Deep Learning on a Data Diet:
Finding Important Examples Early in Training

Anonymous Author(s)
Affiliation
Address
email

Abstract

As the recent success of deep learning has partially been driven by training in-
creasingly overparametrized networks on ever larger datasets, it is natural to ask:
how much of the data is superfluous, which examples are important for general-
ization, and how do we find them? In this work, we make the striking observation
that, on standard vision benchmarks, the initial loss gradient norm of individual
training examples, averaged over several weight initializations, can be used to
identify a smaller set of training data that is important for generalization. Fur-
thermore, after only a few epochs of training, the information in gradient norms
is reflected in the normed error-L2 distance between the predicted probabilities
and one hot labels—which can be used to prune a significant fraction of the dataset
without sacrificing test accuracy. Based on this, we propose data pruning meth-
ods which use only local information early in training, and connect them to re-
cent work that prunes data by discarding examples that are rarely forgotten over
the course of training. Our methods also shed light on how the underlying data
distribution shapes the training dynamics: they rank examples based on their im-
portance for generalization, detect noisy examples and identify subspaces of the
model’s data representation that are relatively stable over training.

1 Introduction

Recently, deep learning has made remarkable progress driven, in part, by training over-
parameterized models on ever larger datasets. This trend creates new challenges: the large com-
putational resources required pose a roadblock to the democratization of AIl. Memory and resource
constrained settings, such as on-device computing, require smaller models and datasets. Identifying
important training data plays a role in online and active learning. Finally, it is of theoretical interest
to understand how individual examples and sub-populations of training examples influence learning.

To address these challenges, we propose a scoring method that can be used to identify important
and difficult examples early in training, and prune the training dataset without large sacrifices in test
accuracy. We also investigate how different sub-populations of the training data identified by our
score affect the loss surface and training dynamics of the model.

Recent work on pruning data [1, 2], can be placed in the broader context of identifying coresets that
allow training to approximately the same accuracy as would be possible with the original data [3-7].
These works attempt to identify examples that provably guarantee a small gap in training error on
the full dataset. However, due to the nonconvex nature of deep learning, these techniques make
conservative estimates that lead to weak theoretical guarantees and are less effective in practice.

A very different approach was recently discovered by Toneva et al. [8]. They track the number of
times through training an example transitions from being correctly classified to misclassified, called

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

a "forgetting event", and find that some examples are rarely forgotten, while others are forgotten
repeatedly. Empirically, they observed that training accuracy is not affected by the rarely forgotten
training examples and a large fraction of the training data can be removed without any impact on test
accuracy. However, since this method relies on collecting forgetting statistics throughout training,
the forgetting score is typically calculated int the middle of or at the end of training. Toneva et al.
[8] find that, in their example, the Spearman rank correlation between early and late scores is good
after about 25 epochs and stabilizes after 75 epochs.

Broadly speaking, the ability to prune datasets raises a number of questions: What is the nature
of examples that can be removed from the training data without hurting accuracy? How early in
training can we recognize such examples? How many examples do we need and how does this
depend on the data distribution? These questions may have no generic answers and so, in this
work, we begin to pursue them empirically in the context of several standard vision benchmarks and
standard network architectures. Answers to these questions may both (1) lead to new methodologies
that could dramatically reduce training times and memory requirements, and (2) offer important
insights into the training dynamics of deep neural networks, and the role of data.

Our first finding is that very early in training (just a few epochs), partial forgetting scores identify
large fractions of data that can be pruned. Analyzing this puzzling result with a one gradient step
analysis of training suggests a very simple heuristic: use the loss gradient norm of individual ex-
amples to identify important examples. While this approach does not work when the loss gradient
norms are computed at the weights early in training of a single trajectory, we find that, surprisingly,
averaging these norms over multiple weight initializations does produce a ranking that correlates
strongly with forgetting scores and allows us to prune a significant fraction of examples early in
training. Indeed, even at initialization, we can prune 50% of examples from CIFAR-10 without af-
fecting accuracy, while on the more challenging CIFAR-100 dataset, we can prune 25% of examples
with only a 1% drop in accuracy.

Through a series of empirical studies, we have begun to tease apart the properties of important
examples and how they can depend on the data distribution. In particular, we find that the examples
with the very highest norms become superfluous as the amount of label noise increases. Indeed,
even on clean data, we find that in the high pruning regime, the best population excludes the very
highest-scoring examples.

1.1 Contributions

* We propose to score the importance of each training example (x;,y;) by its expected loss
gradient norm (GraNd score), which, up to a constant, bounds the change in loss for an arbitrary
example (x,y) caused by removing (x;, ;).

* We show that pruning training samples with small GraNd scores at initialization allows one to
train on as little as 50% of the training data without any loss in accuracy (CIFAR-10). While
the pruning levels are comparable to those provided by other methods [1, 8], our score is the
only one that is well-defined at initialization and early in training.

