
Universal approximation and model compression

for radial neural networks

Anonymous Author(s)

Affiliation
Address
email

Abstract

We introduce a class of fully-connected neural networks whose activa-1

tion functions, rather than being pointwise, rescale feature vectors by a2

function depending only on their norm. We call such networks radial3

neural networks, extending previous work on rotation equivariant net-4

works that considers rescaling activations in less generality. We prove5

universal approximation theorems for radial neural networks, including6

in the more difficult cases of bounded widths and unbounded domains.7

Our proof techniques are novel, distinct from those in the pointwise case.8

Additionally, radial neural networks exhibit a rich group of orthogonal9

change-of-basis symmetries on the vector space of trainable parameters.10

Factoring out these symmetries leads to a practical lossless model com-11

pression algorithm. Optimization of the compressed model by gradient12

descent is equivalent to projected gradient descent for the full model.13

1 Introduction14

Inspired by biological neural networks, the theory of artificial neural networks has largely15

focused on pointwise (or “local”) nonlinear layers [46, 14], in which the same function16

s : R ! R is applied to each coordinate independently:17

Rn
! Rn, v = (v1 , . . . , vn) 7! (s(v1) , s(v2) , . . . , s(vn)). (1.1)

In networks with pointwise nonlinearities, the standard basis vectors in Rn can be inter-18

preted as “neurons” and the nonlinearity as a “neuron activation.” Research has generally19

focused on finding functions s which lead to more stable training, have less sensitivity to20

initialization, or are better adapted to certain applications [42, 38, 37, 10, 29]. Many s have21

been considered, including sigmoid, ReLU, arctangent, ELU, Swish, and others.22

However, by setting aside the biological metaphor, it is possible to consider a much23

broader class of nonlinearities, which are not necessarily pointwise, but instead depend24

simultaneously on many coordinates. Neural networks using such nonlinearities may yield25

expressive function classes with different advantages. One example is radial basis networks26

[4], which contain nonlinearities of the form kv� ck, which depend on all coordinates of v.27

However, each coordinate output is still independent.28

In this paper, we introduce radial neural networks which employ non-pointwise nonlin-29

earities called radial rescaling activations. Freedom from the pointwise assumption allows30

us to design activation functions that maximize symmetry in the parameter space of the31

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not
distribute.

σ

σ
σ

σ

ρ
||·|| λ

Wi-1 Wi Wi-1 Wi

Figure 1: (Left) Pointwise activations distinguish a specific basis of each hidden layer and
treat each coordinate independently, see equation 1.1. (Right) Radial rescaling activations
rescale each feature vector by a function of the norm, see equation 1.2.

neural network. Such networks enjoy several provable properties including high model32

compressibility, symmetry in optimization, and universal approximation. These activations33

are defined by rescaling each vector by a scalar that depends only on the norm of the34

vector:35

r : Rn
! Rn, v 7! l(|v|)v, (1.2)

where l is a scalar-valued function of the norm. Whereas in the pointwise setting, only the36

linear layers mix information between different components of the latent features, for radial37

rescaling, all coordinates of the activation output vector are affected by all coordinates of38

the activation input vector. The inherent geometric symmetry of radial rescalings makes39

them particularly useful for designing equivariant neural networks [55, 47, 56, 57].40

In our first set of main results, we prove that radial neural networks are in fact universal41

approximators. Specifically, we demonstrate that any asymptotically affine function can be42

approximated with a radial neural network, suggesting potentially good extrapolation43

behavior. Moreover, this approximation can be done with bounded width. Our approach44

to proving these results differs significantly from standard techniques used in the case45

of pointwise activations due to the fact that coordinates cannot be treated independently46

when dealing with non-pointwise activations.47

In our second set of main results, we exploit parameter space symmetries of radial neural48

networks to achieve model compression. Using the fact that radial rescaling activations49

commute with orthogonal transformations, we develop a practical algorithm to system-50

atically factor out orthogonal symmetries via iterated QR decompositions. This leads to51

another radial neural network with fewer neurons in each hidden layer. The resulting52

model compression algorithm is lossless: the compressed network and the original network53

both have the same value of the loss function on any batch of training data.54

Furthermore, we prove that the loss of the compressed model after one step of gradient55

descent is equal to the loss of the original model after one step of projected gradient descent.56

As explained below, projected gradient descent involves zeroing out certain parameter57

values after each step of gradient descent. Although training the original network may58

result in a lower loss function after fewer epochs, in many cases the compressed network59

takes less time per epoch to train and is faster in reaching a local minimum.60

To summarize, our main contributions are:61

• A formalization of radial neural networks, a new class of neural networks;62

• Two universal approximations results for radial neural networks: a) approximation63

of asymptotically affine functions, and b) bounded width approximation;64

• An implementation of a lossless model compression algorithm for radial neural65

networks;66

• A theorem providing the precise relationship between gradient descent optimiza-67

tion of the original and compressed networks.68

2

2 Related work69

Radial rescaling activations. Radial rescaling functions have the symmetry property70

of preserving vector directions, and hence exhibit rotation equivariance. Consequently,71

