connected by added edges in the208

fully-connected graph. The attention weights wk,lij in equation 3 at layer l and head k are given by:209

ŵk,l
ij =


Q1,k,lhl

i◦K
1,k,lhl

j◦E
1,k,leij√

dk
if i and j are connected in sparse graph

Q2,k,lhl
i◦K

2,k,lhl
j◦E

2,k,leij√
dk

otherwise

 (4)

6

210

wk,lij =


1

1+γ · softmax(
∑
dk
ŵk,l
ij) if i and j are connected in sparse graph

γ
1+γ · softmax(

∑
dk
ŵk,l
ij) otherwise

 (5)

where ◦ denotes element-wise multiplication and Q1,k,l, Q2,k,l, K1,k,l, K2,k,l, E1,k,l, E2,k,l ∈211

Rdk×d. γ ∈ R+ is a hyperparameter which tunes the amount of bias towards full-graph attention,212

allowing flexibility of the model to different datasets and tasks where the necessity to capture long-213

range dependencies may vary. Note that softmax outputs are clamped between−5 and 5 for numerical214

stability and that the keys, queries and edge projections are different for pairs of connected nodes215

(Q1,K1,E1) and disconnected nodes (Q2,K2,E2).216

A multi-layer perceptron (MLP) with residual connections and normalization layers are then applied217

to update representations, in the same fashion as the GT method [12].218

ˆ̂
hl+1 = Norm(hli + ĥ

l+1
i),

ˆ̂
ĥl+1
i =W l

2ReLU(W l
1
ˆ̂
hl+1
i), hl+1

i = Norm(
ˆ̂
hl+1 +

ˆ̂
ĥl+1
i) (6)

with the weight matrices W l
1 ∈ R2d×d, W l

2 ∈ Rd×2d. Edge representations are not updated as it219

adds complexity with little to no performance gain. Bias terms are omitted for presentation.220

3.4 Limitations221

The first limitation of the node-wise LPE, and noted in Table 1 is the lack of sign invariance of the222

model. A random sign-flip of an eigenvector can produce different outputs for the LPE, meaning223

that the model needs to learn a representation invariant to these flips. We resolve this issue with the224

edge-wise LPE proposed in 3.2, but it comes at a computational cost.225

Another limitation of the approach is the computational complexity of the LPE being O(m2N), or226

O(N3) if considering all eigenfunctions. Further, as nodes are batched in the LPE, the total memory227

on the GPU will be num_params * num_nodes_in_batch instead of num_params * batch_size.228

Although this is limiting, the LPE is not parameter hungry, with k usually kept around 16. Most of229

the model’s parameters are in the Main Graph Transformer of complexity O(N2).230

Despite Transformers having increased complexity, they managed to revolutionalize the NLP com-231

munity. We argue that to shift away from the message-passing paradigm and generalize Transformers232

to graphs, it is natural to expect higher computational complexities. This is exacerbated by sequences233

being much simpler to understand than graphs due to their linear structure. Future work could234

overcome this by using variations of Transformers that scale linearly or logarithmically [33].235

3.5 Theoretical properties of the architecture236

Due to the full connectivity, it is trivial that our model does not suffer from the same limitations in237

expressivity as its convolutional/message-passing counterpart.238

WL test and universality. The DGN paper [4] showed that using the eigenvector φ1 is enough to239

distinguish some non-isomorphic graphs indistinguishable by the 1-WL test.240

Given that our model uses the full set of eigenfunctions, and given enough parameters, our model can241

distinguish any pair of non-isomorphic graphs and is more powerful than any WL test in that regard.242

However, this does not solve the graph isomorphism problem in polynomial time; it only approximates243

a solution, and the number of parameters required is unknown and possibly non-polynomial. In244

appendix C, we present a proof of our statement, and discuss why the WL test is not well suited to245

study the expressivity of graph Transformers due to their universality.246

Reduced over-squashing. Over-squashing represents the difficulty of a graph neural network to pass247

information to distant neighbours due to the exponential blow-up in computational paths [1].248

For the fully-connected network, it is trivial to see that over-squashing is non-existent since there are249

direct paths between distant nodes.250

Physical interactions. Another point to consider is the ability of the network to learn physical251

interactions between nodes. This is especially important when the graph models physical, chemical,252

or biological structures, but can also help understanding pixel interaction in images [2, 3]. Here, we253