* Our experimental findings suggest that, within the first few epochs of training, the GraNd score
is well-approximated by the norm of the error vector (EL2N score), where the error vector is
the predicted class probabilities minus one-hot label encoding. In fact, we find that the EL2N
score provides even better information for data-pruning across a wide range of data pruning
levels, even early in training.

* We study the role of examples with the highest EL2N scores, and find that excluding a small
subset of the very highest scoring examples produces a boost in performance. This boost in
performance is enhanced in a corrupted label regime.

* We introduce methods, based on linearly connected modes, for studying the empirical risk
surface in terms of the modes of subsets of data, allowing us to identify when, in training,
the final performance on subpopulations is determined. We demonstrate that the linearly con-
nected mode at-convergence of empirical risk surface computed on low EL2N score examples
is determined much earlier in training compared to high score examples.

* Finally, we study how an example’s EL2N score connects to the network’s training dynamics.
We do so by tracking the data-dependent NTK submatrices corresponding to the low or high
score examples, and measuring the rate at which it evolves in a scale-invariant way. We find that

the NTK submatrix for the high score examples evolves faster throughout training, supporting
our hypothesis that high-scoring examples are the ones driving the learning and the changes in
the NTK feature space [9].

2 Which samples are important for learning?

2.1 Preliminaries

We consider supervised classification, where S = {(x;,y;)}}\, denotes the training set, drawn i.i.d.
from an unknown data distribution D, with input vectors € R? and one-hot vectors y € {0,1}%
encoding labels. For a fixed neural network architecture, let fy () € RX be the logit outputs
of the neural network with weights w € W C RP on input z € R? Let o be the softmax
function given by o(21,...,2K)k = exp{z;&/Zﬁzl exp{zy }. For a probability vector p, let
p(w,z) = o(f(w,z)) denote the neural network output in the form of a probability vector. Let
0(h,y) = o1, y™ log p® denote cross-entropy loss.

Let wg, w1, Wo, ..., wr be the iterates of stochastic gradient descent (SGD), where, for some se-
quence of minibatches Sy, S1,...,S7—1 C S of size M, we have
Wi = Wi_1 — 772(93774)65;_1 gtfl(x’y)) (1)

for gt—l(xay) = th—lg(p(Wt—17I)ﬂ y)7 and t = 17 e 7T-

2.2 Gradient Norm Score and an infinitesimal analysis

Fix a training set S. Due to training with SGD from a random initialization, the weight vector at
time ¢ > 0, wy, is a random variable. The expected magnitude of the loss vector is our primary
focus:

Definition 2.1. The GraNd score of a training example (z, y) at time ¢ is x+ (2, y) = Ew, ||g:(z,v)|5 -

Here we describe conditions under which the GraNd score controls the contribution of a training
example to the change in the training loss. In order to simplify our analysis, we approximate the
training dynamics as if they were in continuous time.

A key quantity in our analysis is the time derivative of the loss for a generic labeled example (x, y):

Ai((z,y),St) = M (where f;(-) = fw,(+)), i.e., the instantaneous rate of change in the
loss on (x,y) at time ¢, where the gradient is computed on the minibatch S;. By the chain rule,
Ad((x,y), Se) = ge(a, y) it)
dwe

This relates to our discrete time dynamics via <{/t ~ W1 — Wy = —1) Z(x,,y,)esFl gi—1(2',y").

Our goal is to understand how removing a training point from minibatch S; affects A4((x, y), St).
Lemma 2.2. Let S—; = S\ (z;,y;). Then for all (z,y), there exists ¢ such that

||At(($ay)75) - At((x,y), Sﬁ])” < CHgt(ijyj)”- (3)

_ _de(fe(x)y) _ de(fe(=),y) dwy
y),S) - dt dw £ dt -

Since the weights are updated using SGD, we have %t = —p Z(wj,yj)est gt(zj,y;). Letting

dat
c=n w |I, the result follows. L)

Proof. For a given example x, the chain rule yields A;((z,

At any given training step, given the current location w;, the contribution of a training example
(z,y) to the decrease of loss on any other example, is bounded by Eq. (3). Since the constant ¢
does not depend on (z, y), we only consider the gradient norm term, ||g;(z, y)||. The expected value
of this gradient norm is exactly the GraNd score of (z,y). In other words, examples with a small
GraNd score in expectation have a bounded influence on learning how to classify the rest of the
training data at a given training time'. We therefore propose to rank training examples by their
GraNd scores, larger norm meaning more important for maintaining A (z).

"Note that the opposite is not necessarily true: examples with large scores may have gradients that cancel
out and do not contribute much, meaning that this upper bound is loose.

For an arbitrary input z € RY, let w§k>(x) = Vw, ft(k) (x) denote the logit gradient. Then GraNd
can be written as

xi(w,9) = E|| 05, Vo @)) "o @))

Under the cross entropy loss, V yo £(f¢(z), y)* = p(wy, z)F) — y,.. When {@Z),Ek) (x) }1, are roughly
orthogonal and of a similar size across training examples x, then we can approximate GraNd by just
the norm of the error vector.

