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ABSTRACT

Rate-distortion (R-D) function, a key quantity in information theory, characterizes
the fundamental limit of how much a data source can be compressed subject to
a fidelity criterion, by any lossy compression algorithm. As researchers push for
ever-improving compression performance, establishing the R-D function of any
given data source is not only of scientific interest, but also sheds light on the
room for possible improvement of compression algorithms. Previous work on this
problem relied on distributional assumptions on the data source (Gibson, 2017)
or only applied to low-dimensional discrete data. By contrast, this paper makes
the first attempt at an algorithm for sandwiching the R-D function of arbitrary
sources requiring only data samples. We verify the tightness of our bounds on
Gaussian and banana-shaped sources, and demonstrate the scalability of our upper
bound on natural images. Our results indicate room for improving the compression
performance of state-of-the-art methods by one PSNR at various bitrates.

1 INTRODUCTION

From storing astronomical images captured by the Hubble telescope, to delivering familiar faces
and voices over video chats, data compression, i.e., communicating the “same” information but with
less bits, is commonplace and indispensable to our digital life, and even arguably lies at the heart of
intelligence (Mahoney, 2009). While for lossless compression, there exist practical algorithms that
can compress any discrete data arbitrarily close to the information theory limit (Ziv & Lempel, 1977;
Witten et al., 1987), no such universal algorithm has been found for lossy data compression (Berger
& Gibson, 1998), and significant research efforts have dedicated to lossy compression algorithms for
various data. Recently, deep learning has shown promise for learning lossy compressors from raw
data examples, with continually improving compression performance often matching or exceeding
traditionally engineered methods (Minnen et al., 2018; Agustsson et al., 2020; Yang et al., 2020a).

However, there are fundamental limits to the performance of any lossy compression algorithm, due
to the inevitable trade-off between rate, the average number of bits needed to represent the data,
and the distortion incurred by lossy representations. This trade-off is formally described by the
rate-distortion (R-D) function, for a given source (i.e., the data distribution of interest; referred
to as such in information theory) and distortion metric. The R-D function characterizes the best
theoretically achievable rate-distortion performance by any compression algorithm, which can be seen
as a lossy-compression counterpart and generalization of Shannon’s entropy for lossless compression.

Despite its fundamental importance, the R-D function is generally unknown analytically, and estab-
lishing it for general data sources, especially real world data, is a difficult problem (Gibson, 2017).
The default method for computing R-D functions, the Blahut-Arimoto algorithm (Blahut, 1972;
Arimoto, 1972), only works for discrete data with a known probability mass function and has a
complexity exponential in the data dimensionality. Applying it to an unknown data source requires
discretization (if it is continuous) and estimating the source probabilities by a histogram, both of
which introduce errors and are computationally infeasible beyond a couple of dimensions. Previous
work characterizing the R-D function of images and videos (Hayes et al., 1970; Gibson, 2017) all
required a statistical model of the source; thus the result is only as meaningful as the source model.

In this work, we make progress on this problem by introducing new tools for bounding the R-D
function of a general (i.e., discrete, absolutely continuous, or neither), unknown memoryless source.
Our contributions are as follows:
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1. We apply machine learning techniques to obtain new algorithms for producing upper and
lower bounds on the R-D function of an unknown source, requiring only i.i.d. data samples.

2. Our upper bound draws from the deep generative modeling toolbox, and is closely related
to a type of β-VAEs in learned data compression (Ballé et al., 2017); we clarify how these
models optimize a model-independent upper bound on the source rate-distortion function.

3. We theoretically derive a general lower bound on the R-D function that can in principle
be optimized by gradient ascent. Facing the difficulty of the problem involving global
optimization, we restrict to a (mean-)squared error distortion and obtain a practical algorithm.

4. We show experimentally that our upper bound algorithm can converge to the exact analytical
R-D function on randomly sampled Gaussian sources. On a banana-shaped source and its
high-dimensional projections, we obtain tight sandwich bounds. As far as we know, this
is the first successful attempt at computationally characterizing the R-D function of such a
non-trivial source in high dimensions, where the Blahut-Arimoto algorithm is infeasible.

5. We establish new upper bounds on the R-D function of natural images. Based on a ResNet-
VAE architecture, our best upper bound indicates possible room for improving the compres-
sion performance of state-of-the-art methods by one PSNR at various bitrates.

We begin by introducing needed concepts of rate-distortion theory in Section. 2, then describe our
upper and lower bound algorithms in Section. 3 and Section. 4, respectively. We review related work
in Section. 5, report experimental results in Section. 6, and conclude in Section. 7.

2 BACKGROUND

Rate-distortion (R-D) theory deals with the fundamental trade-off between the average number of
bits per sample (rate) used to represent a data source X and the distortion incurred by the lossy
representation X̂ . It asks the following question about the limit of lossy compression: for a given data
source and a distortion metric (a.k.a., a fidelity criterion), what is the minimum number of bits (per
sample) needed to represent the source at a tolerable level of distortion, regardless of the computation
complexity of the compression procedure? The answer is given by the rate-distortion function R(D).
To introduce it, let the source and its reproduction take values in the sets X and X̂ , conventionally
called the source and reproduction alphabets, respectively. We define the data source formally by
a random variable X ∈ X following a (usually unknown) distribution PX , and assume a distortion
metric ρ : X × X̂ → [0,∞) has been given, such as the squared error ρ(x, x̂) = ‖x − x̂‖2. The
rate-distortion function is then defined by the following constrained optimization problem,

R(D) = inf
QX̂|X : E[ρ(X,X̂)]≤D

I(X; X̂), (1)

where we consider all random transforms QX̂|X whose expected distortion is within the given
threshold D ≥ 0, and minimize the mutual information between the source X and its reproduced
representation X̂ 1. Shannon’s lossy source coding theorems (Shannon, 1948; 1959) gave operational
significance to the above mathematical definition of R(D), as the minimum achievable rate with
which any lossy compression algorithm can code i.i.d. data samples at a distortion level within D.

The R-D function thus gives the tightest lower bound on the rate-distortion performance of any lossy
compression algorithm, and can inform the design and analysis of such algorithms. If the operational
rate-distortion performance of an algorithm lies high above the source R(D)-curve (D,R(D)), then
further performance improvement may be expected; otherwise, its rate-distortion performance is
already close to theoretically optimal, and we may focus our attention on improving other aspects of
the algorithm. Unfortunately, the R-D function does not have an analytical expression in general.

3 UPPER BOUND ALGORITHM

For a known discrete source, the Blahut-Arimoto (BA) algorithm converges to R(D) from above
by fixed-point equations. For a general unknown source, it is not clear how this can be done. We

1Both the expected distortion and mutual information terms are defined w.r.t. the joint distribution PXQX̂|X .
We give formal measure theoretic definitions of various quantities in the appendix.

