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ABSTRACT

In this paper, we propose THOMAS, a joint multi-agent trajectory prediction
framework allowing for efficient and consistent prediction of multi-agent multi-
modal trajectories. We present a unified model architecture for fast and simulta-
neous agent future heatmap estimation leveraging hierarchical and sparse image
generation. We demonstrate that heatmap output enables a higher level of con-
trol on the predicted trajectories, allowing to incorporate additional constraints for
tighter sampling or collision-free predictions in a deterministic way. However,
we also highlight that generating scene-consistent predictions is a harder prob-
lem than just leveraging collisions, and design a scene-consistent recombination
learned model that takes a set of predicted trajectories for each agent as input and
outputs a consistent reordered recombination of the trajectories. We report our re-
sults on the Interaction multi-agent prediction challenge and rank 1°¢ on the online
test leaderboard.

1 INTRODUCTION

Motion forecasting is an essential step in the pipeline of an autonomous driving vehicle, transform-
ing perception data into future prediction which are then leveraged to plan the future moves of the
autonomous cars. The self-driving stacks needs to predict the future trajectories for all the neighbor
agents, in a fast and coherent way.

The interactivity between agents plays an important role for accurate trajectory prediction. Agents
need to be aware of their neighbors in order to adapt their speed, yield right of way and merge in
neighbor lanes. To do so, different interaction mechanisms have been developed, such as social
pooling |Alahi et al.| (2016)); Lee et al.|(2017); Deo & Trivedi|(2018)), graphs|Salzmann et al.| (2020);
Zeng et al.| (2021) or attention Mercat et al.|(2020); [Messaoud et al.| (2020); [Luo et al.| (2020)); \Gao
et al.| (2020); Liang et al.| (2020); [Ngiam et al.| (2021)). These mechanisms allow agents to look at
and share features with neighbors, to take them into account in their own predictions.

Multi-modality is another very important aspect of the possible future trajectories. A car can indeed
chose to turn right or left, or decide to realise a certain maneuver in various ways. Uncertainty mod-
eled as variance of Gaussians is insufficient to model these multiple cases, as it can only represent a
continuous spread and can’t show multiple discrete possibilities. Therefore, current state-of-the-art
produces not one but K possible trajectories for each agent predicted, and most recent benchmarks
Caesar et al.| (2020); Chang et al.| (2019); |Zhan et al.[ (2019); |[Ettinger et al.| (2021)include multi-
modality in their metrics, taking only the minimum error over a predicted set of K trajectories.

However, up until very recently and the opening of multi-agent joint interaction challenges [Ettinger,
et al.[ (2021); [Zhan et al. (2019) 1.2, no motion forecasting prediction datasets were taking into
account the coherence of modalities between different agents predicted at the same time. As a
result, the first predicted modality of a given agent could crash with the first predicted modality of
another agent without any check. [Ettinger et al.| (2021]) introduces proposes a metric where models
have to predict for two interacting agents jointly at each sample, and |[Zhan et al.| (2019) 1.2 adds
a general multi-agent track, where between 2 and 40 agents can be asked for joint prediction in a
single sample.

Our THOMAS model encodes the past trajectories of all the agent presents in the scenes, as well
as the HD-Map lanelet graph, and merges their information using self and cross attention. It then
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predicts for each agent a sparse heatmap representing the future probability distribution at the last
timestep. A deterministic sampling algorithm then iteratively selects the best K trajectory endpoints
according to the heatmap for each agent. These endpoints are recombined to be scene-consistent by
the COMBI model, and full trajectories are then generated for each endpoint.

Our contributions are summarized as follow:

* We present an efficient graph-based model enabling fast and efficient multi-agent future
motion estimation

* We propose a variant heatmap sampling method that takes into account agent collisions

* We design a novel recombination model able to recombine the sampled endpoints in order
to obtain scene-consistent samples across the agents

2 RELATED WORK

Learning-based models have quickly overtaken physics-based methods for trajectory prediction, as
the sequential nature of trajectories is a logical application for recurrent architectures (Alahi et al.,
2016; Altché & de La Fortelle, [2017; [Lee et al., [2017; Mercat et al., 2020; |Khandelwal et al., [2020),
and convolutional layers can easily be applied to bird-view rasters of the map context (Lee et al.,
2017; [Tang & Salakhutdinov, 2019; (Cui et al.l |2019; [Hong et al., |2019; [Salzmann et al.| 2020;
Chai et al, |2020; |Gilles et al., 2021b), benefiting from the latest progresses in computer vision.
Surrounding HD-Maps, usually formalized as connected lanelets, can also be encoded using Graph
Neural Networks (Gao et al., |2020; Liang et al., [2020; [Zeng et al.| 2021} |Gilles et al., [2021a)), in
order to get a more compact representation closer to the trajectory space. Finally, some point-based
approaches (Ye et al., |2021)) can be applied in a broader way to trajectory prediction, as both lanes
and trajectories can be considered as ordered set of points.