Definition 2.3. The EL2N score of a training sample (z, y) is defined to be E||p(wy,) — y/|2-

Our experimental results suggest that this approximation becomes accurate after a few epochs of
training (see Section 3).

2.3 Comparison to forgetting scores

Toneva et al. [8] define a “forgetting event” for a training sample to be a point in training when the
classifier switches from making a correct classification decision to an incorrect one. They define
an approximate forgetting score for each training example as the number of times during training
when it was included in a minibatch and underwent a forgetting event. Toneva et al. demonstrate
that examples with low forgetting score may be completely omitted during training without any
noticeable effect on the accuracy of the learned predictor. In Fig. 1 and Appendix D.3, we make an
empirical comparison of forgetting scores to our proposed GraNd and EL2N scores.

In Lemma 2.2, we bounded the contribution of a training example to the decrease of the loss of any
other sample over a single gradient step. Due to v;(+)’s being time-dependent, it is complicated to
extend the analysis to multiple steps. However, it is interesting to consider a case when ¢y (z;) =
¥(x;) for all z; in the training set, and X = 1. Then summing the bound in Eq. (3) on how
much a sample (z;,y;) affects the logit output on an arbitrary point at each time ¢ € {1,..,T}, we
obtain a score that depends on ||¢(z;)||| >, (pe(x;) — y;)|. For two examples, (z,y) and (', v’),
such that [[¢(2")|| = [|¢»(z)|| , we see that the example that is learned faster and maintains small
error over training time will have a smaller GraNd score on average throughout training. Note that
|(pe(x5) — y;)|, if rescaled, is an upper bound on 0-1 loss, and therefore), |(p¢(x;) — ;)| upper
bounds the number of forget events during training (after rescaling). In this simplified setting an
example with a high number of forgetting events will also have a high GraNd score.

3 Empirical Evaluation of GraNd and EL2N Scores via Data Pruning

In the previous section, we motivated GraNd and EL2N scores by quantifying the influence of a
training example on the loss of an arbitrary example after one optimization step. In this section,
we evaluate these scores empirically, and verify that they identify examples important for general-
ization. Networks trained on subsets of the data with high scores achieve levels of test accuracy
comparable to training on the full dataset and are competitive with other state of the art data pruning
methods. Perhaps most remarkably, these scores are effective even when computed early in training
and perform significantly better than a random baseline, even at initialization.

Data pruning experiments. We train convolutional neural networks of varying depth—ResNet18
and ResNet50 [10]-on standard vision datasets of varying difficulty—CIFAR10, CIFAR100 [11], and
CINIC10 [12]. All scores are calculated by averaging the scores from ten independent training runs.
After calculating scores and selecting a training subset, final test accuracies are obtained by retrain-
ing networks from random initializations on only the selected subset. For each experiment, we report
the mean of four independent runs and uncertainty bands (shading in figures) which span the 16th to
84th percentile of accuracy. See Appendix B for more implementation details and Appendix D for
additional experiments.

In Fig. 1, we show the results of two sets of experiments (top and bottom) on three different network
and dataset combinations. The first experiment asks, how early in training are forget, GraNd and
EL2N scores effective at identifying examples important for generalization? We compare the final
test accuracy from training on subsets of fixed size but pruned based on scores computed at different
times early in training. The second experiment compares how GraNd scores at initialization, EL2N

CIFAR10 + ResNetl18 CINIC10 + ResNetl18 CIFAR100 + ResNet50

0.955
g 0.950
3
O 0.9454
f(_, Pruning Strategy
F —~ =~ No Pruning
o 1
= 0.940 == Prune Randomly
et Forget Score
i 09351 __ L _____. —e— EL2N Score | For Pruning Strategy

—— GraNd Score See Left For Pruning Strategy See Left
0.930 T T T T 0.87 T T T T 0.77 T T T T
0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
Score Computation Epoch Score Computation Epoch Score Computation Epoch
0.96

o

©

5
|

o

©

=
|

Pruning Strategy

Final Test Accuracy

== No Pruning ~N
0.931 __ Prune Randomly 'S, \‘\\
Forget Score (Epoch 200) N
0.924 — EL2n Score (Epoch 20) For Pruning Strategy \\ For Pruning Strategy N
—e— GraNd Score at Initialization See Left 3 See Left
0.91 0.87 0.74
01 02 03 04 05 06 0.7 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Fraction of Dataset Pruned Fraction of Dataset Pruned Fraction of Dataset Pruned

Figure 1: Columns correspond to three different dataset and network combinations (labeled at the
top). First row: Final test accuracy achieved by training on a subset of training data comprised
of examples with maximum forget, EL2N and GraNd scores computed at different times early in
training. Subsets of a fixed size are used: networks are trained on 50% of training data for CIFAR10,
60% for CINIC10 and 75% for CIFAR100. Second row: Final test accuracy achieved by training
after different fractions of the dataset is pruned. Compare forget scores at the end of training, EL2N
scores early in training (at epoch 20) and GraNd scores at initialization. In each case, examples with
the lowest scores are pruned at initialization. In all experiments accuracy achieved by training on
the full dataset and on a random subset of the corresponding size are used as baselines.

scores early in training and forget scores at the end of training negotiate the trade-off between gen-
eralization performance and training set size. The training sets are constructed by pruning different
fractions of the lowest score examples. In all examples, training on the full dataset and a random
subset of the corresponding size are used as baselines. We make the following observations.