2



Under review as a conference paper at ICLR 2022

propose to solve the underlying variaitonal problem approximately by gradient descent. In exchange
for generality and scalability, we lose the optimality guarantee of the BA algorithm, only arriving
at a stochastic upper bound of R(D) in general. By R-D theory (Cover & Thomas, 2006), every
(distortion, rate) pair lying above the R(D)-curve is in principle realizable by a (possibly expensive)
compression algorithm; an upper bound on R(D), therefore, reveals what kind of (improved) R-D
performance is theoretically possible, without suggesting how it can be practically achieved.

Variational Formulation. We adopt the same unconstrained variational objective as the Blahut-
Arimoto (BA) algorithm (Blahut, 1972; Arimoto, 1972), in its most general form,

L(QX̂|X , QX̂ , λ) := Ex∼PX
[KL(QX̂|X=x‖QX̂)] + λEPXQX̂|X

[ρ(X, X̂)], (2)

where QX̂ is an arbitrary probability measure on X̂ and KL(·‖·) denotes the Kullback-Leibler
(KL) divergence. This objective can be seen as a Lagrangian relaxation of the constrained problem
defining R(D) , where the first (rate) term is a variational upper bound on the mutual information
I(X; X̂), and the second (distortion) term enforces the distortion tolerance constraint in Eq. 1. For
each fixed λ > 0, a global minimizer of L yields a point (R,D) on the R(D) curve (Csiszar, 1974),
where R and D are simply the two terms of L evaluated at the optimal (QX̂|X , QX̂). Repeating
this minimization for various λ then traces out the R(D) curve. Based on this connection, the BA
algorithm carries out the minimization by coordinate descent on L via fixed-point equations, each
time setting QX̂|X to be optimal w.r.t. QX̂ and vice versa; the sequence of alternating distributions
can be shown to converge and yield a point on the R(D) curve (Csiszar, 1974). Unfortunately, the BA
algorithm only applies when X and X̂ are finite, and the source distribution PX known (or estimated
from data samples) in the form of a vector of probabilities PX(x) of every state x ∈ X . Moreover, the
algorithm requires storage and running time exponential in the data dimensionality, since it operates
on exhaustive tabular representations of PX , ρ,QX̂|X , and QX̂ . The algorithm therefore quickly
becomes infeasible on data with more than a couple of dimensions, not to mention high-dimension
data such as natural images. The fixed-point equations of the BA algorithm are known in general
settings (Rezaei et al., 2006), but when X or X̂ is infinite (such as in the continuous case), it is not
clear how to carry them out or exhaustively represent the measures QX̂ and QX̂|X=x for each x ∈ X .

Proposed Method. To avoid these difficulties, we propose to apply (stochastic) gradient descent
on L w.r.t. flexibly parameterized variational distributions QX̂|X and QX̂ . The distributions can be
members from any variational family, as long as QX̂|X=x is absolutely continuous w.r.t. QX̂ for
(PX -almost) all x ∈ X . This technical condition ensures their KL divergence is well defined. This is
easily satisfied, when X̂ is discrete, by requiring the support of QX̂|X=x to be contained in that of
QX̂ for all x ∈ X ; and in the continuous case, by representing both measures in terms of probability
density functions (e.g., normalizing flows (Kobyzev et al., 2021)). In this work we represent QX̂ and
QX̂|X by parametric distributions, and predict the parameters of each QX̂|X=x by an encoder neural
network φ(x) as in amortized inference (Kingma & Welling, 2014); we note it is also possible to
represent QX̂|X non-parametrically (Liu & Wang, 2016). Given a dataset of i.i.d. X samples, we
optimize the parameters of the variational distributions by SGD on L; at convergence, the estimates
of rate and distortion terms of L yields a point that lies on a stochastic R-D upper bound RU (D).

The variational objective L (Eq. 2) closely resembles the negative ELBO (NELBO) objective of a
β-VAE (Higgins et al., 2017), if we regard the reproduction alphabet X̂ as the “latent space”. The
connection is immediate when X̂ is continuous, so that a squared error ρ specifies the density of a
Gaussian likelihood p(x|x̂) ∝ exp(−‖x− x̂|2). However, unlike in data compression, where X̂ is
determined by the application (and often equal to X for a full-reference distortion), the latent space in
a (β-)VAE typically has a lower dimension than X ; a decoder network is then used to parameterize a
likelihood model in the data space. To capture this setup, we introduce a new, arbitrary latent space Z
on which we define variational distributions QZ|X , QZ , and a (possibly stochastic) decoder function
ω : Z → X̂ . This results in an extended objective (with L being the special case of an identity ω ),

J(QZ|X , QZ , ω, λ) := Ex∼PX
[KL(QZ|X=x‖QZ)] + λEPXQZ|X [ρ(X,ω(Z))]. (3)

How does this relate to the original rate-distortion problem? We note that the same results from
rate-distortion theory apply, once we identify a new distortion function ρω(x, z) := ρ(x, ω(z)) and
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treat Z as the reproduction alphabet. Then for each fixed decoder, we may define a ω-dependent
rate-distortion function, Rω(D) := infQZ|X :E[ρω(X,Z)]≤D I(X;Z). The minimum of J w.r.t. the
variational distributions produces a point on theRω(D) curve. Moreover, as a consequence of the data
processing inequality I(X;Z) ≥ I(X;ω(Z)), we can prove (in Appendix A.3) that Rω(D) ≥ R(D)
for any ω, with equality for bijective ω . Therefore, we can minimize the NELBO-like objective Eq. 3
w.r.t. parameters of (QZ|X , QZ , ω) similar to training a β-VAE, knowing that we are optimizing an
upper bound on the information R-D function of the data source. This can be seen as a generalization
to the lossless case (with a countable X ), where minimizing the NELBO minimizes an upper bound
on the Shannon entropy of the source (Frey & Hinton, 1997), the limit of lossless compression.

The tightness of our bound depends on the choice of variational distributions. The freedom to
define them over any suitable latent space Z can simplify the modeling task (of which there are
many tools (Salakhutdinov, 2015; Kobyzev et al., 2021)). e.g., we can work with densities on a
continuous Z , even if X̂ is high-dimensional and discrete. We can also treat Z as the concatenation
of sub-vectors [Z1, Z2, ..., ZL], and parameterize QZ in terms of simpler component distributions
QZ =

∏L
l=1QZl|Z<l

(similarly for QZ|X ). We exploit these properties in our Sec. 6.3 experiments.