7

argue that our SAN model, which uses the Laplace spectrum more effectively, can learn to mimic254

the physical interactions presented in section 2.1.2. This contrasts with the convolutional approach255

that requires deep layers for the receptive field to capture long-distance interactions. It also contrasts256

with the GT model [12], which does not use eigenvalues or enough eigenfunctions to properly model257

physical interactions in early layers. However, due to the lack of sign-invariance in the proposed258

node-wise LPE, it is difficult to learn these interactions accurately. The edge-wise LPE (section 3.2)259

could be better suited for the problem, but it suffers from higher computational complexity.260

4 Experimental Results261

The model is implemented in PyTorch [30] and DGL [37] and tested on established benchmarks from262

[13] and [19] provided under MIT license. Specifically, we applied our method on ZINC, PATTERN,263

CLUSTER, and MolHIV, while following their respective training protocols with minor changes, as264

detailed in the appendix B.1. The computation time and hardware is provided in appendix B.4.265

We first conducted an ablation study to fairly compare the benefits of using full attention and/or the266

node LPE. We then took the best-performing model, tuned some of its hyperparameters, and matched267

it up against the current state-of-the-art methods. Since we use a similar attention mechanism, our268

code was developed on top of the code from the GT paper [12], provided under the MIT license.269

4.1 Sparse vs. Full Attention270

Figure 5: Effect of the γ parameter on the performance across datasets from [13, 19], using the Node
LPE. Dotted black lines indicate sparse attention, which is equivalent to setting γ = 0. Each box plot
consists of 4 runs, with different seeds (except MolHIV).

Model details ZINC PATTERN CLUSTER MOLHIV
Attention LPE MAE % ACC % ACC % ROC-AUC

Sparse - 	0.267 ±0.032 83.613 ±0.663 75.683 ±0.098 73.46± 0.71
Sparse Node 0.198 ±0.004 81.329 ±2.150 75.738 ±0.106 76.61± 0.62

Full - 0.392 ±0.055 86.322 ±0.049 76.447 ±0.177 73.84± 1.80
Full Node 𝟎.𝟏𝟓𝟕 ±𝟎. 𝟎𝟎𝟔 𝟖𝟔. 𝟒𝟒𝟏 ±𝟎. 𝟎𝟒𝟎 𝟕𝟔. 𝟔𝟗𝟏 ±𝟎. 𝟐𝟒𝟕 𝟕𝟕.𝟓𝟕 ±𝟎. 𝟔𝟏

Best

Worst

Figure 6: Ablation study on datasets from [13, 19] for the node LPE and full graph attention, with
no hyperparameter tuning other than γ taken from Figure 5. For a given dataset, all models use the
same hyperparameters, but the hidden dimensions are adjusted to have ∼ 500k learnable parameters.
Means and uncertainties are derived from four runs, with different seeds (except MolHIV).

To study the effect of incorporating full attention, we present an ablation study of the γ parameter in271

Figure 5. We remind readers that γ is used in equation 5 to balance between sparse and full attention.272

Setting γ = 0 strictly enables sparse attention, while γ = 1 does not bias the model in any direction.273

It is apparent that molecular datasets, namely ZINC and MOLHIV, benefit less from full attention,274

with the best parameter being log γ ∈ (−7,−5). On the other hand, the larger SBM datasets275

(PATTERN and CLUSTER) benefit from a higher γ value. This can be explained by the fact that276

molecular graphs rely more on understanding local structures such as the presence of rings and277

specific bonds, especially in the artificial task from ZINC which relies on counting these specific278

patterns [13]. Furthermore, molecules are generally smaller than SBMs. As a result, we would279

expect less need for full attention, as information between distant nodes can be propagated with280

few iterations of even sparse attention. We also expect molecules to have fewer multiplicities, thus281

reducing the space of eigenvectors. Lastly, the performance gains in using full attention on the282

CLUSTER dataset can be attributed to it being a semi-supervised task, where some nodes within283

8

each graph are assigned their true labels. With full attention, every node receives information from284

the labeled nodes at each iteration, reinforcing confidence about the community they belong to.285