examples of such functions, such as the squashing nonlinearity and Norm-ReLU, feature in72

the study of rotationally equivariant neural networks [55, 47, 56, 57, 26]. However, previous73

works apply the activation only along the channel dimension, and consider the orthogonal74

group O(n) only for n = 2, 3. In contrast, we consider a radial rescaling activation across75

the entire hidden layer, and O(n)-equivariance where n is the hidden layer dimension. Our76

constructions echo the vector neurons formalism [15], in which the output of a nonlinearity77

is a vector rather than a scalar. For radial basis networks, each hidden neuron is a radial78

nonlinear function of the shifted input vector, but the outputs are independent, whereas79

for radial rescaling functions, the outputs are also tied together [4].80

Universal approximation. Neural networks of arbitrary width and sigmoid activations81

have long been known to be universal approximators [14]. Universal approximation can82

also be achieved by bounded width networks with arbitrary depth [36]. Additional work83

has generalized to other activation functions and neural architectures [24, 60, 43, 50]. While84

most work has focused on compact domains, some recent work also considers non-compact85

domains [28, 54]. The techniques used for pointwise activation functions generalize to86

radial basis networks since the outputs of each RBF are independent [40], but do not easily87

generalize to the radial rescaling activations considered here, because all coordinates of the88

activation output vector are affected by all coordinates of the activation input vector. As a89

consequence, individual radial neural network approximators of two different functions90

cannot be easily combined to give an approximator of the sum of the functions.91

Groups and symmetry. Appearances of symmetry in machine learning have generally92

focused on symmetric input and output spaces. Most prominently, equivariant neural93

networks incorporate symmetry as an inductive bias and feature weight-sharing constraints94

based on equivariance with respect to various symmetry groups. Examples of equivariant95

architectures include G-convolution, steerable CNN, and Clebsch-Gordon networks [13, 55,96

11, 9, 30, 2, 58, 12, 57, 16, 31, 44]. By contrast, our approach to radial neural networks does97

not depend on symmetries of the input domain, output space, or feedforward mapping.98

Instead, we exploit parameter space symmetries and thus obtain more general results that99

apply to domains with no apparent symmetry.100

Model compression. A major goal in machine learning is to find methods to reduce101

the number of trainable parameters, decrease memory usage, or accelerate inference and102

training [8, 61]. Our approach toward this goal differs significantly from most existing103

methods in that it is based on the inherent symmetry of network parameter spaces. One104

prior method is weight pruning, which removes redundant or small weights from a network105

with little loss in accuracy [20, 3, 27]. Pruning can be done during training [18] or at106

initialization [34, 53]. Gradient-based pruning identifies low saliency weights by estimating107

the increase in loss resulting from their removal [33, 22, 17, 39]. A complementary approach108

is quantization, which decreases the bit depth of weights [59, 25, 19]. Knowledge distillation109

identifies a small model mimicking the performance of a larger model or ensemble110

of models [5, 23, 1]. Matrix Factorization methods replace fully connected layers with111

lower rank or sparse factored tensors [6, 7, 52, 32, 45, 35] and can often be applied112

before training. Our method involves a type of matrix factorization based on the QR113

decomposition; however, rather than aim for a rank reduction of linear layers, we leverage114

this decomposition to reduce hidden widths via change-of-basis operations on the hidden115

representations. Close to our method are lossless compression methods which remove116

stable neurons in ReLU networks [49, 48] or exploit permutation parameter space symmetry117

to remove redundant neurons [51]; our compression instead follows from the symmetries118

of the radial rescaling activation. Finally, the model compression results of [26], while119

conceptually similar to ours, are weaker, as (1) the unitary group action is on disjoint layers120

instead of iteratively moving through all layers, and (2) the results are only stated for a121

version of the squashing nonlinearity.122

3

�2 �1.5 �1 �0.5 0.5 1 1.5 2

�2
�1.5
�1
�0.5

0.5
1

1.5
2 (1) Step-ReLU(r)

(3) Shifted ReLU

(2) Squashing function

Figure 2: Examples of different radial rescaling functions in R1, see Example 1.

3 Radial neural networks123

In this section, we define radial rescaling functions and radial neural networks. Let124

h : R ! R be a function. For any n � 1, set:125

h(n) : Rn
! Rn h(n)(v) = h(|v|)

v
|v|

for v 6= 0, and h(n)(0) = 0. A function r : Rn ! Rn is called a radial rescaling function if126

r = h(n) for some piecewise differentiable h : R ! R. Hence, r sends each input vector to127

a scalar multiple of itself, and that scalar depends only on the norm of the vector1. It is128

easy to show that radial rescaling functions commute with orthogonal transformations.129

Example 1. (1) Step-ReLU, where h(r) = r if r � 1 and 0 otherwise. In this case, the radial130

rescaling function is given by131

r : Rn
! Rn, v 7! v if |v| � 1; v 7! 0 if |v| < 1 (3.1)