4 LOWER BOUND ALGORITHM

Without knowing the tightness of an R-D upper bound, we could be wasting time and resources
trying to improve the R-D performance of a compression algorithm, when it is in fact already close
to the theoretical limit. This would be avoided if we could find a matching lower bound on R(D).
Unfortunately, the problem turns out to be much more difficult computationally. Indeed, every
compression algorithm, or every pair of variational distributions (QX̂ , QX̂|X) yields a point above
R(D). Conversely, establishing a lower bound requires disproving the existence of any compression
algorithm that can conceivably operate below the R(D) curve. In this section, we derive an algorithm
that can in principle produce arbitrarily tight R-D lower bounds. However, as an indication of its
difficulty, the problem requires globally maximizing a family of partition functions. By restricting to
a continuous reproduction alphabet and a squared error distortion, we make some progress on this
problem and demonstrate useful lower bounds on data with low effective dimension (see Sec. 6.2).

rate

distortion

Figure 1: The geometry of the R-D lower
bound problem. For a given slope −λ,
we seek to maximize the R-axis inter-
cept, E[− log g(X)], over all g ≥ 0 func-
tions admissible according to Eq. 6.

Dual characterization of R(D). While upper bounds
on R(D) arise naturally out of its definition as a minimiza-
tion problem, a variational lower would require express-
ing R(D) through a maximization problem. For this, we
introduce a “conjugate” function as the optimum of the
Lagrangian Eq. 2 (QX̂ is eliminated by replacing the rate
upper bound with the exact mutual information I(X; X̂)):

F (λ) := inf
QX̂|X

I(X; X̂) + λE[ρ(X, X̂)]. (4)

Geometrically, F (λ) is the maximum R-axis intercept of
a straight line with slope −λ, among all such lines that
lie below or tangent to R(D); the R-D curve can then be
found by taking the upper envelope of lines with slope −λ
and R-intercept F (λ), i.e., R(D) = maxλ≥0 F (λ)− λD.
A key result for our lower bound is the dual characteriza-
tion of F (λ) in terms of maximization (depicted in Fig. 1):
Theorem 4.1. (Csiszár, 1974) Under basic conditions (e.g., satisfied by a bounded ρ; see Appendix
A.2), it holds that (all expectations below are with respect to the data source r.v. X ∼ PX )

F (λ) = max
g(x)
{E[− log g(X)]} (5)

where the maximization is over g : X → [0,∞) satisfying the constraint

E
[

exp(−λρ(X, x̂))

g(X)

]
=

∫
exp(−λρ(x, x̂))

g(x)
dPX(x) ≤ 1,∀x̂ ∈ X̂ (6)
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In other words, every admissible g yields a lower bound of R(D), via an underestimator of the
intercept E[− log g(X)] ≤ F (λ). We give the origin and history of this result in related work Sec. 5.

Proposed Unconstrained Formulation. The constraint in Eq. 6 is concerning – it is a family of
possibly infinitely many constraints, one for each x̂. To make the problem easier to work with, we
propose to eliminate the constraints by the following transformation. Let g be defined in terms of
another function u(x) ≥ 0 and a scalar c depending on u, such that

g(x) := cu(x), where c := sup
x̂∈X̂

Ψu(x̂), and Ψu(x̂) := E
[

exp−λρ(X, x̂)

u(X)

]
.

This reparameterization of g is without loss of generality, and can be shown to always satisfy the
constraint in Eq. 6. While this form of g bears a superficial resemblance to an energy-based model
(LeCun et al., 2006), with 1

c resembling a normalizing constant, there is an important difference:
c = supx̂ Ψu(x̂) is in fact the supremum of a family of “partition functions” Ψu(x̂) indexed by x̂;
we thus refer to c as the sup-partition function. Although all these quantities have λ-dependence, we
omit this from our notation since λ is a fixed input parameter (as in the upper bound algorithm).

Consequently, F is now the result of unconstrained maximization over all u functions, and we obtain
a lower bound on it by restricting u to a subset of functions with parameters θ (e.g., neural networks),

F (λ) = max
u≥0
{E[− log u(X)]− log sup

x̂∈X̂
Ψu(x̂)} ≥ max

θ
{E[− log uθ(X)]− log sup

x̂∈X̂
Ψθ(x̂)}

For convenience, define the maximization objective by

`(θ) := E[− log uθ(X)]− log c(θ), c(θ) := sup
x̂∈X̂

Ψθ(x̂). (7)

Then, it can in principle be maximized by stochastic gradient ascent using samples from PX . However,
computing the sup-partition function c(θ) poses serious computation challenges: even evaluating
Ψθ(x̂) for a single x̂ value involves a potentially high-dimensional integral w.r.t. PX ; this is only
exacerbated by the need to globally optimize w.r.t. x̂, an NP-hard problem even in one-dimension.

Proposed Method. To tackle this problem, we propose a sample-based over-estimator of the sup-
partition function inspired by the IWAE estimator (Burda et al., 2015). Fix uθ for now. Noting
that Ψ(x̂) := E[ψ(X, x̂)] is an expectation w.r.t. PX , where ψ(x, x̂) := exp−λρ(x,x̂)

u(x) , one may
then naturally consider a plug-in estimator for c, replacing the expectation by a sample estimate
of Ψ(x̂). Formally, given a sequence of i.i.d. random variables X1, X2, ... ∼ PX , we define the
estimator Ck := supx̂

1
k

∑
i ψ(Xi, x̂) for each k ≥ 1. We can then prove (see Theorem A.3 and

proof in Appendix) that E[C1] ≥ E[C2] ≥ ...c, i.e., Ck is on average an over-estimator of the
sup-partition function c; and like the Importance-Weighted ELBO (Burda et al., 2015), the bias of
the estimator decreases monotonically as k → ∞, and that under continuity assumptions, Ck is
asymptotically unbiased and converges to c. In light of this, we replace c by E[Ck] and obtain a
k-sample under-estimator of the objective `(θ) (which in turn underestimates F (λ)):

`k(θ) := E[− log uθ(X)]− logE[Ck]; moreover, `1(θ) ≤ `2(θ) ≤ ... ≤ `(θ).
Unfortunately, we still cannot apply stochastic gradient ascent to `k, as two more difficulties remain.
First, Ck is still hard to compute, as it is defined through a global maximization problem. We note that
by restricting to a suitable ρ and X̂ = X , the maximization objective of Ck has the form of a kernel
density estimate (KDE). For a squared error distortion, this becomes a Gaussian mixture density,
1
k

∑
i ψ(xi, x̂) ∝ ∑i πi exp(−λ‖xi − x̂‖2), with centroids defined by the samples x1, ..., xk, and

mixture weights πi = (ku(xi))
−1. The global mode of a Gaussian mixture can generally be found

by hill-climbing from each of the k centroids, except in rare artificial examples (Carreira-Perpinan,
2000; 2020); we therefore use this procedure to compute Ck, but note that other methods exist (Lee
et al., 2019; Carreira-Perpinan, 2007). The second difficulty is that even if we could estimate E[Ck]
(with samples of Ck computed by global optimization), the objective `k requires an estimate of
its logarithm; a naive application of Jensen’s inequality − logE[Ck] ≥ E[− logCk] results in an
over-estimator (as does the IWAE estimator), whereas we require a lower bound. Following Poole
et al. (2019), we underestimate − log(x) by its linearization around some parameter α > 0, resulting
in the following lower bound objective:

˜̀
k(θ) := E[− log uθ(X)]− E[Ck]/α− logα+ 1. (8)
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`k(θ) can finally be estimated by sample averages, and yields a lower bound on the optimal intercept
F (λ) by the chain of inequalities, ˜̀

k(θ) ≤ `k(θ) ≤ `(θ) ≤ F (λ). A trained model uθ∗ then yields
an R-D lower bound, RL(D) = −λD + ˜̀

k(θ∗). We give the detailed algorithm in Appendix A.4.