Multi-modality in prediction can be obtained simply through a multiple prediction head in the model
(Cui et al.l 2019; |Liang et al.,|2020; Ngiam et al., 2021} |Deo et al.,|2021). However some methods
rather adopt a candidate-based approach, where potential endpoints are obtained either from anchor
trajectories obtained through clustering (Chai et al.,|2020; |Phan-Minh et al.,|2020) or a model-based
generator (Song et al.| [2021). Other approaches use a broader set of candidates from the context
graph (Zhang et al.| [2020; Zhao et al.l 2020} Zeng et al., 2021} [Kim et al.| |2021) or a dense grid
around the target agent (Deo & Trivedi, 2020;|Gu et al., 2021} |Gilles et al.,2021bza). Another family
of approaches use variational inference to generate diverse predictions, through latent variables (Lee
et al.,|2017; [Rhinehart et al., 2018} Tang & Salakhutdinov, [2019;|Casas et al.|[2020) or GAN (Gupta
et al., 2018; [Rhinehart et al., 2018; [Sadeghian et al., 2019) but the sampling of these trajectories is
random and doesn’t provide any probability value for each sample.

While very little work has directly tackled multi-agent prediction and evaluation so far, multiple
methods hint at the ability to predict multiple agents at the same time (Liang et al., 2020} |Zeng
et al.l 2021} even if they then focus on a more single-agent oriented framework. SceneTransformer
(Ngiam et al.| (2021))) repeats each agent features across possible modalities, and performes self-
attention operations inside each modality before using a joint loss to train a model and evaluate on the
WOMD (Ettinger et al.,2021)) interaction track, but this evaluation focuses on dual agent prediction
and doesn’t broaden to a large number of agents at the same time. ILVM (Casas et al., 2020)
uses scene latent representations conditioned on all agents to generate scene-consistent samples,
but its variational inference doesn’t provide confidence score for each modality . AIR? (Wu &
Wul 2021)) extends Multipath (Chai et al., |2020) and produces a cross-distribution for two agents
along all possible trajectory anchors, but it scales exponentially with the number of agents, making
impractical for a real-time implementation that could encounter more than 10 agents at the same
time.

3 METHOD

3.1 MODEL BACKBONE

Our goal is to predict the future F’ timesteps of A agents using their past history made of T’ timesteps
and the HD-Map context. Similar to recent work (Zhao et al., 2020; Zeng et al 2021} |Gu et al.,
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Figure 1: Illustration of the THOMAS multi-agent prediction pipeline

[2021), we will divide the problem into goal-based prediction followed by full trajectory recon-
struction. We first encode each agent trajectory and the HD-Map context graph into a common
representation. We then decode a future probability heatmap for each agent in the scene, which
we sample heuristically to maximize coverage. Finally, we re-combine the sampled endpoints into
scene-consistent modalities across agents, and build the full trajectories for each agent.

3.1.1 GRAPH ENCODER

We use the same encoder as the GOHOME model [Gilles et al| (2021a). The agent trajectories
are encoded though T'rajEncoder using a 1D CNN followed by a UGRU recurrent layer, and
the HD-Map is encoded as a lanelet graph using a GNN GraphEncoder made of graph convolu-
tions. The optional future trajectories are also encoded with a separate 1D CNN + UGRU encoder
FutureEncoder. The future encoding is then concatenated to the past encoding in order to obtain
a full encoding for each agent. We then run cross-attention Lanes2Agents to add context informa-
tion to the agent features, followed by self-attention Agents2Agents to observe interaction between
agents. The final result is an encoding F, for each agent, where history, future, context and interac-
tions have been summarized. This encoding F}, is used in the next decoder operations, but is also
stored to be potentially used in modality re-ranking described in Sec.

3.1.2 HIERARCHICAL GRID DECODER

Our aim here is to decode each agent encoding into a heatmap representing its future probability
distribution at prediction horizon 7'. Since we create this heatmap for each agent in the scene, the
decoding process has to be fast so that it can be applied to a great number of agents in parallel.
HOME (Gilles et al.} 2021b) generates a heatmap through CNN operations, but these are costly
and don’t scale them with prediction range. Dense TNT uses attention on dense
gridpoints sampled arround the lanes only, while GOHOME (Gilles et al., 202Ta)) create curvilinear
rasters for a subselection of lanes before merging them together, but both these approaches neglects
possible endpoints outside the drivable area so they can achieve reasonable inference times. We
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Figure 2: Model architecture for multi-agent prediction with shared backbone
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Figure 3: Hierarchical iterative refinement of the grid probabilities. First, the full grid is evaluated
at a very low resolution, then the highest cells are up-sampled and evaluated at a higher resolution,
until final resolution is reached.

inspire ourselves from these, with a few modifications so that we can predict endpoints anywhere on
the map while smartly restricting computing to only part of the full image.