(2) The squashing function, where h(r) = r2/(r2 + 1). (3) Shifted ReLU, where h(r) =132

max(0, r � b) for r > 0 and b is a real number. See Figure 2. We refer to [55] and the133

references therein for more examples and discussion of radial functions.134

A radial neural network with L layers consists of a positive integer ni indicating the width of135

each layer i = 0, 1, . . . , L; the trainable parameters, comprising of a matrix Wi 2 Rni⇥ni�1136

of weights and a bias vector bi 2 Rni for each i = 1, . . . , L; and a radial rescaling function137

ri : Rni ! Rni for each i = 1, . . . , L. We refer to the tuple n = (n0, n1, . . . , nL) as the widths138

vector of the neural network. The hidden widths vector is n
hid = (n1, n2, . . . , nL�1). The139

feedforward function F : Rn0 ! RnL of a radial neural network is defined in the usual way140

as an iterated composition of affine maps and activations. Explicitly, set F0 = idRn0 and141

recursively define the partial feedforward functions:142

Fi : Rn0 ! Rni , x 7! ri (Wi � Fi�1(x) + bi)

for i = 1, . . . , L. Then the feedforward function is F = FL.143

Remark 2. If bi = 0 for all i, then the feedforward function takes the form F(x) = W (µ(x)x)144

where µ : Rn ! R is a scalar-valued function and W = WLWL�1 · · ·W1 2 RnL⇥n0 is the145

product of the weight matrices. If any of the biases are non-zero, then the feedforward146

function lacks such a simple form.147

1A function Rn ! R that depends only on the norm of a vector is known as a radial function.
Radial rescaling functions rescale each vector according to the radial function v 7! l(|v|) = h(|v|)

|v| .
This explains the connection to Equation 1.2.

4

4 Universal Approximation148

In this section, we consider two universal approximation results. The first approxi-149

mates asymptotically affine functions with a network of unbounded width. The second150

generalizes to bounded width networks. Proofs appear in Appendix B. Throughout,151

Br(c) = {x 2 Rn : |x � c| < r} denotes the r-ball around a point c, and an affine map152

Rn ! Rm is one of the from L(x) = Ax + b for a matrix A 2 Rm⇥n and b 2 Rm.153

4.1 Approximation of asymptotically affine functions154

A continuous function f : Rn ! Rm is said to be asymptotically affine if there exists an155

affine map L : Rn ! Rm such that, for every e > 0, there is a compact subset K of Rn156

such that |L(x)� f (x)| < e for all x 2 Rn \ K. In particular, continuous functions with157

compact support are asymptotically affine. The continuity of f and compactness of K imply158

that, for any e > 0, there exist c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) such that, first, the159

union of the balls Bri (ci) covers K and, second, for all i, we have f (Bri (ci) \ K) ✓ Be(f (ci)).160

Let N(f , K, e) be the minimal choice of N. In many cases, the constant N(f , K, e) can be161

bounded explicitly2.162

Theorem 3 (Universal approximation). Let f : Rn ! Rm be an asymptotically affine function.163

For any e > 0, there exists a compact set K ⇢ Rn and a function F : Rn ! Rm such that:164

1. F is the feedforward function of a radial neural network with N = N(f , K, e) layers whose165

hidden widths are (n + 1, n + 2, . . . , n + N).166

2. For any x 2 Rn, we have |F(x)� f (x)| < e.167

We note that the approximation in Theorem 3 is valid on all of Rn. To give an idea of the168

proof, first fix c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) as above. Let e1, . . . , eN be orthonormal169

basis vectors extending Rn to Rn+N . For i = 1, . . . , N define the following affine maps:170

Ti : Rn+i�1
! Rn+i Si : Rn+i

! Rn+i

z 7! z� ci + hiei z 7! z� (1 + h�1
i)hei, ziei + ci + ei

where hi =
q

1� r2
i and hei, zi is the coefficient of ei in z. Setting ri to be Step-ReLU171

(Equation 3.1) on Rn+i, these maps are chosen so that the composition Si � ri � Ti maps172

the points in Bri (ci) to ci + ei, while keeping points outside this ball the same. We now173

describe a radial neural network with widths (n, n + 1, . . . , n + N, m) whose feedforward174

function approximates f . For i = 1, . . . , N the affine map from layer i� 1 to layer i is given175

by z 7! Ti � Si�1(z), with S0 = idRn . The activation at each hidden layer is Step-ReLU. Let176

L be the affine map such that |L� f | < e on Rn \ K. The affine map from layer N to the177

output layer is F � SN where F : Rn+N ! Rm is the unique affine map determined by178

x 7! L(x) if x 2 Rn, and ei 7! f (ci)� L(ci). This construction is illustrated in Figure 3.179

4.2 Bounded width approximation180

We now turn our attention to a bounded width universal approximation result.181

Theorem 4. Let f : Rn ! Rm be an asymptotically affine function. For any e > 0, there exists a182

compact set K ⇢ Rn and a function F : Rn ! Rm such that:183

1. F is the feedforward function of a radial neural network with N = N(f , K, e) hidden184

layers whose widths are all n + m + 1.185

2. For any x 2 Rn, we have |F(x)� f (x)| < e.186

The proof, which is more involved than that of Theorem 3, relies on using orthogonal187

dimensions to represent the domain and the range of f , together with an indicator188

2For example, if K is the unit cube in Rn and f is Lipschitz continuous with Lipschitz constant R,

then N(f , K, e) 
l

R
p

n
2e

mn
.