Pruning at initialization. In all settings, GraNd scores can be used to select a training subset
at initialization that achieves test accuracy significantly better than random, and in some cases,
competitive with training on all the data. This is remarkable because GraNd only contains infor-
mation about the gradient norm at initializion, averaged over initializations. This suggests that the
geometry of the training distribution induced by a random network contains a surprising amount
of information about the structure of the classification problem. EL2N scores, which only contain
information about errors, are not consistently effective at initialization and forgetting scores, which
require counting forgetting events over training, are not even defined at initialization.

Pruning early in training. We find that, after only a few epochs of training, EL2N scores are
extremely effective at identifying important examples for generalization. For a wide range of inter-
mediate pruning levels, training on the highest scores performs on par with or better than training on
the full dataset. Even at higher pruning levels, EL2N scores computed using local information early
in training is competitive with forget scores which integrate information over the training trajectory.
This suggests that the average error vector a few epochs into training can identify examples that the
network heavily uses to shape the decision boundary throughout training.

Interestingly, at extreme levels of pruning with either EL2N or GraNd scores, we observe a sharp
drop in performance. We hypothesize that this is because at high levels of pruning, using either
GraNd or EL2N scores leads to bad coverage of the data distribution. By only focusing on the
highest error examples, it is likely that an entire subpopulation of significant size that is present in
the test data is now excluded from the training set. We only fit a small number of very difficult
examples and do not keep enough of a variety of examples for training models with good test error.

A property of the data. Two results suggest that the ranking of important examples induced by
EL2N and GraNd scores is a property of the dataset and not specific to a network. First, in Ap-
pendix D.2, we show that a ResNetl18 and a ResNet50 trained on CIFAR-10 have similar perfor-
mance curves and the same amount of data can be pruned, even though ResNet50 is a much deeper
network with more parameters. Additionally, in an analysis of the sensitivity of the scoring meth-
ods to hyperparameters in Appendix D.1, we observe that scores calculated on a single network do
not perform as well as those averaged across networks. We hypothesize that averaging the gradient
or error norms over multiple initializations or training trajectories removes dependence on specific
weights, allowing a more accurate distillation of the properties of the dataset.

In the following experiments, we focus on EL2N scores computed early in training, as they more
accurately identify important examples.

4 Identifying noise examples

In the previous section, we
studied the effect of keeping 0% Labels Randomized 10% Labels Randomized
the highest-scoring examples, 0.96
and found that we could train 0%
on only the top 50% of exam- 30921
ples by score without a drop in 3 0.904

5}

accuracy (CIFAR-10). Whatis © o.s-

Pruning Strategy
— = None 0.657 —~ None

Pruning Strategy

the nature of subpopulations of & g6 -~ Random —— Random

examples that allow us to reach ogale T EENScreJoss{ T ENScoe o)
3 9 _ 00 01 02 03 04 05 0.6 0.0 01 02 03 04 05 0.6

hlgh accuracy : OIlC hypOthC Fraction Dataset Offset Fraction Dataset Offset

sis is that the highest-scoring

examples are the most impor- Figure 2: ResNetl8 trained on a 40% subset of CIFAR10 with
tant ones for achieving an ac- clean (left) and 10% randomized labels (right). The training subset
curate classifier. In this section, contains the lowest scoring examples after examples with scores
we refute this hypothesis, and below the offset are discarded. Scores computed at epoch 10.
demonstrate the role of the la-

bel noise.

To test whether the highest-scoring examples are most important for achieving high accuracy, we
first sort the examples by increasing EL2N computed after a small number of training epochs.’
Then we perform a sliding window analysis by training on a subset of examples with scores within
a window from percentile f to percentile f + P percentile, always keep P% of the data but sliding
up f. As this window slides to higher percentiles, performance increases, except when the window
includes examples with the very highest scores Fig. 2 (left). Indeed the the optimal sliding window
actually excludes approximately 500 of the highest-scoring training examples. These effects are
reduced in the low pruning regime (see Appendix E.1). In Appendix C, we visualize some of the
images that are excluded from each class.

Before we analyze these results, we first place them into a wider context, where we also change the
amount of noise in the underlying label distribution. We repeat the experiment outlined above, but
corrupt a random K % of labels, replacing them with a random label, mirroring the protocol popu-
larized by Zhang et al. [13]. Fig. 2 reveals that with increased label corruption, the optimal window
shifts and excludes a higher number of examples. Therefore, the effect we see in the noiseless case
appears to be magnified in the presence of label noise. Appendix E.2 examines how adding label
noise influences the distribution of EL2N scores of examples.