In Figure 6, we present another ablation study to measure the impact of the node LPE in both the286

sparse and full architectures. We observe that the proposed node-wise LPE contributes significantly287

to the performance for molecular tasks (ZINC and MOLHIV), and believe that it can be attributed288

to the detection of substructures (see Figure 3). For PATTERN and CLUSTER, the improvement is289

modest as the tasks are simple clustering [13]. Previous work even found that the optimal number of290

eigenvectors to construct PE for PATTERN is only 2 [12].291

4.2 Comparison to the state-of-the-art292

When comparing to the state-of-the-art (SOTA) models in the literature in Figure 7, we observe that293

our SAN model consistently performs better on all synthetic datasets from [13], highlighting the294

strong expressive power of the model. On the MolHIV dataset, the performance on the test set is295

slightly lower than the SOTA. However, the model performs better on the validation set (85.30%) in296

comparison to PNA (84.25%) and DGN (84.70%). This can be attributed to a well-known issue with297

this dataset: the validation and test metrics have low correlation. In our experiments, we found higher298

test results with lower validation scores when restricting the number of epochs.299

Other top-performing models, namely PNA [10] and DGN [4], use a message-passing approach [15]300

with multiple aggregators. When compared to attention-based models, SAN consistently outperforms301

the SOTA by a wide margin. To the best of our knowledge, SAN is the first fully-connected model to302

perform well on graph tasks, as is evident by the poor performance of the GT (full) model.303

Best

Worst

Column1 ZINC PATTERN CLUSTER MOLHIV

Model MAE % ACC % ACC % ROC-AUC
GCN 0.367	 ±0.011 71.892±	0.334 68.498	 ±0.976 76.06	 ±0.97

GraphSage 0.398	 ±0.002 50.492	 ±0.001 63.844	 ±0.110 -

GatedGCN 0.282	 ±0.015 85.568	 ±0.088 73.840	 ±0.326 -

GatedGCN-PE 0.214	 ±0.013 86.508	 ±0.085 76.082	 ±0.196
GIN 0.526	 ±0.051 85.387	 ±0.136 64.716	 ±1.553 75.58	 ±1.40
PNA 0.142	 ±0.010 - - 79.05	 ±1.32
DGN - - - 𝟕𝟗.𝟕𝟎	 ±𝟎. 𝟗𝟕

Attention-based

GAT 0.384	 ±0.007 78.271	 ±0.186 70.587	 ±0.447 -

GT (sparse) 0.226	 ±0.014 84.808	 ±0.068 73.169	 ±0.662 -

GT (full) 0.598	± 0.049 56.482	 ±3.549 27.121	 ±8.471 -

SAN (ours) 𝟎.𝟏𝟑𝟗	 ±𝟎. 𝟎𝟎𝟔 𝟖𝟔.𝟓𝟖𝟏	 ±𝟎. 𝟎𝟑𝟕 𝟕𝟔.𝟔𝟗𝟏	 ±𝟎. 𝟐𝟒𝟕 77.85	 ±0.65

Figure 7: Comparing our tuned model on datasets from [13, 19], against GCN [23], GraphSage [16],
GIN [38], GAT [36], MoNet [28], GatedGCN [5], PNA [10], and DGN [4]. Means and uncertainties
are derived from four runs with different seeds, except MolHIV which uses 10 runs with identical
seed. The number of parameters is fixed to ∼ 500k for ZINC, PATTERN and CLUSTER.

5 Conclusion304

In summary, we presented the SAN model for graph neural networks, a new Transformer-based305

architecture that is aware of the Laplace spectrum of a given graph from the learned positional306

encodings. The model was shown to perform on par or better than the SOTA on multiple benchmarks307

and outperforms other Attention-based models by a large margin. As is often the case with Trans-308

formers, the current model suffers from a computational bottleneck, and we leave it for future work309

to implement variations of Transformers that scale linearly or logarithmically. This will enable the310

edge-wise LPE presented in appendix A, a theoretically more powerful version of the SAN model.311