5

Rn

K

c1
c2

c3

c4

c5 c6

c7

c8

c2 + e2

c2

S2 � r � T2

Rm

f (c2)

F

Figure 3: Two layers of the radial neural network used in the proof of Theorem 3. (Left)
The compact set K is covered with open balls. (Middle) Points close to c2 (green ball) are
mapped to c2 + e2, all other points are kept the same. (Right) In the final layer, c2 + e2 is
mapped to f (c2).

dimension to distinguish the two. We regard points in Rn+m+1 as triples (x, y, q) where189

x 2 Rn, y 2 Rm and q 2 R. The proof of Theorem 4 parallels that of Theorem 3, but instead190

of mapping points in Bri (ci) to ci + ei, we map the points in Bri ((ci, 0, 0)) to (0, f (ci)�L(0)
s , 1),191

where s is chosen such that different balls do not interfere. The final layer then uses an192

affine map (x, y, q) 7! L(x) + sy, which takes (x, 0, 0) to L(x), and (0, f (ci)�L(0)
s , 1) to f (ci).193

We remark on several additional results; see Appendix B for full statements and proofs.194

The bound of Theorem 4 can be strengthened to max(n, m) + 1 in the case of functions195

f : K ! Rm defined on a compact domain K ⇢ Rn (i.e., ignoring asymptotic behavior).196

Furthermore, with more layers, it is possible to reduce that bound to max(n, m).197

5 Model compression198

In this section, we prove a model compression result. Specifically, we provide an algorithm199

which, given any radial neural network, computes a different radial neural network with200

smaller widths. The resulting compressed network has the same feedforward function201

as the original network, and hence the same value of the loss function on any batch of202

training data. In other words, our model compression procedure is lossless. Although203

our algorithm is practical and explicit, it reflects more conceptual phenomena, namely, a204

change-of-basis action on network parameter spaces (Section 5.1).205

5.1 The parameter space206

Suppose a fully connected network has L layers and widths given by the tuple n =207

(n0, n1, n2, . . . , nL�1, nL). In other words, the i-th layer has input width ni�1 and output208

width ni. The parameter space is defined as the vector space of all possible choices of209

parameter values. Hence, it is given by the following product of vector spaces:210

Param(n) =
�
Rn1⇥n0 ⇥Rn2⇥n1 ⇥ · · ·⇥RnL⇥nL�1

�
⇥ (Rn1 ⇥Rn2 ⇥ · · ·⇥RnL)

We denote an element therein as a pair of tuples (W, b) where W = (Wi 2 Rni⇥ni�1)L
i=1211

are the weights and b = (bi 2 Rni)L
i=1 are the biases. To describe certain symmetries of212

the parameter space, consider the following product of orthogonal groups, with sizes213

corresponding to the widths of the hidden layers:214

O(nhid) = O(n1)⇥O(n2)⇥ · · ·⇥O(nL�1)

There is a change-of-basis action of O(nhid) on the parameter space Param(n). Explicitly,215

the tuple of orthogonal matrices Q = (Qi)
L�1
i=1 2 O(nhid) transforms the parameter values216

(W, b) to Q ·W :=
⇣

QiWiQ�1
i�1

⌘L

i=1
and Q ·b := (Qibi)

L
i=1, where Q0 = idn0 and QL = idnL .217

We write Q · (W, b) for (Q · W, Q · b).218

6

5.2 Model compression219

In order to state the compression result, we first define the reduced widths. Namely,220

the reduction n
red = (nred

0 , nred
1 , . . . , nred

L) of a widths vector n is defined recursively by221

setting nred
0 = n0, then nred

i = min(ni, nred
i�1 + 1) for i = 1, . . . , L � 1, and finally nred

L =222

nL. For a tuple r = (ri : Rni ! Rni)L
i=1 of radial rescaling functions, we write rred =223 ⇣

rred
i : Rnred

i ! Rnred
i

⌘
for the corresponding tuple of restrictions, which are all radial224

rescaling functions. The following result relies on Algorithm 1 below.225

Theorem 5. Let (W, b, r) be a radial neural network with widths n. Let W
red and b

red be the226

weights and biases of the compressed network produced by Algorithm 1. The feedforward function227

of the original network (W, b, r) coincides with that of the compressed network (Wred, b
red, rred).228

Algorithm 1: QR Model Compression (QR-compress)
input : W, b 2 Param(n)
output : Q 2 O(nhid) and W

red, b
red 2 Param(nred)

Q, W
red, b

red [], [], [] // initialize output lists
A1 [b1 W1] // matrix of size n1 ⇥ (n0 + 1)
for i 1 to L� 1 do // iterate through layers