These findings have several implications. The most obvious implication is that training with only
the highest-scoring samples may not be optimal, especially when there is label noise. When the
population has a low Bayes error rate, using only the highest scoring samples yields optimal re-
sults. However, without a validation set, one should be cautious in excluding high-score examples.
Feldman [14] discusses memorization in a noisy-label setup and gives conditions under which one
should memorize in order to not misclassify singleton examples (examples in the training data that
are the sole representatives of a subpopulation). For example, if the subpopulation appears with a
frequency ©(1/n), memorizing such examples can improve generalization. In practice, we may not
know whether our data fits these conditions. However, our analysis in Fig. 2 suggests a simple and

’In Appendix E.3, we repeat these experiments for the GraNd score.

powerful method to prune data for optimal performance by optimizing just two hyperparameters of
a sliding window using a validation set.

5 Optimization landscape and the training dynamics

5.1 Evolution of the data-dependent NTK

The dynamics of neural-network training in the infinite-width limit are now well understood [15,
16]: For an appropriate scaling of the learning rate and initial weights, the neural network model
behaves like a linear model, where the data are transformed by a Neural Tangent Kernel (NTK) at
initialization, determined by the product of the Jacobians of the logits at initialization. In the limit,
neural network training implements kernel regression with the fixed NTK as the kernel.

However, standard neural net-
works outperform their infinite-

X o 0% Labels Randomized 0.6 10% Labels Randomized
width limits [17]. Indeed, 035 :
in standard networks, rather . o3 05
than being constant, the NTK 3§ o5 o4
evolves rapidly along the train- =
. ()
ing trajectory early in training £ %20 03
. fé Epoch Epoch
[9, 18]. To show this, Fort et al. 0.15 0| 02 10
[9] track the Gram matrix under 0.10 i i el B, i i P
the NTK during training They 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
. Example Index Example Index

find high velocity during the
initial phase of training. Then, Figure 3: Kernel velocity for different subsets of images when
around the same time as the on- ResNet18 is trained on CIFAR10 with all true labels (left) and
set of linear mode connectiv- 10% label noise (right). Examples are sorted in ascending order
ity, the NTK velocity stabilizes by EL2N scores and each point corresponds to the kernel velocity
to a smaller value and remains of 100 contiguous images starting at example index. Both scores
nearly constant for the rest of and velocities are computed at the same epoch indicated by color.
the high learning rate training time.

Here we seek to understand which training samples contribute to the NTK gram matrix evolution.
We empirically approximate the velocity of a submatrix via a finite differences method in a scale-
invariant way. In particular, following [9], we compute the cosine distance between two NTK gram
matrices, one computed at epoch ¢, and another one at epoch ¢ + 1, one epoch later. We look at
submatrices of a fixed size, formed by examples with contiguous EL2N scores. Fig. 3 shows that
higher EL2N scores lead to higher velocities. This relationship is not affected by the time at which
both are computed.

Interestingly, the kernel velocity drops off sharply for examples with the very highest scores when
label noise is introduced. In Section 4, we showed that dropping these examples boosts the accuracy
of the final predictor. We hypothesize that, while the kernel velocity is higher for harder examples
that the model is actively trying to fit, the kernel velocity drops off for the very highest scoring
examples that might be too difficult to learn, perhaps because they are unrepresentative samples or
they have have label noise.

5.2 Connections to the Linear Mode Connectivity

We now examine how the ranking of the examples by EL2N connects to the geometry of the loss
surface. In particular, Frankle et al. [19] studied the effect of minibatch randomness on the training
trajectory, focusing on identifying the point in training when two networks, starting from the same
weights, but trained with independent minibatches, converge to the same “linearly connected’”” mode.
They find that, for standard vision datasets, the onset of this “linear mode connectivity” (LMC)
happens early in training.

More precisely, let wy, ws, ..., wr be the training trajectory of a parent network, fix a spawning
time t*, and let vg-, Vg« 41, Ve 42, . . ., v7 be an independent training trajectory (i.e., with independent
minibatches), beginning at v, = wy«. We call vp the child network and vy, v+ 41, ... the child

trajectory. The (training) error barrier between two weights w and w’, denoted err(w, w’; S), is the

1.0 CIFAR10 + ResNet18 1.0 CINIC10 + ResNet18 L0 CIFAR100 + ResNet50

L Subset
2081 MinEI2N | 08 1 0.8
H —e— Random
206 St MaxER2N.) o 6 Subset 0.6
g \ Min EI2N
w |] —— Random i
o 0.4 0.4 e, | 04 cubset
% 0.2 0.2 0.21 Min EI2N
x._— —— Random

0.0 0.0 0.0 7 MaxERN

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
Spawn Epoch Spawn Epoch Spawn Epoch