5 RELATED WORK

Machine Learning: The past few years have seen significant progress in applying machine learning
to data compression. For lossless compression, explicit likelihood models (van den Oord et al., 2016;
Hoogeboom et al., 2019) directly lead themselves to entropy coding, and bits-back coding techniques
are actively being developed for efficient compression with latent variable models (Townsend et al.,
2019; Kingma et al., 2019; Ho et al., 2019; Ruan et al., 2021). In the lossy domain, Theis et al. (2017);
Ballé et al. (2017) showed that a particular type of VAE can be trained to perform data compression
using the same objective Eq. 3. The variational distributions in such a model have shape restrictions
to simulate quantization and entropy coding (Ballé et al., 2017). Our upper bound is directly inspired
by this line of work, and suggests that such a model can in principle compute the source R-D function
when equipped with sufficiently expressive variational distributions and a “rich enough” latent space
(see explanation in Sec. 3). We note however not all compressive autoencoders admit a probabilistic
formulation (Theis et al., 2017); recent work has found training with hard quantization to improve
compression performance (Minnen & Singh, 2020), and methods have been developed (Agustsson &
Theis, 2020; Yang et al., 2020b) to reduce the gap between approximate quantization at training time
and hard quantization at test time. Departing from compressive autoencoders, Yang et al. (2020c) and
Flamich et al. (2020) applied regular Gaussian VAEs to data compression to exploit the flexiblility of
variable-width variational posterior distributions. The REC algorithm from Flamich et al. (2020) can
in theory transmit a sample of QX̂|X with a rate equal to the rate term of the NELBO-like Eq. 3, but
comes with non-negligible overhead. Our experiment in Sec. 6.3 points to the theoretically possible
gain in image compression performance from this approach. Agustsson & Theis (2020) proved the
general difficulty of this approach without assumptions on the form of QX̂|X , and showed that the
particular case of a uniform QX̂|X leads to efficient implementation based on dithered quantization.

Information theory has also broadly influenced unsupervised learning (Alemi et al., 2018; Poole
et al., 2019) and representation learning (Tishby et al., 2000). The Information Bottleneck method
(Tishby et al., 2000) was directly motivated as a more general R-D theory and borrows from the BA
algorithm. Alemi et al. (2018) analyzed the relation between generative modeling and representation
learning with a similar R-D Lagrangian to Eq. 2, but used an abstract, model-dependent distortion
ρ(x̂, x) := − log p(x|x̂) with an arbitrary X̂ and without considering a data compression task.
Recently, Huang et al. (2020) proposed to evaluate decoder-based generative models by computing a
restricted version of Rω(D) (with Qx̂ fixed to a Gaussian); our result in Sec. 3 (Rω(D) ≥ R(D))
gives a principled way to interpret and compare these model-dependent R-D curves.

Information Theory: While the BA algorithm (Blahut, 1972; Arimoto, 1972) solves the problem
of computing the R(D) of a known discrete source, no tools currently exist for the general and
unknown case. Riegler et al. (2018) share our goal of computing R(D) of a general source, but still
require the source being known analytically and supported on a known reference measure. Harrison &
Kontoyiannis (2008) consider the same setup as ours of estimating R(D) of an unknown source from
samples, but focus on purely theoretical aspects assuming prefect optimization. They prove statistical
consistency of such estimators for a general class of alphabets and distortion metrics, assuring that our
stochastic bounds on R(D) optimized from data samples, with unlimited computation and samples,
can converge to the true R(D). Perhaps closest in spirit to our work is Gibson (2017), who estimate
lower bounds on R(D) of speech and video using Gaussian autoregressive models of the source. The
correctness of their bounds therefore depend on the modeling assumptions.

A variational lower bound on R(D) was already proposed by Shannon (1959), and later extended
(Berger, 1971) to the present version similar to Theorem 4.1. In the finite-alphabet case, the
maximization characterization of R(D) directly follows from taking the Lagrange dual of its standard
definition in Eq. 1 (which is itself a convex optimization problem); the dual problem can then be
solved by convex optimization (Chiang & Boyd, 2004), but faces the same limitations as the BA
algorithm. A rigorous proof of Thereom 4.1 for general alphabets is more involved, and is based on
repeated applications of information divergence inequalities (Csiszár, 1974; Gray, 2011).
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Figure 2: Left: R-D upper bounds on a randomly generated 1000-dimensional Gaussian source;
Middle: R-D lower bounds on standard Gaussian sources with increasing dimensions; Right: R-axis
intercept estimates at λ = n

2 from our lower bound algorithm, trained with increasing n and k.

6 EXPERIMENTS

We experiment on three types of sources. On random Gaussian sources, we show that our upper
bound algorithm can converge to the exact R-D function; our lower bounds, however, become
increasingly loose in higher dimensions, and our experiments with varying k offers some insight
into this issue. On banana-shaped sources, which do not have analytical R(D), we obtain tight
sandwich bounds. On the 2-D banana source (Ballé et al., 2021), our bounds lie closely to the R-D
function produced by the BA algorithm. We also randomly map the 2-D banana source to higher
dimensions (up to n = 1000) and still obtain tight sandwich bounds, where the BA algorithm is no
longer infeasible. This shows that our lower bound algorithm can scale to higher dimensional data
with low effective dimension. Finally, we run large-scale experiments on natural images to establish
bounds on its R-D function. While the effective data dimension is still too high for us to obtain useful
lower bounds, we focus on upper bounds. We base our upper bounds on the autoencoder architecture
of a state-of-the-art image compression model, as well as a ResNet-VAE. Our upper bounds suggest
a possible 1 PSNR improvement in compression quality at various bitrates.

6.1 GAUSSIAN SOURCES

The diagonal Gaussian is one of the only sources with a known analytical R-D function. As a first test
of our algorithms, we apply them to randomly generated Gaussians in increasingly high dimensions.