Qi, Ri QR-decomp(Ai , mode = ‘complete’) // Ai = QiInciRi
Append Qi to Q

Append first column of Ri to b
red // reduced bias for layer i

Append remainder of Ri to W
red // reduced weights for layer i

Set Ai+1 [bi+1 Wi+1QiInci] // matrix of size ni+1 ⇥ (nred
i + 1)

end

Append the first column of AL to b
red // reduced bias for last layer

Append the remainder of AL to W
red // reduced weights for last layer

return Q, W
red, b

red

229

We explain the notation of the algorithm. The inclusion matrix Inci 2 Rni⇥nred
i has230

ones along the main diagonal and zeros elsewhere. The method QR-decomp with mode =231

‘complete’ computes the complete QR decomposition of the ni ⇥ (1 + nred
i�1) matrix Ai232

as QiInciRi where Qi 2 O(ni) and Ri is upper-triangular of size nred
i ⇥ (1 + nred

i�1). The233

definition of nred
i implies that either nred

i = nred
i�1 + 1 or nred

i = ni. The matrix Ri is of size234

nred
i ⇥ nred

i in the former case and of size ni ⇥ (1 + nred
i�1) in the latter case.235

Example 6. Suppose the widths of a radial neural network are (1, 8, 16, 8, 1). Then it has236

Â4
i=1(ni�1 + 1)ni = 305 trainable parameters. The reduced network has widths (1, 2, 3, 4, 1)237

and Â4
i=1(n

red
i�1 + 1)(nred

i) = 34 trainable parameters. Another example appears in Figure 4.238

We note that the tuple of matrices Q produced by Algorithm 1 does not feature in the239

statement of Theorem 5, but is important in the proof (which appears in Appendix C).240

R R4 R4 R4 R4 R

2

664

•

•

•

•

3

775
r

2

664

• • • •

• • • •

• • • •

• • • •

3

775
r ⇥

• • • •
⇤

R R2 R2 R4 R4 R


•

•

�

r

2

664

• •

• •

• •

• •

3

775
r ⇥

• • • •
⇤

R R2 R2 R3 R3 R


•

•

�

r

2

4
• •

• •

• •

3

5
r ⇥

• • •
⇤

Figure 4: Model compression in 3 steps. Layer widths can be iteratively reduced to 1
greater than the previous. The number of trainable parameters reduces from 33 to 17.

7

Namely, an induction argument shows that the i-th partial feedforward function of the241

original and reduced models are related via the matrices Qi and Inci. A crucial ingredient242

in the proof is that radial rescaling activations commute with orthogonal transformations.243

6 Projected gradient descent244

The typical use case for model compression algorithms is to produce a smaller version245

of the fully trained model which can be deployed to make inference more efficient. It246

is also worth considering whether compression can be used to accelerate training. For247

example, for some compression algorithms, the compressed and full models have the same248

feedforward function after a step of gradient descent is applied to each, and so one can249

compress before training and still reach the same minimum. Unfortunately, in the context250

of radial neural networks, compression using Algorithm 1 and then training does not251

necessarily give the same result as training and then compression (see Appendix D.6 for a252

counterexample). However, QR-compress does lead to a precise mathematical relationship253

between optimization of the two models: the loss of the compressed model after one step254

of gradient descent is equivalent to the loss of (a transformed version of) the original model255

after one step of projected gradient descent. Proofs appear in Appendix D.256

To state our results, fix a tuple of widths n and a tuple r = (ri : Rni ! Rni)L
i=1 of radial257

rescaling functions. The loss function L : Param(n)! R associated to a batch of training258

data {(xj, yj)} ✓ Rn0 ⇥ RnL is defined as taking parameter values (W, b) to the sum259

Âj C(F(xj), yj) where C : RnL ⇥ RnL ! R is a cost function on the output space, and260

F = F(W,b,r) is the feedforward of the radial neural network with parameters (W, b) and261

activations r. Similarly, we have a loss function Lred on the parameter space Param(nred)262

with reduced widths vector. For any learning rate h > 0, we obtain gradient descent maps:263

g : Param(n)! Param(n) gred : Param(nred)! Param(nred)

(W, b) 7! (W, b)� hr(W,b)L (V, c) 7! (V, c)� hr(V,c)Lred

We will also consider, for k � 0, the k-fold composition gk = g � g � · · · � g and similarly264

for gred. The projected gradient descent map on Param(n) is given by:265

gproj : Param(n)! Param(n), (W, b) 7! Proj (g(W, b))

where the map Proj zeroes out all entries in the bottom left (ni � nred
i)⇥ nred

i�1 submatrix of266

Wi �rWiL, and the bottom (ni � nred
i) entries in bi �rbiL, for each i. Schematically:267

Wi �rWiL =


⇤ ⇤

⇤ ⇤

�
7!


⇤ ⇤

0 ⇤

�
, bi �rbiL =


⇤

⇤

�
7!