We leverage drivable area sparsity so that our model chooses the area to define with more precision
while still having the opportunity to predict over the whole dense grid. We use hierarchical predic-
tions at lower resolution levels first in order to process only a relatively low number of grid points.
This hierarchical process is illustrated in Fig. 3|

We first predict a full dense grid probability at resolution 8mx8m by pixel. We then select the 16
highest ranking grid points, and upsample only these points to a 2mx2m intermediary grid. We
repeat the process to select the top 64 points of this grid and upsample them to a final 0.5mx0.5m
grid for the definitive heatmap prediction. The total prediction range is set to 192m. At each step,
the grid points features are computed by a 2-layer MLP applied on the point coordinates, they are
then concatenated to the agent encoding followed by a linear layer, and finally refined by a 2-layer
cross-attention on the graph lane features. This hierarchical process allows the model to only operate
on24 x 24416 x 4 x 44 64 x 4 x 4 = 1856 grid points instead of the 147 456 available.

3.1.3 FULL TRAJECTORY GENERATION

From each heatmap, we decode K end points using the same MR optimization algorithm as |Gilles
et al.[| (2021b). We then generate the full trajectories for each end point the same way, using a
fully-connected MLP.

3.2 MULTI-AGENT CONSISTENT PREDICTION

The difficulty in multimodal outputs for multi-agents prediction comes from having coherent modal-
ities between each agent. Since the modalities are considered scene-wise, the first predicted modality
has to match with the first prediction of the other agents, and so on. Moreover, these modalities must
not collide with each other, as they should represent realistic scenarios.

3.2.1 INITIAL COLLISION-FREE SAMPLING

We use the same sampling algorithm as |Gilles et al.| (2021a) based on MR optimization, but add
a sequential iteration over the agents for each modalities. For a single modality %k, we predict the
possible endpoint of a first agent a by taking the maximum accumulated predicted probability under
an area of radius . We then not only set to zero the heatmap values of this agent heatmap 7}, around
the sampled location so not to sample it in the next modalities k', but we also set to zero the same
area on the heatmaps I,‘j' of the other agents a’ on the same modality %, so that these other agents
cannot be sampled at the same position for this modality. This way, we try to enforce collision-free
endpoints, and expect that considering collisions brings logic to improve the overall consistency
of the predictions. However, as will be highlighted in Sec. [4.3] this is not sufficient to generate
joint predictions with this sampling that is otherwise mostly independent across agents even if it
significantly improves the collision rate.
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Figure 4: Illustration of THOMAS methods for generation of scene-consistent agent modalities

3.2.2 MODALITY COMBINATION RANKING

We address the scene consistency after the initial agent sampling. As single agents metrics are
usually noticeably better than joint ones, this hint us that a potential solution already exists in the
individually sampled modalities, and only a re-ordering of these is needed.

Our goal is to output a joint prediction 7 = (K, A) from the marginal prediction M = (A4, K),
where each scene modality kg selects the combination of agent modalities %, that are the most
coherent together. Effectively, 7 could just be a reordering of M, as the matching modalities of
each agent just need to be aligned together.

We illustrate our scene modality generation process in Fig. ] We initialize L scene modality
vectors S) of D features each. K x A agent modality vectors Aj are also derived from each agent
modality position. These vectors are obtained through a 2-layer MLP applied on the agent modality
coordinates p? , to which the stored agent encoding F,, (previously described in Sec. 3_1__1]) is
concatenated in order to help the model recognising modalities from the same agent. The scene
modality vectors S; are enriched through cross-attention layers on the agent modality encodings
Aj.. Then, for each scene modality [, for each agent a, a matching score is computed for each agent
modality & as a scalar dot product between the scene modality vector .S; and the agent modality
vectorAg:

sy = S).Af
Since we can’t use argmax as it is non-differentiable, we then use a soft argmax as a weighted linear
combination of the agent modalities pf using a softmax on the sf“ scores:

P = softmaz(s)p;

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS
4.1.1 DATASET

We use the Interaction v1.2 dataset that has recently opened a new multi-agent track in the context of
its Interpret challenge. It contains 40 000 training cases, 11 794 validation cases and 20 000 testing
cases, with each case containing between 1 and 40 agents to predict simultaneously.
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4.1.2 METRICS

We report the marginal usually defined minFDE and MissRate that would be averaged over the
agents after the minimum:

. 1 ) 0 sa
minFDE}, = 1 mekllpk —p[2

1
MRk = Z Zmink]lfmssk

As in [Ettinger et al.| (2021) and |Zhan et al|(2019), a miss is counted when the prediction is closer
than a lateral (1m) and an longitudinal threshold with regard to speed:

1 v<1ldm/s
Threshold o, = { 1+ %=%% 1.4m/s <v <1lm/s
2 v>1lm/s

For consistent scene multi-agent prediction, we report the joint metrics, where the average operation
over the agents is done before the minimum operator:

o 1 ¢ sa
minJointF DEy, = ming— za:Hpk — 92

; 1 a
JointM Ry, = ming — ; 17 sk
We also report C'rossCollisionrate which is the percentage of modalities where two or more agents
collide together, and ConsistentMinJointM R, which is JointM R where colliding modalities
are also counted as misses even if they are closer than the defined threshold.