For the upper bound algorithm, we chose QX̂ and QX̂|X to be factorized Gaussians with learned
parameters. We also consider optimizing the variational distributions in a latent space Z with varying
dimensions, using an MLP decoder to map from Z to X̂ (see Sec. 3). The resulting R-D upper
bounds are shown in Fig. 2-Left for a n = 1000 dimensional Gaussian, which shows our R-D upper
bound (yellow curve) accurately recovers the analytical R-D function. The models with decoders
and latent spaces show varied performance; the upper bounds become looser in the low-distortion
regime when dim(Z) < n (red and purple curves), while remaining tight when dim(Z) ≥ n (green,
brown). The results are similar to sources in lower-dimension, and up to n = 10000 (beyond which
we ran out of GPU memory for the larger models). We observe the best performance with a linear (or
identity) decoder and a simple linear encoder (for the parameters of QX̂|X ); using deeper networks
with nonlinear activation required more training iterations for SGD to converge, and often to a poorer
upper bound. In fact, for a diagonal Gaussian source, it can be shown analytically that the optional
Q∗Y |X=x is a Gaussian whose mean depends linearly on x, and an identity (no) decoder is optimal.

For the lower bound algorithm, we parameterize log u by a 2-layer MLP, and study the effect of source
dimension n and the number of samples k used in our estimator Ck (and objective ˜̀

k). To simplify
comparison of R-D results across different source dimensions, here we consider standard Gaussian
sources, whose R-D curve does not vary with n if we scale the rate by 1

n (i.e., rate per sample per
dimension); the results on randomly generated Gaussians are similar. First, we fix k = 1024 and
examine the resulting lower bounds; as shown in Fig. 2-Middle, the bounds quickly become loose
with increasing source dimension. This is likely due to the over-estimation bias of our estimator Ck
for the sup-partition function, which causes under-estimation in the objective ˜̀

k. While Ck is defined
similarly to an M-estimator (Van der Vaart, 2000), it is hard to analyze its convergence behavior in

7



Under review as a conference paper at ICLR 2022

0 2 4
Distortion (mean squared error)

0

2

4

6

R
at

e
(b

it
s

p
er

sa
m

pl
e)

proposed R̂U(D) (MLP decoder)

proposed R̂U(D) (no decoder)
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Figure 3: Left, Middle: Proposed R-D sandwich bounds applied to the 2-D banana source, and
its random projection to higher dimensions, respectively. Right: Quality-rate curves of ours and
state-of-the-art image compression methods on Kodak (1993), corresponding to R-D upper bounds.

general, as it depends on the function u being learned. Empirically, we observe the bias of Ck is
amplified by an increase in the source dimension n or λ, such that an increasingly large k (possibly
exponential in n) is required to effectively train a u model from random initialization. To illustrate
this, we ran a series of experiments with k ranging from 64 to 1024 on increasingly high dimensional
sources, each time setting λ = n

2 . For an n-dimensional Gaussian, the true R-intercept, Fn(λ), has
an analytical form; in particular, Fn(n2 ) = n

2 . In Fig. 2-Right, we plot the final objective estimate, ˜̀
k,

using the converged MLP model, one for each k and n. As we can see, the maximum achievable ˜̀
k

plateaus to the value log k as we increase n, and for sufficiently high dimension (e.g., n = 20 here),
doubling k only brings out a constant (log 2) improvement in the objective. This issue is related to
the number of samples k needed to reliably estimate the mode of a distribution with a kernel density
estimator, and we expand on this in the Appendix.

6.2 BANANA-SHAPED SOURCES

The quickly deteriorating lower bound on the previous Gaussian experiment makes our goal of
sandwiching the R(D) of a general source seem hopeless. In this experiment, we demonstrate that we
can, in fact, obtain tightly matching lower and upper bounds on high dimensional data with sufficiently
low effective dimension. We borrow the 2D banana-shaped source from Ballé et al. (2021), obtained
by a nonlinear transform of a 2D Gaussian. First, we establish sandwich bounds on the original 2D
source, and illustrate the effect of different variational distributions on the upper bounds in Fig. 3-Left.
Our upper bound model (blue curve) uses the same autoencoder architecture as the one in Ballé et al.
(2021) (orange), but replaces its factorized Qx̂ and uniform QX̂|X with normalizing flows, resulting
in a tighter bound. Removing the decoder required deeper flow transforms to achieve the same bound
(green). Our lower bound (red) here agrees with the R-D function of the discretized source from the
BA algorithm (purple), and hugs the upper bounds in low and high distortion regimes. Next, we map
the 2D banana source to Rn with a randomly sampled n× 2 matrix. Fig. 3-Middle shows that we still
obtain tight sandwich bounds in higher dimensions (we verified this for n up to 1000; see figure in
Appendix), where the BA algorithm is infeasible to apply. Unlike in the Gaussian experiment, where
increasing dimension required (seemingly exponentially) larger k for a reasonable lower bound, here
a constant k = 2048 worked well for all n we tested. The key difference compared to the Gaussian
is that despite the high dimension, the data here posses considerable structure and still lies on a
low-dimension manifold 2, a property conjured to hold for real-world data (Goodfellow et al., 2016).

6.3 NATURAL IMAGES

For signals such as images or video, which can have arbitrarily high spatial dimension, it is not
immediately clear how to define i.i.d. samples. But since our focus is on image compression,
we follow the common practice of extracting random 256×256-pixel crops from high resolution
images as in learned image compression research (Ballé et al., 2017), noting that current methods
cannot effectively exploit spatial redundancies larger than this scale (Minnen & Singh, 2020). As a

2Indeed, the standard Gaussian attains Shannon’s R(D) upper bound for any source with a density under the
squared error distortion (Shannon, 1959), and is in this sense the hardest continuous source to compress.
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representative dataset of natural images, we used images from the COCO 2017 (Lin et al., 2014) train
set that are larger than 512×512, and randomly downsampled them to remove compression artifacts.