Societal Impact. The presented work is focused on theoretical and methodological improvements312

to graph neural networks, so there are limited direct societal impacts. However, indirect negative313

impacts could be caused by malicious applications developed using the algorithm. One such example314

is the tracking of people on social media by representing their interaction as graphs, thus predicting315

and influencing their behavior towards an external goal. It also has an environmental impact due316

to the greater energy use that arises from the computational cost O(m2N +N2) being larger than317

standard message passing or convolutional approaches of O(E).318

9

References319

[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical320

implications. arXiv:2006.05205 [cs, stat], 2020.321

[2] Dominique Beaini, Sofiane Achiche, Alexandre Duperré, and Maxime Raison. Deep green322

function convolution for improving saliency in convolutional neural networks. The Visual323

Computer, 37(2):227–244, 2020.324

[3] Dominique Beaini, Sofiane Achiche, and Maxime Raison. Improving convolutional neural325

networks via conservative field regularisation and integration.326

[4] Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso,327

and Pietro Liò. Directional graph networks. ICML2021, 2021.328

[5] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint329

arXiv:1711.07553, 2017.330

[6] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.331

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,332

34(4):18–42, 2017.333

[7] F. Cajori. A History of Mathematics. AMS Chelsea Publishing Series. AMS Chelsea, 1999.334

[8] Fan Chung and S. T. Yau. Discrete green’s functions. Journal of Combinatorial Theory, Series335

A, 91(1):191–214, 2000.336

[9] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic337

Analysis, 21(1):5–30, 2006. Special Issue: Diffusion Maps and Wavelets.338

[10] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal339

neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.340

[11] Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael M. Bronstein, and341

Emanuele Rodola. Isospectralization, or how to hear shape, style, and correspondence. In342

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),343

June 2019.344

[12] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs,345

2020.346

[13] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier347

Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.348

[14] Richard Phillips Feynman, Robert Benjamin Leighton, and Matthew Sands. The Feynman349

lectures on physics; New millennium ed. Basic Books, New York, NY, 2010. Originally350

published 1963-1965.351

[15] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural352

message passing for quantum chemistry. In Proceedings of the 34th International Conference353

on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.354

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large355

graphs. In Advances in neural information processing systems, pages 1024–1034, 2017.356

[17] William L. Hamilton. Graph Representation Learning. Morgan and Claypool, 2020.357

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,358

9(8):1735–1780, 1997.359

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele360

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.361

arXiv preprint arXiv:2005.00687, 2020.362

[20] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for363

molecular graph generation. arXiv:1802.04364 [cs, stat], 2018.364

10

[21] Mark Kac. Can one hear the shape of a drum? The American Mathematical Monthly, 73(4):1,365

1966.366

[22] Anees Kazi, Luca Cosmo, Nassir Navab, and Michael Bronstein. Differentiable graph module367

(dgm) graph convolutional networks. arXiv preprint arXiv:2002.04999, 2020.368

[23] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional369

networks. arXiv preprint arXiv:1609.02907, 2016.370

[24] B. Levy. Laplace-beltrami eigenfunctions towards an algorithm that "understands" geometry.371

In IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pages372

13–13, 2006.373

[25] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design374

provably more powerful neural networks for graph representation learning, 2020.375

[26] Yaron Lipman, Raif M. Rustamov, and Thomas A. Funkhouser. Biharmonic distance. ACM376

Trans. Graph., 29(3), July 2010.377

[27] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful378

graph networks. arXiv preprint arXiv:1905.11136, 2019.379

[28] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and380

Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model381

cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,382

pages 5115–5124, 2017.383

[29] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,384

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural385

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages386

4602–4609, 2019.387

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,388

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in389

pytorch. 2017.390

[31] Emanuele Rodolà, Luca Cosmo, Michael M. Bronstein, Andrea Torsello, and Daniel Cremers.391

Partial functional correspondence, 2015.392

[32] Joshua Schrier. Can one hear the shape of a molecule (from its coulomb matrix eigenvalues)?393

Journal of Chemical Information and Modeling, 60(8):3804–3811, 2020. Publisher: American394

Chemical Society.395

[33] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey,396

2020.397

[34] Edwin R. van Dam and Willem H. Haemers. Which graphs are determined by their spectrum?398