4.2 COMPARISON WITH STATE-OF-THE-ART

We compare our THOMAS model performance with other joint predictions methods ILVM (Casas
et al.,|2020) and SceneTransformer (Ngiam et al., 2021). For fair comparison, we use a GOHOME
encoder for each of the method, and adapt them according so that they predict only endpoints similar
to our method:

* ILVM (Casas et al.| |2020) uses variational inference to learn a latent representation of the
scene conditioned of each agent with a Scene Interaction Module, and decodes it with a
similar Scene Interaction Module. We use a GOHOME encoder for the prior, posterior and
decoder Scene Interaction Modules. We weight the KL term with 5 = 1 which worked
best according to our experiments.

* SceneTransformer (Ngiam et al., 2021) applies a transformer architecture on a [F, A, T, D]
tensor where F' is the potential modality dimension, A the agent dimension and 7' the
time dimension, with D the feature embedding. They apply factorized self-attention to
the agent and time dimensions separately, so that agents can look at each-other inside a
specific scene modality. The resulting output is optimized using a jointly formalized loss.
For our implementation, we get rid of the 7" dimension as we focus on endpoint prediction
and coherence between the A agents. The initial encoded [A, D] tensor is obtained with
a GOHOME encoder, multiplied across the F' futures and concatenated with a modality-
specific one-hot encoding as inNgiam et al.|(2021)) to obtain the [F, A, D] tensor. We then
apply two layers of agent self-attention similar to the original paper, before decoding the
endpoints through a MLP.

The results are reported in Tab. While having comparable marginal distance performance,
THOMAS significantly outperforms other methods on every joint metric.

We also report our numbers from the Interpret multi-agent track challenge online leaderboard in Tab.
We are currently first of the challenge, with no competition in sight.
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Table 1: Comparison of consistent solutions on Interpret multi-agent validation track

Marginal metrics Joint metrics
mADE mFDE MR | mFDE MR Col c¢MR
ILVM (Casas et al.;[2020) 0.30 0.62 10.8 | 0.84 198 57 21.3
SceneTranformer (Ngiam et al., [2021) 0.29 0.59 10.5 0.84 157 34 173
THOMAS 0.31 0.60 8.2 0.76 11.8 24 12.7

Table 2: Results on Interpret multi-agent leaderboard (test set)

jointMinADE  JointMinFDE  JointMR  CrossCollision = ConsistentJointMR
THOMAS 0.36 0.85 17.2 25.7 18.7

4.3 ABLATION STUDIES

4.3.1 BASELINES

We establish the following baselines to assess the effects our THOMAS recombination

* Scalar output: we train a model with the GOHOME graph encoder ans a multimodal scalar
regression head similar to [Liang et al| (2020); Ngiam et al.| (2021). We optimize it with
both marginal and joint formulation.

* Heatmap output with deterministic sampling: we try various sampling methods applied on
the heatmap:
— Deterministic sampling: we apply the sampling algorithm as described in|Gilles et al.
(2021a). We also evaluate a joint variant as described in Sec .

— Learned sampling: we train a model to regress itself the sampled modalities from the
input heatmap. This model is also optimized using either of the marginal or joint loss
formulation

Compared to these baselines, THOMAS can be seen as an hybrid sampling method that takes the
result of deterministic sampling as input as recombine it into a more coherent solution.

We report the comparison between the aforementioned baselines and THOMAS in Tab.
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Table 3: Comparison of consistent solutions on Interpret multi-agent validation track

Marginal metrics

Joint metrics

Output Sampling Objective | mADE mFDE MR | mFDE MR Col c¢cMR
Scalar - Marg 0.28 059 104 | 1.04 237 64 249
Scalar - Joint 0.30 0.65 128 | 088 174 45 188
Heat Learned Marg 0.26 0.46 4.9 098 209 41 219
Heat Learned Joint 0.29 0.58 9.8 088 152 3.0 164
Heat Algo Marg 0.29 0.54 3.8 083 148 72 159
Heat Algo Joint 0.29 0.54 3.8 0.83 148 2.6 156
Heat Combi Joint 0.31 0.60 8.2 076 11.8 24 12.7
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You may include other additional sections here.
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