Figure 4: The final training error barrier between children on subsets of a 1000 highest (green) and
lowest (orange) EL2N score examples, and randomly selected training subset (blue) as a function of
the spawning time. Left to right: different dataset and network combinations.

maximum deviation of the training error surface]%5() above the line connecting the empirical risk
at w and w’. That is,

err(w,w’; S) = sup {Rs(aw +(1-a)w) —aRs(w)—(1-a) Rg(w’)}. (5)
a€gl0,1]

We then define the mean (training) error barrier, spawning at t*, at time t, for t* < t < T, denoted
errf (5), to be the expected error barrier between w; and v; on the data S. That is,

err! () = Bovpe g 1vee 1.0 [err(wt, Vg5 S)], (6)
where the expectation is taken over the randomness in the trajectories of w and v after t* due to the
choice of minibatches, conditional on the initial trajectories up through time ¢*. (Note that, at the
end of training ¢t = 7', the supremum in err(wp, vr; S) is often achieved near v = 1/2, and so this
is a cheap approximation used in practice.) The “onset” of linear mode connectivity is the earliest
spawning time ¢* at which point errf; (S) =~ 0, where S is the whole training set. In our work,
we instead compute the error barrier on subsets of the training set, which allows us to compare the
training dynamics and modes on subpopulations.

In Fig. 4, we measure the mean error barrier err? (S’) as a function of the spawning time ¢*, in the
cases where S’ are either 1) the training examples with the smallest scores, 2) the largest scores,
or 3) a random subset of training examples. We find that the error barrier falls close to zero very
rapidly for examples that have low EL2N scores, and stays high for high score examples. These
findings suggest that the loss landscape derived from restricted subsets of examples with low and
high EL2N behave very differently. The loss landscape derived from easy subsets of examples with
low scores is quite flat, in the sense that error barriers between children as a function of spawn time
rapidly diminish. On the other hand, the loss landscape derived from harder subsets of examples
with higher scores is rougher, with higher error barriers that persist for longer in the spawn time.
Further, this result is in agreement with the results presented in Section 5.1, showing that most of
the learning happens in the high EL2N score examples.

6 Related Work

As we have already discussed, our work is closely related to an empirical study by Toneva et al. [8],
which examines the frequency with which correct classification decisions are forgotten during train-
ing. The authors observe that examples that are rarely forgotten are also ones that do not contribute
much to the final accuracy of the predictor. In particular, if we retrain from initialization after hav-
ing removed these rarely forgotten examples from the training data, we achieve the same accuracy.
Similar to our work, this work analyzes the dynamics of training in deep learning through the lens
of training examples, and demonstrates that standard vision datasets have superfluous information.
However, unlike forgetting scores, our proposed methods use only local information, bringing to
light that the local ordering of examples is roughly preserved throughout training.

Coleman et al. [1] use a small proxy network in combination with other training data selection
methods to find a small subset of important-for-training examples, that can then be used to train a
large state-of-the-art (SOTA) deep neural network. In their empirical study, they observe that most
important examples selected via a proxy model, are also important for training a SOTA network. In

addition, they study a proxy which reuses SOTA network’s architecture, but is trained for a shorter
time. The authors observe that selecting the important examples after at least 50 epochs of training
works better than selecting them at random, but not as well as after the full training run. They do
not study shorter training times for proxies, or relate it to the training dynamics in any other way.

Another line of related work is on coresets (see, e.g., [4, 5, 7, 20-22], and many others). The term
coresets generally refers to a possibly weighted subset of training data. Much of the work on coresets
is focused on identifying small coresets that provably yield an e-approximate solution to the original
objective (on all the training data). Most guarantees require the problem to have special structure,
such as convexity. For nonconvex problems, like training deep neural networks, guarantees are
provided for very conservative proxies, e.g., based on Lipschitz constants or smoothness. While
coreset selection comes with nice theoretical guarantees, in our opinion, the utility of these methods
is best considered an empirical question.

Coresets have also been studied in the active learning community. Here, the goal is to select a small
set of examples to label at any given iteration of training (see, e.g., [23—27], and references therein).
Coreset selection has also been proposed as a way to increase model robustness [28].

Informally, removing a training example from the training data and not hurting the generalization
error suggests that the example has small “influence” on the test data. Influence of the training
examples on test examples is studied in sample-based explainability [29-31]. On the theory side,
Feldman [14] recently proposed to model data as a mixture of populations and study the role of
memorization when the data distribution is long-tailed. Feldman demonstrates conditions under
which memorization is necessary for good generalization. In doing so, he proposes a definition of
example memorization and influence, which can be interpreted as a leave-one-out notion of stabil-
ity. In an empirical study following this work, Feldman and Zhang [32] demonstrate that classifiers
trained on computer vision benchmarks benefit from memorization. In particular, training without
high-memorization-value examples comes at a cost of accuracy of the learned neural network clas-
sifier. In Appendix F, we compare GraNd, EL2N, forgetting scores, and memorization values on
CIFAR-100-trained Resnet50 networks; memorization values do not correlate with the other scores.