Instead of working with variational distributions over the set of pixel values X̂ = X =
{0, 1, ..., 255}n, which would require specialized tools for representing and optimizing high-
dimensional discrete distributions (Salimans et al., 2017; Hoogeboom et al., 2019; Maddison et al.,
2016; Jang et al., 2016), for simplicity we parameterize the variational distributions in Euclidean
latent spaces (see Sec. 3). We borrow the convolutional autoencoder architecture of a state-of-the-art
image compression model (Minnen & Singh, 2020), and set the variational distributions to be diagonal
Gaussians with learned means and variances (we still use the deep factorized hyperprior, but drop the
shape restriction). Inspired by Vahdat & Kautz (2020), we also constructed a ResNet-VAE model
(Kingma et al., 2016) with 6 layers of latent variables. For the two models, dim(Z) ≈ 0.28 dim(X )
and dim(Z) ≈ 0.66 dim(X ), respectively. We trained models with various λ and mean-squared error
(MSE) distortion, and evaluated them on the Kodak (1993) and Tecnick (Asuni & Giachetti, 2014)
datasets. Following image compression conventions, we report the rate in bits-per-pixel, and the
quality (i.e., negative distortion) in PSNR averaged over the images for each (λ, model) pair 3. The
resulting quality-rate (Q-R) curves can be interpreted as giving upper bounds on the R-D functions
of the image-generating distributions. We plot them in Fig. 3, along with the Q-R performance (in
actual bitrate) of various hand-engineered and learned image compression methods (Ballé et al., 2017;
Minnen et al., 2018; Minnen & Singh, 2020), for the Kodak dataset (see similar results on Tecnick in
Appendix 4). Our β-VAE model based on (Minnen & Singh, 2020) (orange) lies on average 0.85
PSNR higher than the state-of-the-art base compressive autoencoder, and contrary to our expectation,
we did not obtain drastically improved bounds by using normalizing flow instead of Gaussian QX̂|X
distributions. By using a deeper latent architecture, our new model gives a higher Q-R curve (blue).
We leave it to future work to investigate which choice of autoencoder architecture, latent space, and
variational distributions are most effective, as well as how the R-D performance of such a β-VAE can
be realized by an actual compression algorithm (see discussions in Sec. 5).

7 DISCUSSIONS

In this work, we used machine learning techniques to computationally bound the rate-distortion
function of a data source, a key quantity that characterizes the fundamental performance limit of all
lossy compression algorithms, but is largely unknown. Departing from prior work in the information
theory community (Gibson, 2017; Riegler et al., 2018), our approach applies broadly to general data
sources and requires only i.i.d. samples, making it more suitable for real-world application.

Our upper bound method is a gradient descent version of the classic Blahut-Arimoto algorithm, and
closely relates to (and extends) variational autoencoders from neural lossy compression research.
Our lower bound optimizes a dual formulation of the R-D function, which has been known for
some time but seen little application outside of theoretical work. Due to difficulties involving global
optimization, our lower bound method currently requires a squared error distortion for tractability in
the continuous case, and only yields useful bounds on data sources with a low effective dimension.

To properly interpret bounds on the R-D function, we emphasize that the significance of the R-D
function is two-fold: 1. for a given distortion tolerance D, no coding procedure can operate with a
rate less than R(D), and that 2. this rate is asymptotically achievable by some (potentially expensive)
procedure. Therefore, a lower bound makes a universal statement about what kind of rate-distortion
performance is “too good to be true”. The story is more subtle for the upper bound, due to the
asymptotic nature of R(D). The achievability proof relies on a random coding procedure that jointly
compresses multiple data samples in increasingly long blocks (Shannon, 1959). When compressing
at a finite block length b (e.g., b = 1 when compressing individual images), R(D) is generally no
longer achievable, due to a rate overhead that scales like b−

1
2 (Kostina & Verdú, 2012). Extending

our work to the case of compression with finite-block lengths could be an impactful future direction.

Finally, it would be interesting to extend our approach to perceptually more relevant distortions
(Wang et al., 2003) and non-i.i.d. data.

3Technically, to compute an R-D upper bound with MSE ρ, the distortion needs to be evaluated by averaging
MSE (instead of PSNR) on samples.
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As our work deals with theoretical aspects of lossy compression, we are not aware of any resulting
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A APPENDIX

A.1 TECHNICAL DEFINITIONS

In this work we consider a the source to be represented by a random variable X : Ω → X , i.e., a
measurable function on an underlying probability space (Ω,F ,P), and PX is the image measure of
P under X . We suppose the source and reproduction spaces are standard Borel spaces, (X ,AX ) and
(X̂ ,AX̂ ), equipped with sigma-algebras AX and AX̂ , respectively.

Conditional distribution The notation QX̂|X denotes an arbitrary conditional distribution (also
known as a Markov kernel), i.e., it satifies

1. For any x ∈ X , QX̂|X=x(·) is a probability measure on X̂ ;

2. For any measurable set B ∈ AX̂ , x→ QX̂|X=x(B) is a measurable function on X .

Induced joint and marginal measures Given a source distribution PX , each test channel distri-
bution QX̂|X defines a joint distribution PXQX̂|X on the product space X × X̂ (equipped with the
usual product sigma algebra, AX ×AX̂ ) as follows:

PXQX̂|X(E) :=

∫
X
PX(dx)

∫
X̂
1{(x, x̂) ∈ E}QX̂|X=x(dx̂),

for all measurable sets E ∈ AX ×AX̂ . The induced x̂-marginal distribution PX̂ is then defined by

PX̂(B) =

∫
X
QX̂|X=x(B)PX(dx),

for all measurable sets ∀B ∈ AX̂ .

KL Divergence We use the general definition of Kullback-Leibler (KL) divergence between two
probability measures P,Q defined on a common measurable space:

D(P‖Q) :=

{∫
log dP

dQdP, if P � Q

∞, otherwise.

P � Q denotes that P is absolutely continuous w.r.t. Q (i.e., for all measurable sets E, Q(E) =
0 =⇒ P (E) = 0). dP

dQ denotes the Radon-Nikodym derivative of P w.r.t. Q; for discrete
distributions, we can simply take it to be the ratio of probability mass functions; and for continuous
distributions, we can simply take it to be the ratio of probability density functions.

Mutual Information Given PX and QX̂|X , the mutual information I(X;Y ) is defined as

I(X; X̂) := D(PXQX̂|X‖PX ⊗ PX̂) = Ex∼PX
[D(QX̂|X=x‖PX̂)],

where PX̂ is the x̂-marginal of the joint PXQX̂|X , PX ⊗ PX̂ denotes the usual product measure, and
D(·‖·) is the KL divergence.

For the mutual information upper bound, it’s easy to show that

IU (QX̂|X , QX̂) := Ex∼PX
[KL(QX̂|X=x‖QX̂)] = I(X; X̂) +KL(PX̂‖QX̂), (9)

so the bound is tight when PX̂ = QX̂ .

Obtaining R(D) through the Lagrangian. For each λ ≥ 0, we define the Lagrangian by incor-
porating the distortion constraint in the definition of R(D) through a linear penalty:

L(QX̂|X , λ) := I(X; X̂) + λEPXQX̂|X
[ρ(X, X̂)], (10)
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and define its infimum w.r.t. QX̂|X by the function

F (λ) := inf
QX̂|X

I(X; X̂) + λE[ρ(X, X̂)]. (11)

Geometrically, F (λ) is the maximum of the R-axis intercepts of straight lines of slope −λ, such that
they have no point above the R(D) curve (Csiszár, 1974).