⇤

0

�

To state the following theorem, let W
red, b

red, Q = QR-compress(W, b) be the outputs268

of Algorithm 1 applied to (W, b) 2 Param(n). Hence (Wred, b
red) 2 Param(nred) are269

the parameters of the compressed model, and Q 2 O(nhid) is an orthogonal parameter270

symmetry. We also consider the action (Section 5.1) of Q
�1 applied to (W, b).271

Theorem 7. Let W
red, b

red, Q = QR-compress(W, b) be the outputs of Algorithm 1 applied to272

(W, b) 2 Param(n). Set U = Q
�1 · (W, b)� (Wred, b

red). For any k � 0, we have:273

gk(W, b) = Q · gk(Q�1
· (W, b)) gk

proj(Q
�1

· (W, b)) = gk
red(W

red, b
red) + U.

We conclude that gradient descent with initial values (W, b) is equivalent to gradient274

descent with initial values Q
�1 · (W, b) since at any stage we can apply Q

±1 to move from275

one to the other. Furthermore, projected gradient descent with initial values Q
�1 · (W, b)276

is equivalent to gradient descent on Param(nred) with initial values (Wred, b
red) since at277

any stage we can move from one to the other by ±U. Neither Q nor U depends on k.278

8

7 Experiments279

In addition to the theoretical results in this work, we provide an implementation of280

Algorithm 1, in order to validate the claims of Theorems 5 and 7 empirically, as well as to281

quantify real-world performance. Full experimental details are in Appendix E.282

(1) Empirical verification of Theorem 5. We learn the function f (x) = e�x2 from samples283

using a radial neural network with widths n = (1, 6, 7, 1) and activation the radial shifted284

sigmoid h(x) = 1/(1 + e�x+s). Applying QR-compress gives a compressed radial neural285

network with widths n
red = (1, 2, 3, 1). Theorem 5 implies that the respective neural286

functions F and Fred are equal. Over 10 random initializations, the mean absolute error is287

negligible up to machine precision: (1/N)Âj |F(xj)� Fred(xj)| = 1.31 · 10�8 ± 4.45 · 10�9.288

(2) Empirical verification of Theorem 7. The claim is that training the transformed model289

with parameters Q
�1 · (W, b) and objective L by projected gradient descent coincides290

with training the reduced model with parameters (Wred, b
red) and objective Lred by291

usual gradient descent. We verified this on synthetic data as above. Over 10 random292

initializations, the loss functions after training match: |L�Lred| = 4.02 · 10�9 ± 7.01 · 10�9.293

(3) The compressed model trains faster. Our compression method may be applied before294

training to produce a smaller model class which trains faster without sacrificing accuracy.295

We demonstrate this in learning the function f : R2 ! R2 sending (t1, t2) to (e�t2
1 , e�t2

2)296

using a radial neural network with widths n = (2, 16, 64, 128, 16, 2) and activation the297

radial sigmoid h(r) = 1/(1 + e�r). Applying QR-compress gives a compressed network298

with widths n
red = (2, 3, 4, 5, 6, 2). We trained both models until the training loss was299

 0.01. Over 10 random initializations on our system, the reduced network trained in300

15.32 ± 2.53 seconds and the original network trained in 31.24 ± 4.55 seconds.301

8 Conclusions and Discussion302

This paper demonstrates that radial neural networks are universal approximators and that303

their parameter spaces exhibit a rich symmetry group, leading to a model compression304

algorithm. The results of this work combine to build a theoretical foundation for the use of305

radial neural networks, and suggest that radial neural networks hold promise for wider306

practical applicability. Furthermore, this work makes an argument for considering the307

advantages of non-pointwise nonlinearities in neural networks.308

There are two main limitations of our results, each providing an opportunity for future309

work. First, our universal approximation constructions currently work only for Step-ReLU310

radial rescaling radial activations; it would be desirable to generalize to other activations.311

Additionally, Theorem 5 achieves compression only for networks whose widths satisfy312

ni > ni�1 + 1 for some i. Neural networks which do not have increasing widths anywhere313

in their architecture, such as encoders, would not be compressible.314

Further extensions of this work include: First, little is currently known about the stabil-315

ity properties of radial neural networks during training, as well as their sensitivity to316

initialization. Second, radial rescaling activations provide an extreme case of symmetry;317

there may be benefits to combining radial and pointwise activations within a single net-318

work, for example, through ‘block’ radial rescaling functions. Third, the parameter space319

symmetries may provide a key ingredient in analyzing the gradient flow dynamics of320

radial neural networks and computation of conserved quantities. Fourth, radial rescaling321

activations can be used within convolutional or group-equivariant NNs. Finally, based322

on the theoretical advantages laid out in this paper, future work will explore empirically323

applications in which we expect radial networks to outperform alternate methods. Such324

potential applications include data spaces with circular or distance-based class boundaries.325

9

References326

[1] Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? arXiv:1312.6184,327

2013. 3328

[2] Erkao Bao and Linqi Song. Equivariant neural networks and equivarification.329

arXiv:1906.07172, 2019. 3330

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is331

the state of neural network pruning? arXiv:2003.03033, 2020. 3332

[4] David S Broomhead and David Lowe. Radial basis functions, multi-variable functional333

interpolation and adaptive networks. Technical report, Royal Signals and Radar334