7 Discussion

In summary, our work both (1) introduces methods to significantly prune data without sacrificing test
accuracy using only local information very early in training (Fig. 1), sometimes even at initialization,
and (2) uses the resulting methods to obtain new scientific insights into how the structure of data
drive the dynamics of deep learning. We start from a principled approach by asking how much each
training example influences the loss reduction of other examples, and from that starting point, we
obtain 2 scores, namely gradient norm (GraNd) and error norm (EL2N) that bound or approximate
this influence, with higher scores indicating higher potential influence. We find that examples with
higher scores tend to be harder to learn, in the sense that they are forgotten more often over the
entire course of training. We also find that the very highest scoring examples tend to be either
unrepresentative outliers of a class, have non standard backgrounds or odd angles, are subject to
label noise, or are otherwise difficult. This observation yields a simple and powerful sliding window
method (Fig. 2) to prune data by keeping examples within a range of scores, where the start and the
end of the range constitute just 2 hyperparmeters that can be tuned via a validation set. Furthermore
we find that high-scoring examples primarily drive feature learning by maximally supporting the
velocity of the NTK, whereas learning dynamics might actually give up on the very highest scoring
examples that may correspond to unrepresentative examples or noise (Fig. 3). Finally we show
that higher (lower) scoring subsets of examples contribute to a rougher (smoother) loss landscape
(Fig. 4). Overall this decomposition of both loss landscape geometry and learning dynamics into
differential contributions from different types of examples constitutes an exciting new methodology
for analyzing deep learning. A deeper understanding of the differential role played by different
subsets of examples could aid not only in data pruning, but also in curriculum design, active learning,
federated learning with privacy, and analysis of fairness and bias.

Ethical considerations. This work raises several ethical considerations. Being, an empirically
driven work, it consumed considerable energy. However, we hope that it will enable advancements
in theory that will more efficiently guide experiments. Also, we focus mostly on accuracy as a
metric, which tends to hide disparate effects on marginalized groups. But since this work attempts
to explicitly uncover the influence of training examples and sub-populations, we hope that it will
lead to methods that will decrease bias in the training procedure, especially if marginalized groups
are under-represented in the dataset and are thus difficult to learn.

References

(1]

(2]

(3]
(4]
(5]
(6]
(71
(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

C. Coleman, C. Yeh, S. Mussmann, B. Mirzasoleiman, P. Bailis, P. Liang, J. Leskovec, and M.
Zaharia. Selection via proxy: Efficient data selection for deep learning. 2019. arXiv: 1906 .
11829.

M. Hwang, Y. Jeong, and W. Sung. “Data distribution search to select core-set for machine
learning”. In: Proc. 9th Int. Conf. Smart Media & Appl. (SMA 2020), Jeju, Korea. 2020,
pp- 17-19.

S. Har-Peled and A. Kushal. “Smaller coresets for k-median and k-means clustering”. Dis-
crete & Computational Geometry 37.1 (2007), pp. 3-19.

J. H. Huggins, T. Campbell, and T. Broderick. “Coresets for scalable bayesian logistic regres-
sion” (2016). arXiv: 1605.06423.

T. Campbell and T. Broderick. “Bayesian coreset construction via greedy iterative geodesic
ascent”. In: Int. Conf. Machine Learning. PMLR. 2018, pp. 698-706.

I. W. Tsang, J. T. Kwok, P.-M. Cheung, and N. Cristianini. “Core vector machines: Fast SVM
training on very large data sets.” Journal of Machine Learning Research 6.4 (2005).

A. Munteanu, C. Schwiegelshohn, C. Sohler, and D. P. Woodruff. On coresets for logistic
regression. 2018. arXiv: 1805.08571.

M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and G. J. Gordon. An
empirical study of example forgetting during deep neural network learning. 2018. arXiv:
1812.05159.

S. Fort, G. K. Dziugaite, M. Paul, S. Kharaghani, D. M. Roy, and S. Ganguli. “Deep learning
versus kernel learning: an empirical study of loss landscape geometry and the time evolution
of the Neural Tangent Kernel”. In: Advances in Neural Information Processing Systems. 2020.
arXiv: 2010.15110.

K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770—
778.

A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from tiny images”
(2009).

L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey. “CINIC-10 is not ImageNet or
CIFAR-10". CoRR abs/1810.03505 (2018). arXiv: 1810.03505.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep learning re-
quires rethinking generalization”. In: Int. Conf. Representation Learning (ICLR). 2017. arXiv:
1611.03530v2.

V. Feldman. “Does learning require memorization? a short tale about a long tail”. In: Proc.
52nd Ann. ACM SIGACT Symp. Theory of Comput. (STOC). 2020, pp. 954-959.

