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ABSTRACT

Embedding learning has found widespread applications in recommendation sys-
tems and natural language modeling, among other domains. To learn quality em-
beddings efficiently, adaptive learning rate algorithms have demonstrated supe-
rior empirical performance over SGD, largely accredited to their token-dependent
learning rate. However, the underlying mechanism for the efficiency of token-
dependent learning rate remains underexplored. We show that incorporating fre-
quency information of tokens in the embedding learning problems leads to prov-
ably efficient algorithms, and demonstrate that common adaptive algorithms im-
plicitly exploit the frequency information to a large extent. Specifically, we pro-
pose (Counter-based) Frequency-aware Stochastic Gradient Descent, which ap-
plies a frequency-dependent learning rate for each token, and exhibits provable
speed-up compared to SGD when the token distribution is imbalanced. Empir-
ically, we show the proposed algorithms are able to improve or match adaptive
algorithms on benchmark recommendation tasks and a large-scale industrial rec-
ommendation system, closing the performance gap between SGD and adaptive
algorithms. Our results are the first to show token-dependent learning rate prov-
ably improves convergence for non-convex embedding learning problems.

1 INTRODUCTION

Embedding learning describes a problem of learning dense real-valued vector representation for cat-
egorical data, often referred to as token (Pennington et al., 2014} Mikolov et al.l |2013azb). Good
quality embeddings can capture rich semantic information of tokens, and thus serve as the corner-
stone for downstream applications (Santos et al., [2020). Due to their significant impact on model
performance and large memory footprint (21.8% of total parameters for BERT (Devlin et al.,[2018)),
95% for industrial recommenders in Section[d), how to learn quality embedding vectors efficiently
forms an important problem in applications, including recommendation systems and natural lan-
guage processing.

Empirically, adaptive algorithms (Duchi et al., 2011} |Kingma & Bal 2014; Reddi et al., 2019) have
witnessed significant successes, yielding state of the art performance in both industrial-scale recom-
mendation systems and natural language model (Guo et al., [2017; [Zhou et al.,[2018bj [Devlin et al.,
2018; [Liu et al., 2019). Stochastic gradient descent (SGD), on the other hand, has struggled to keep
up, often yielding much slower convergence and low quality models (Liu et al.,|2020; Zhang et al.,
2019) (see also Figure [2). The sharp contrast on the efficiency of adaptive algorithms and SGD is
particularly distinctive, as SGD is the typical choice of optimization algorithms in the other domains
of machine learning, such as vision/image related tasks (He et al., [2016} |Goyal et al., 2017).

The common belief behind the empirical edge of adaptive learning rate algorithms over SGD is
that the former ones exploit sparsity of high dimensional feature. Specifically, a feature in a typical
embedding learning problem comes in the form of one/multi-hot encoding of tokens (e.g. workpiece
in NLP and user/item in recommendation systems), which leads to a sparse stochastic gradient that
has only non-zero values for tokens within the mini-batch. In addition, token distributions of real
world data are often highly imbalanced and satisfy the power-law property (Piantadosi, 2014} |Celma,
2010; Clauset et al., 2009), and infrequent tokens are widely believed to be more informative to
model learning. Thus adaptive algorithms can pick up information from the infrequent tokens more
efficiently, as they can schedule a higher learning rate for the infrequent tokens (Duchi et al.|[2011).

Despite the appealing intuition, there is a significant theory-practice gap on the empirical superiority
of adaptive learning rate algorithms over SGD, and no developed theories can explicitly justify the
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previous intuition. Better dimensional dependence of adaptive algorithms has only been shown
in the convex setting (Duchi et al., 2011), which hardly generalizes to even the simplest practical
models in embedding learning problems (e.g., Factorization Machine, Rendle{ (2010)), whose loss
landscape is non-convex. For non-convex settings, most theoretical efforts have been devoted to
analyzing adaptive learning rate algorithms for general non-convex objectives, which yield subpar
convergence rate compared to standard SGD (Ward et al., 2018; |Défossez et al., 2020; Chen et al.,
2018;/Zhou et al.|[2018a). In fact, the standard SGD has been recently shown to be minimax optimal
for non-convex problems (Drori & Shamir, 2020; |Arjevani et al., [2019), and thus not improvable in
general. Moreover, since adaptive algorithms are only implicitly exploiting frequency information,
and if the intuition indeed holds true, one might naturally wonder whether we can instead develop
an adaptive learning rate schedule that explicitly depends on frequency information. Motivated by
our previous discussions, we raise and aim to address the following questions

Questions

Can we design a frequency-dependent adaptive learning rate schedule? Can we show prov-
able benefits over SGD?