Establishment Malvern (United Kingdom), 1988. 1, 3335

[5] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.336

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery337

and Data Mining, pages 535–541, 2006. 3338

[6] Yu Cheng, X Yu Felix, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shih-Fu339

Chang. Fast neural networks with circulant projections. arXiv:1502.03436, 2, 2015. 3340

[7] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu341

Chang. An exploration of parameter redundancy in deep networks with circulant342

projections. In Proceedings of the IEEE international conference on computer vision, pages343

2857–2865, 2015. 3344

[8] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression345

and acceleration for deep neural networks. arXiv:1710.09282, 2017. 3346

[9] Benjamin Chidester, Minh N. Do, and Jian Ma. Rotation equivariance and invariance347

in convolutional neural networks. arXiv:1805.12301, 2018. 3348

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep349

network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,350

2015. 1351

[11] Taco S. Cohen and Max Welling. Group equivariant convolutional networks. In352

International conference on machine learning (ICML), pages 2990–2999, 2016. 3353

[12] Taco S Cohen and Max Welling. Steerable CNNs. In Proceedings of the International354

Conference on Learning Representations (ICLR), 2017. 3355

[13] Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equiv-356

ariant convolutional networks and the icosahedral CNN. In Proceedings of the 36th357

International Conference on Machine Learning (ICML), volume 97, pages 1321–1330, 2019.358

3359

[14] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-360

matics of control, signals and systems, 2(4):303–314, 1989. 1, 3361

[15] Congyue Deng, O. Litany, Yueqi Duan, A. Poulenard, A. Tagliasacchi, and L. Guibas.362

Vector Neurons: A General Framework for SO(3)-Equivariant Networks. 2021363

IEEE/CVF International Conference on Computer Vision (ICCV), 2021. doi: 10.1109/364

iccv48922.2021.01198. 3365

[16] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symme-366

try in convolutional neural networks. In International Conference on Machine Learning367

(ICML), 2016. 3368

[17] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural369

networks via layer-wise optimal brain surgeon. arXiv preprint arXiv:1705.07565, 2017.370

3371

10

[18] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,372

trainable neural networks. arXiv:1803.03635, 2018. 3373

[19] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep374

convolutional networks using vector quantization. arXiv:1412.6115, 2014. 3375

[20] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-376

ral networks with pruning, trained quantization and huffman coding. arXiv:1510.00149,377

2015. 3378

[21] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli379

Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.380

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew381

Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre382

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,383

Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,384

585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:385

//doi.org/10.1038/s41586-020-2649-2. 34386

[22] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal387

brain surgeon. Morgan Kaufmann, 1993. 3388

[23] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural389

network. arXiv:1503.02531, 2015. 3390

[24] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural391

networks, 4(2):251–257, 1991. 3392

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,393

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-394

volutional neural networks for mobile vision applications. arXiv:1704.04861, 2017.395

3396

[26] George Jeffreys and Siu-Cheong Lau. Kähler Geometry of Quiver Varieties and397

Machine Learning. arXiv:2101.11487, 2021. URL http://arxiv.org/abs/2101.11487.398

3399

[27] Ehud D Karnin. A simple procedure for pruning back-propagation trained neural400

networks. IEEE transactions on neural networks, 1(2):239–242, 1990. 3401

[28] Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks.402

In Conference on learning theory, pages 2306–2327. PMLR, 2020. 3403

[29] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-404

normalizing neural networks. Advances in neural information processing systems, 30,405

2017. 1406

[30] Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and407

Convolution in Neural Networks to the Action of Compact Groups. In International408

conference on machine learning (ICML), 2018. 3409

[31] Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant410

convolution kernels. In International Conference on Learning Representations (ICLR), 2021.411

3412

[32] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempit-413

sky. Speeding-up convolutional neural networks using fine-tuned cp-decomposition.414

arXiv:1412.6553, 2014. 3415

[33] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in416

neural information processing systems, pages 598–605, 1990. 3417

11

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/2101.11487

[34] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A418

signal propagation perspective for pruning neural networks at initialization. arXiv419

preprint arXiv:1906.06307, 2019. 3420

[35] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio421

Feris. Fully-adaptive feature sharing in multi-task networks with applications in422

person attribute classification. In Proceedings of the IEEE conference on computer vision423

and pattern recognition (CVPR), pages 5334–5343, 2017. 3424

[36] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The425

expressive power of neural networks: A view from the width. Advances in neural426

information processing systems, 30, 2017. 3427

[37] Mirco Milletarí, Thiparat Chotibut, and Paolo E Trevisanutto. Mean field theory of428

activation functions in deep neural networks. arXiv preprint arXiv:1805.08786, 2018. 1429

[38] Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv430

preprint arXiv:1908.08681, 2019. 1431

[39] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-432

ing convolutional neural networks for resource efficient inference. arXiv preprint433

arXiv:1611.06440, 2016. 3434

[40] Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-435

function networks. Neural computation, 3(2):246–257, 1991. 3436

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory437

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban438

Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan439

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith440

Chintala. Pytorch: An imperative style, high-performance deep learning library. In441