A. Jacot, F. Gabriel, and C. Hongler. “Neural tangent kernel: Convergence and generalization
in neural networks”. In: Advances in Information Processing Systems (NeurIPS). 2018. arXiv:
1806.07572.

J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington.
Wide neural networks of any depth evolve as linear models under gradient descent. 2019.
arXiv: 1902.06720.

S. Arora, S. S. Du, Z. Li, R. Salakhutdinov, R. Wang, and D. Yu. Harnessing the power of
infinitely wide deep nets on small-data tasks. 2019. arXiv: 1910.01663.

A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari. The large learning rate
phase of deep learning: the catapult mechanism. 2020. arXiv: 2003.02218.

J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. “Linear mode connectivity and the lottery
ticket hypothesis™. In: Int. Conf. Machine Learning (ICML). 2020, pp. 3259-3269. arXiv:
1912.05671.

P. K. Agarwal, S. Har-Peled, K. R. Varadarajan, et al. “Geometric approximation via core-
sets”. Combinatorial and computational geometry 52 (2005), pp. 1-30.

D. Feldman, M. Schmidt, and C. Sohler. “Turning big data into tiny data: Constant-size core-
sets for k-means, PCA, and projective clustering”. SIAM J. Computing 49.3 (2020), pp. 601—
657.

10

https://arxiv.org/abs/1906.11829
https://arxiv.org/abs/1906.11829
https://arxiv.org/abs/1906.11829
https://arxiv.org/abs/1605.06423
https://arxiv.org/abs/1805.08571
https://arxiv.org/abs/1812.05159
https://arxiv.org/abs/2010.15110
https://arxiv.org/abs/1810.03505
https://arxiv.org/abs/1611.03530v2
https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/1902.06720
https://arxiv.org/abs/1910.01663
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/1912.05671

[22]
(23]
[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]

[32]

E. Tolochinsky and D. Feldman. Coresets for monotonic functions with applications to deep
learning. 2018. arXiv: 1802.07382.

K. Wei, R. Iyer, and J. Bilmes. “Submodularity in data subset selection and active learning”.
In: Int. Conf. Machine Learning. PMLR. 2015, pp. 1954-1963.

O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set ap-
proach. 2017. arXiv: 1708.00489.

K. Killamsetty, D. Sivasubramanian, G. Ramakrishnan, and R. Iyer. GLISTER: Generaliza-
tion based Data Subset Selection for Efficient and Robust Learning. 2020. arXiv: 2012 .
10630.

B. Mirzasoleiman, J. Bilmes, and J. Leskovec. “Coresets for data-efficient training of machine
learning models”. In: Int. Conf. Machine Learning (ICML). PMLR. 2020, pp. 6950-6960.
arXiv: 1906.01827.

Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar. Deep active learning for
named entity recognition. 2017. arXiv: 1707 .05928.

B. Mirzasoleiman, K. Cao, and J. Leskovec. “Coresets for Robust Training of Neural Net-
works against Noisy Labels” (2020). arXiv: 2011.07451.

P. W. Koh and P. Liang. “Understanding black-box predictions via influence functions”. In:
Int. Conf. Machine Learning. PMLR. 2017, pp. 1885-1894.

E. Barshan, M.-E. Brunet, and G. K. Dziugaite. “Relatif: Identifying explanatory training
samples via relative influence”. In: Int. Conf. Artificial Intelligence and Statistics (AISTATS).
2020, pp. 1899-1909.

G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. “Estimating Training Data Influence by
Tracing Gradient Descent”. In: Advances in Neural Information Processing Systems. 2020.
V. Feldman and C. Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. 2020. arXiv: 2008.03703.

11

https://arxiv.org/abs/1802.07382
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/2012.10630
https://arxiv.org/abs/2012.10630
https://arxiv.org/abs/2012.10630
https://arxiv.org/abs/1906.01827
https://arxiv.org/abs/1707.05928
https://arxiv.org/abs/2011.07451
https://arxiv.org/abs/2008.03703

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section 7.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] We provided
a URL to the code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix D.1

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For any training subset, we train 4 independent runs and
report the mean and 16th and 84th percentile interval.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Appendix B.1.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

	Introduction
	Contributions

	Which samples are important for learning?
	Preliminaries
	Gradient Norm Score and an infinitesimal analysis
	Comparison to forgetting scores

	Empirical Evaluation of GraNd and EL2N Scores via Data Pruning
	Identifying noise examples
	Optimization landscape and the training dynamics
	Evolution of the data-dependent NTK
	Connections to the Linear Mode Connectivity

	Related Work
	Discussion
	Ethical and societal consequences
	Datasets, network architectures and hyperparameters for training
	Resources used

	Example Images
	Additional Experiments
	Sensitivity analysis of GraNd and EL2N scores
	Comparison between scores from different architectures on the same dataset
	Correlations between scores

	Noise
	Noisy Examples in Low Pruning Regime
	Scores for Noisy Examples
	Noise and GraNd Scores

	Comparison to memorization values