Linear Algebra and its Applications, 373:241–272, 2003.399

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,400

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.401

[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua402

Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.403

[37] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,404

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.405

Deep graph library: A graph-centric, highly-performant package for graph neural networks.406

arXiv preprint arXiv:1909.01315, 2019.407

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural408

networks? arXiv preprint arXiv:1810.00826, 2018.409

[39] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar.410

Are transformers universal approximators of sequence-to-sequence functions?, 2020.411

11

[40] Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi,412

and Sanjiv Kumar. $o(n)$ connections are expressive enough: Universal approximability of413

sparse transformers. CoRR, abs/2006.04862, 2020.414

[41] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph415

transformer networks, 2020.416

Checklist417

1. For all authors...418

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s419

contributions and scope? Yes420

(b) Did you describe the limitations of your work? Yes, mainly in section 3.4.421

(c) Did you discuss any potential negative societal impacts of your work? Yes, in the422

conclusion.423

(d) Have you read the ethics review guidelines and ensured that your paper conforms to424

them? Yes.425

2. If you are including theoretical results...426

(a) Did you state the full set of assumptions of all theoretical results? Yes, assumptions are427

provided.428

(b) Did you include complete proofs of all theoretical results? Yes, proofs are provided in429

Appendix C.430

3. If you ran experiments...431

(a) Did you include the code, data, and instructions needed to reproduce the main ex-432

perimental results (either in the supplemental material or as a URL)? Yes. The433

URL is included in the final sentence of the Introduction, with the link repeated434

here https://anonymous.4open.science/r/SAN-5C8C.435

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they436

were chosen)? Yes. All hyper-parameters are specified Appendix B.2 and B.3. The437

splits are provided by the public benchmarks [13, 19].438

(c) Did you report error bars (e.g., with respect to the random seed after running exper-439

iments multiple times)? Yes. Each experiment was run 4 or 10 times, with reported440

mean and standard deviation.441

(d) Did you include the total amount of compute and the type of resources used (e.g., type442

of GPUs, internal cluster, or cloud provider)? Yes, provided in appendix B.4.443

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...444

(a) If your work uses existing assets, did you cite the creators? Yes. See section 4. The445

reference for the datasets are [13, 19], for the main frameworks are [30, 37], and for446

the MIT-licensed code we used [12].447

(b) Did you mention the license of the assets? Yes. All under MIT license.448

(c) Did you include any new assets either in the supplemental material or as a URL? Not449

applicable.450

(d) Did you discuss whether and how consent was obtained from people whose data451

you’re using/curating? Yes. The datasets are provided publicly, and cited appropriately452

[13, 19].453

(e) Did you discuss whether the data you are using/curating contains personally identifiable454

information or offensive content? Not applicable. As presented in the appendix B.1,455

the data is either artificially generated, or on a molecular dataset for HIV inhibition.456

5. If you used crowdsourcing or conducted research with human subjects...457

(a) Did you include the full text of instructions given to participants and screenshots, if458

applicable? Not applicable.459

(b) Did you describe any potential participant risks, with links to Institutional Review460

Board (IRB) approvals, if applicable? Not applicable.461

(c) Did you include the estimated hourly wage paid to participants and the total amount462

spent on participant compensation? Not applicable.463

12

https://anonymous.4open.science/r/SAN-5C8C

	Introduction
	Theoretical Motivations
	Absolute and relative positional encoding with eigenfunctions
	Eigenvectors equate to sine functions over graphs
	What do eigenfunctions tell us about relative positions?
	Hearing the shape of a graph and its sub-structures

	Laplace Eigenfunctions etiquette

	Model Architecture
	LPE Transformer Over Nodes
	LPE Transformer Over Edges
	Main Graph Transformer
	Limitations
	Theoretical properties of the architecture

	Experimental Results
	Sparse vs. Full Attention
	Comparison to the state-of-the-art

	Conclusion
	LPE Transformer Over Edges
	Appendix - Implementation details
	Benchmarks and datasets
	Ablation studies
	SOTA Comparison study
	Computation details

	Expressivity and complexity analysis of graph Transformers
	Universality of Transformers for sequence-to-sequence approximations
	Graph Transformers approximate solutions to the graph isomorphism problem
	Expressivity of the node-LPE
	Comparison of the learning complexity of naive graph Transformers and LPE