Define Dmin := inf{D′ : R(D′) <∞}. Since R(D) is convex, for each D > Dmin, there exists a
λ ≥ 0 such that the line of slope −λ through (D,R(D)) is tangent to the R(D) curve, i.e.,

R(D′) + λD′ ≥ R(D) + λ(D) = F (λ), ∀D′.
When this occurs, we say that λ is associated to D.

Consequently, the R(D) curve is then the envelope of lines with slope −λ and R-axis intercept F (λ).
Formally, this can be stated as:

Lemma A.1 (Csiszár (1974, Lemma 1.2); Gray (2011, Lemma 9.7)). For every distortion tolerance
D > Dmin, where Dmin := inf{D′ : R(D′) <∞}, it holds that

R(D) = max
λ≥0

F (λ)− λD (12)

We can draw the following conclusions:

1. For each D > Dmin, the maximum above is attained iff λ is associated to D.

2. For a fixed λ, if Q∗Y |X achieves the minimum of L(·, λ), then λ is associated to the point
(I(Q∗Y |X), ρ(Q∗Y |X)); i.e., there exists a line with slope −λ that is tangent to the R(D)

curve at (I(Q∗Y |X), ρ(Q∗Y |X)).

A.2 FULL VERSION OF THEOREM 4.1

Theorem A.2. (We use the following version from (Kostina, 2016).) Suppose that the following basic
assumptions are satisfied.

1. R(D) is finite for some D, i.e., Dmin := inf{D : R(D) <∞} <∞;

2. The distortion metric ρ is such that there exists a finite set E ⊂ X̂ such that

E[min
x̂∈E

ρ(X, x̂)] <∞

Then, for each D > Dmin, it holds that

R(D) = max
g(x),λ

{E[− log g(X)]− λD} (13)

where the maximization is over g(x) ≥ 0 and λ ≥ 0 satisfying the constraint

E
[

exp(−λρ(X, x̂))

g(X)

]
=

∫
exp(−λρ(x, x̂))

g(x)
dPX(x) ≤ 1,∀y ∈ X̂ (14)

Note: the basic assumption 2 is trivially satisfied when the distortion ρ is bounded from above; the
maximization over g(x) ≥ 0 can be restricted to only 1 ≥ g(x) ≥ 0. Unless stated otherwise, we use
log base e in this work, so the R(D) above is in terms of nats.

Theorem 4.1 in the main text in terms of F (λ) is equivalent to the above by fixing a D and λ value.
In our earlier attempts of the lower bound algorithm, we used the full R-D duality formulation as
in Theorem A.2, producing R(D) lower bounds by fixing a D and optimizing over λ for various D
values. However, the algorithm often diverged due to drastically changing λ. We avoid this by using
current formulation of fixing λ in the optimization, and produce R(D) lower bound by ranging over
λ (instead of D).
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A.3 THEORETICAL RESULTS

Proof that Rω(D) ≥ R(D) In learned compression with VAEs, a latent space Z is introduced,
along with a learned decoder transform ω : Z → X̂ . This induces a learned distortion function
ρω : X × Z → [0,∞), ρω(x, z) = ρ(x, ω(Z)), where ρ is the “base” distortion.

Below we show that the rate-distortion function under a learned decoder,

Rω(D) = inf
QZ|X :E[ρω(X,Z)]≤D

I(X;Z) = inf
QZ|X :E[ρ(X,ω(Z))]≤D

I(X;Z),

is an upper bound on the source R(D):

R(D) = inf
QX̂|X :E[ρ(X,X̂)]≤D

I(X; X̂).

Moreover, a sufficient condition for Rω(D) = R(D) is for ω to be injective, and that the range of ω
must cover the support of QX̂|X=x for PX -almost all x; e.g., this is satisfied by a bijective ω with

Z = X̂ .

Proof. Fix D. Take any admissible conditional distribution QZ|X that satisfies E[ρ(X,ω(Z))] ≤ D
in the definition of Rω(D). Define a new kernel QX̂|X between X and X̂ by QX̂|X=x := QZ|X=x ◦
ω−1,∀x ∈ X , i.e., QX̂|X=x is the pushforward/image measure of QZ|X=x induced by ω. Applying

data processing inequality to the Markov chain X
QZ|X−−−→ Z

ω−→ X̂ , we have I(X;Z) ≥ I(X; X̂).

Moreover, since QX̂|X is admissible in the definition of R(D), i.e.,

EPXQX̂|X
[ρ(X, X̂)] = EPXQZ|X [ρ(X,ω(Z))] ≤ D

we therefore have
I(X;Z) ≥ I(X; X̂) ≥ R(D).

Finally, since I(X;Z) ≥ R(D) holds for any admissible QZ|X , taking infimum over such QZ|X
gives Rω(D) ≥ R(D).

To prove Rω(D) = R(D) when ω satisfies the sufficiency condition (injective, and
supp(QX̂|X=x) ⊂ range(ω) for PX -almost all x ∈ X ), it suffices to show that R(D) ≥ Rω(D).
We use the same argument as before. Take any admissible QX̂|X in the definition of R(D). We

can then construct a QZ|X by the process X
QX̂|X−−−−→ Y

ω−1

−−→ Z, where the inverse function
ω−1 : y → z is well-defined thanks to ω being bijective (or at least the range of ω covers the
support of QX̂|X ). Then by DPI we have I(X; X̂) ≥ I(X;Z); furthermore we can check QZ|X
is admissible: EPXQZ|X [ρ(X,ω(Z))] = EPXQX̂|X

[ρ(X,ω(ω−1(Y ))] = EPXQX̂|X
[ρ(X, X̂)] ≤ D.

So I(X; X̂) ≥ I(X;Z) ≥ Rω(D). Taking infimum over QX̂|X concludes the proof.

Theorem A.3. Let X1, X2, ... ∼ PX be a sequence of i.i.d. random variables. Let ψ : X × X̂ → R
be a measurable function. For each k, define the random variable Ck := supx̂

1
k

∑
i ψ(Xi, x̂). Then

1. E[Ck] = EX1,...,Xk
[supx̂

1
k

∑
i ψ(Xi, x̂)] ≥ supx̂ E[ψ(X, x̂)] =: c;

2. E[C1] ≥ E[C2] ≥ ... ≥ E[Ck] ≥ E[Ck+1] ≥ ... supx̂ E[ψ(X, x̂)] = c;

3. If ψ(x, x̂) is bounded and continuous in x̂, and if X̂ is compact, then Ck converges to c
almost surely (as well as in probability, i.e., limk→∞ P(|Ck − c| > ε) = 0,∀ε > 0), and
limk→∞ E[Ck] = c.