H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett,442

editors, Advances in Neural Information Processing Systems (NeurIPS) 32, pages443

8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/444

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.445

pdf. 34446

[42] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions.447

arXiv preprint arXiv:1710.05941, 2017. 1448

[43] Siamak Ravanbakhsh. Universal equivariant multilayer perceptrons. In International449

Conference on Machine Learning, pages 7996–8006. PMLR, 2020. 3450

[44] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through451

parameter-sharing. In International Conference on Machine Learning, pages 2892–2901.452

PMLR, 2017. 3453

[45] Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. Learning separable454

filters. In Proceedings of the IEEE conference on computer vision and pattern recognition,455

pages 2754–2761, 2013. 3456

[46] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and457

organization in the brain. Psychological review, 65(6):386, 1958. 1458

[47] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between459

capsules. arXiv:1710.09829, 2017. 2, 3460

[48] Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam. Lossless compression461

of deep neural networks. In International Conference on Integration of Constraint Pro-462

gramming, Artificial Intelligence, and Operations Research, pages 417–430. Springer, 2020.463

3464

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[49] Thiago Serra, Xin Yu, Abhinav Kumar, and Srikumar Ramalingam. Scaling up exact465

neural network compression by relu stability. Advances in Neural Information Processing466

Systems, 34, 2021. 3467

[50] Sho Sonoda and Noboru Murata. Neural network with unbounded activation func-468

tions is universal approximator. Applied and Computational Harmonic Analysis, 43(2):469

233–268, 2017. 3470

[51] Gustav Sourek, Filip Zelezny, and Ondrej Kuzelka. Lossless compression of structured471

convolutional models via lifting. arXiv preprint arXiv:2007.06567, 2020. 3472

[52] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks473

with low-rank regularization. arXiv:1511.06067, 2015. 3474

[53] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before475

training by preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020. 3476

[54] Ming-Xi Wang and Yang Qu. Approximation capabilities of neural networks on477

unbounded domains. Neural Networks, 145:56–67, 2022. 3478

[55] Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. Confer-479

ence on Neural Information Processing Systems (NeurIPS), 2019. 2, 3, 4480

[56] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen.481

3D steerable CNNs: Learning rotationally equivariant features in volumetric data.482

Proceedings of the 32nd International Conference on Neural Information Processing Systems483

(NeurIPS), 2018. 2, 3484

[57] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for485

rotation equivariant CNNs. In Proceedings of the IEEE Conference on Computer Vision486

and Pattern Recognition (CVPR), pages 849–858, 2018. 2, 3487

[58] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.488

Harmonic networks: Deep translation and rotation equivariance. In Proceedings of the489

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5028–5037,490

2017. 3491

[59] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized492

convolutional neural networks for mobile devices. In Proceedings of the IEEE Conference493

on Computer Vision and Pattern Recognition (CVPR), pages 4820–4828, 2016. 3494

[60] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks.495

Constructive Approximation, 55(1):407–474, 2022. 3496

[61] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,497

and Yanzhi Wang. A systematic DNN weight pruning framework using alternating498

direction method of multipliers. In Proceedings of the European Conference on Computer499

Vision (ECCV), pages 184–199, 2018. 3500

13

Checklist501

1. For all authors...502

(a) Do the main claims made in the abstract and introduction accurately reflect503

the paper’s contributions and scope? [Yes]504

(b) Did you describe the limitations of your work? [Yes] See Section 8.505

(c) Did you discuss any potential negative societal impacts of your work? [N/A]506

Our work is theoretical and does not hold specific risks of negative impacts.507

(d) Have you read the ethics review guidelines and ensured that your paper508

conforms to them? [Yes]509

2. If you are including theoretical results...510

(a) Did you state the full set of assumptions of all theoretical results? [Yes]511

(b) Did you include complete proofs of all theoretical results? [Yes] Most of the512

proofs appear in the supplementary material.513

3. If you ran experiments...514

(a) Did you include the code, data, and instructions needed to reproduce the515

main experimental results (either in the supplemental material or as a URL)?516

[Yes]517

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how518

they were chosen)? [Yes]519

(c) Did you report error bars (e.g., with respect to the random seed after running520

experiments multiple times)? [Yes]521

(d) Did you include the total amount of compute and the type of resources used522

(e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.523

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new524

assets...525

(a) If your work uses existing assets, did you cite the creators? [Yes]526

(b) Did you mention the license of the assets? [N/A]527

(c) Did you include any new assets either in the supplemental material or as a528

URL? [N/A]529

(d) Did you discuss whether and how consent was obtained from people whose530

data you’re using/curating? [N/A]531

(e) Did you discuss whether the data you are using/curating contains personally532

identifiable information or offensive content? [N/A]533

5. If you used crowdsourcing or conducted research with human subjects...534

(a) Did you include the full text of instructions given to participants and screen-535

shots, if applicable? [N/A]536

(b) Did you describe any potential participant risks, with links to Institutional537

Review Board (IRB) approvals, if applicable? [N/A]538

(c) Did you include the estimated hourly wage paid to participants and the total539

amount spent on participant compensation? [N/A]540

14