Proof. We prove each in turn:

1. E[Ck] = E[supx̂
1
k

∑
i ψ(Xi, x̂)] ≥ supx̂ E[ 1k

∑
i ψ(Xi, x̂)] = supx̂ E[ψ(X, x̂)] = c
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2. First, note that E[C1] ≥ E[Ck] since

E[C1] = E[sup
x̂
ψ(X1, x̂)] = E[

1

k

∑
i

sup
x̂
ψ(Xi, x̂)] ≥ E[sup

x̂

1

k

∑
i

ψ(Xi, x̂)] = E[Ck]

We therefore have

E[Ck+1] = E[sup
x̂

1

k + 1

k+1∑
i=1

ψ(Xi, x̂)]

= E[sup
x̂
{ 1

k + 1

k∑
i=1

ψ(Xi, x̂) +
1

k + 1
ψ(Xk+1, x̂)}]

≤ E[sup
x̂
{ 1

k + 1

k∑
i=1

ψ(Xi, x̂)}+ sup
x̂
{ 1

k + 1
ψ(Xk+1, x̂)}]

=
k

k + 1
E[Ck] +

1

k + 1
E[C1]

≤ E[Ck]

3. The proof for this resembles that of Theorem 1 in (Burda et al., 2015). We use standard
arguments from probability theory and real analysis. Fix x̂ ∈ X̂ , and consider the random
variable Mk = 1

k

∑k
i=1 ψ(Xi, x̂). If ψ is bounded, then it follows from the Strong Law of

Large Numbers that Mk converges to E[M1] = E[ψ(X, x̂)] almost surely; in other words,
for every ω outside a set of measure zero,

lim
k→∞

1

k

k∑
i=1

ψ(Xi(ω)), x̂) = E[ψ(X(ω), x̂)],

Then, for every such ω

lim
k→∞

sup
x̂

1

k

k∑
i=1

ψ(Xi(ω)), x̂) = sup
x̂

lim
k→∞

1

k

k∑
i=1

ψ(Xi(ω)), x̂) = sup
x̂

E[ψ(X(ω), x̂)],

where we used the fact that the sequence of continuous functions sk(x̂) :=
1
k

∑k
i=1 ψ(Xi(ω)), x̂) converges pointwise to s(x̂) := E[ψ(X(ω), x̂)] on a compact set

X̂ , so sk converges to s also uniformly, so we are allowed to exchange limit and supremum,
i.e., limk→∞ supx̂ sk(x̂) = supx̂ limk→∞ sk(x̂) = supx̂ s(x̂). But the above equation
precisely means that Ck converges to c = supx̂ E[ψ(X, x̂)] almost surely. Therefore Ck
also converges to c in probability, and limk→∞ E[Ck] = c.

A.4 PROPOSED LOWER BOUND ALGORITHM

We give an outline of the algorithm in A.4. In our experiments, we only run an approximate version
of the global optimization subroutine compute Ck, by running hill-climbing only from the t
centroids of the Gaussian mixture that have the t highest mixture weights, for t << k. We typically
use t = 10 with k = 1024 in our experiments, which allows us to train efficiently. To report the final
R-axis intercept for an R-D lower bound, we carry out the global optimization procedure exhaustively
to guarantee correctness.
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Algorithm 1: Proposed algorithm for estimating rate-distortion lower bound RL(D).
Requires: λ > 0, model uθ (e.g., a neural network) parameterized by θ, and batch sizes k,m
while θ not converged do

// Estimate E[Ck] by averaging m samples of Ck
for j ← 1 to m do

Draw k data samples, {xj1, ..., xjk}
x̂j , Cjk = compute Ck(θ, λ, {x1, ..., xk})

end
Set E[Ck] = 1

m

∑m
j=1 C

j
k = 1

m

∑m
j=1

1
k

∑k
i=1 exp{−λρ(xji , x̂

j)}/uθ(xji );
Repeat the same procedure and set α = E[Ck] using separate m samples of Ck.
Compute objective ˜̀

k(θ) and update θ by gradient ascent .
end
Subroutine compute Ck(θ, λ, {x1, ..., xk}) :

Compute the global optimum of φ(x̂) := 1
k

∑k
i=1 exp{−λρ(xi, x̂)}/uθ(xi),

x̂∗ = arg maxφ(x̂)

Compute Ĉk = φ(x̂∗)

Return (x̂∗, Ĉk)

A.5 FURTHER EXPERIMENT DETAILS

A.5.1 GAUSSIANS

For the randomly generated Gaussians, we sample each dimension of the mean uniformly randomly
from [−0.5, 0.5] and variance from [0, 2].

We chose QX̂ and QX̂|X to be factorized Gaussians; we let the mean and diagonal variance of QX̂ be
trainable parameters, and predict the mean and variance of QX̂|X=x by a one-layer fully connected
network (MLP) with 2n output units and softplus activation for the n variance components.

We consider three choices of decoder ω: the identity function (“no decoder”), a one-layer network
with no activation (“linear decoder”), and a two-layer MLP with leaky ReLU activation (“MLP
dcoder”). The resulting R-D curves are shown in Fig 1 (a), (b), for n = 10 and 10000. As can be
seen, the basic algorithm (without decoder) recovers the ground truth R-D function, as does the
version with linear decoder function, independent of the source dimension. The use of a non-linear
decoder, however, results in a looser upper bound, and the gap increases with the source dimension.
We conjecture this is due to SGD being trapped in local minima, which grow more abundant as the
size of the MLP increases. In fact, for the diagonal Gaussian source, it can be shown analytically
(Cover & Thomas, 2006) that the optional Q∗Y |X=x is a Gaussian distribution whose mean depends
linearly on x, and an identity decoder is optimal.

In another experiment, we investigate the effect of the dimensionality of the latent space on the result.
We took the n = 100 model from the previous experiment with linear decoder, and modified the
dimension of the encoder output, in effect creating a latent space with a different dimension than n.
We trained models with various dim(Z), and plot the resulting R-D curves. Figure 1 (c) shows that
the R-D upper bound suffers when dim(Z) < dim(X̂ ), and is unaffected otherwise.

A.5.2 BANANA-SHAPED SOURCE

For the upper bound algorithm, we base our model architecture on the compressive autoencoder in
Ballé et al. (2021), using a 2-dimensional latent space and two-layer MLPs for both the encoder
and decoder. We parameterize QZ by a MAF (Papamakarios et al., 2017), and QZ|X by a diagonal
Gaussian distribution. The resulting upper bound is shown as the blue curve in Fig. ??, and it can
be seen to give a tighter upper bound than the compressive autoencoder (Ballé et al., 2021). As an
ablation, we also train a variant model with identity decoder (so X̂ = Z); we found the resulting
bound is much looser, and we were only able to match the bound of the original model by increasing
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Figure 4: Quality-rate curves on the Tecnick dataset.

the depth of the MAFQZ as well as adopting an IAF (Kingma et al., 2016)QZ|X distribution (plotted
in green curve).

A.5.3 NATURAL IMAGES
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