Our contributions. We answer the previous question by showing that token frequency information
can be leveraged to design provably efficient algorithms for embedding learning. Specifically,

e We propose Frequency-aware Stochastic Gradient Descent (FA-SGD), a simple modification
to standard SGD, which applies a token-dependent learning rate that inversely proportional to
the frequency of the token. We also propose a variant, named Counter-based Frequency-aware
Stochastic Gradient Descent (CF-SGD), which is able to estimate frequency in an online fashion,
much similar to Adagrad (Duchi et al.}2011) and Adam (Kingma & Ba,[2014).

e Theoretically, we show that both FA-SGD and CF-SGD outperform standard SGD for embedding
learning problems. Specifically, they are able to significantly improve convergence for learning
infrequent tokens, while maintaining convergence speed for frequent tokens. To the best of our
knowledge, our proposed algorithms are the first to show provable speed-up over standard SGD for
non-convex embedding learning problems. This is in sharp contrast with other popular adaptive
learning rate algorithms, whose empirical performance can not be explained by existing theories.

e Empirically, we conduct extensive experiments on benchmark datasets and a large-scale industrial
recommendation system. We show that FA/CF-SGD is able to significantly improve over SGD,
and improves/matches popular adaptive learning rate algorithms. We also observe the second-
order moment maintained by Adagrad and Adam highly correlates with the frequency information,
demonstrating intimate connections between adaptive algorithms and the proposed FA/CF-SGD.

1.1 RELATED LITERATURE

Adaptive algorithms for non-convex problems. There has been a fruitful line of research on an-
alyzing the convergence of adaptive learning rate algorithms in non-convex setting. These results
aim to match the convergence rate of standard SGD given by O(1/+/T) (Ghadimi & Lan, [2013),
however often with additional factor of log 7" (Ward et al., |2018}; [Défossez et al., |2020; (Chen et al.,
2018 Reddi et al., [2018), or with worse dimension dependence (Zhou et al.| [2018a) for smooth
problem (assumed by almost all prior works). Moreover, all existing works aim to analyze the con-
vergence for general non-convex problems, ignoring unique data features in embedding learning
problems, where adaptive algorithms are most successful. We explicitly take account into the spar-
sity of stochastic gradient, and token distribution imbalancedness into the design and analysis of our
proposed algorithms, which are the keys to better convergence properties.

Adaptive algorithms and SGD. To the best of our knowledge, the study on understanding why
adaptive learning rate algorithms outperform SGD is very limited. [Zhang et al.| (2019) argue that
BERT pretraining (Devlin et al., 2018)) has heavy-tailed noise, implying unbounded variance and
possible non-convergence of SGD. Normalized gradient clipping method is proposed therein and
converges for a family of heavy-tailed noise distributions. Our results focus on a different direction
by showing that imbalanced token distribution is an important factor that can be leveraged to design
more efficient algorithms for embedding learning problems. Our result also does not rely on the
noise to be heavy-tailed for the convergence benefits of the proposed FA/CF-SGD to take effect.
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Algorithm 1 Frequency-aware Stochastic Gradient Descent

Input: Total iteration number 7', token frequency {pi}rex, and learning rate schedule
{n}. }rex terr) specified by ().
Initialize: ©° € RY*4, sample 7 ~ Unif([T)),
fort=0,...7do
(1) Sample (i¢, j;) ~ D, calculate the stochastic gradient

gf,, = Veitg(gim 0jt ) yihjt)7 g;‘,, = vﬂjt 6(011 ) 0]},; yit,jt)
(2) Update parameters . o
9; :95 —nftgft, it =0, VieUi#i,

0Lt =0t —nf gt O =0l ViEV.i#

end for
Output: O

Notations: For a vector/matrix, we use ||-|| to denotes its ¢o-norm/Frobenius norm. We use ||-||, to
denote the spectral norm of a matrix.

2 PROBLEM SETUP

We consider an embedding learning problem which aims to learn user and item embeddings through
their interactions. We denote U as the set of users, and V' as the set of items, and let X = U UV
denote the union, referred to as tokens throughout the rest of the paper. We assume | X| = N, i.e.,
the total number of user and item is [V. For the ease of presentation, we always use letter ¢ to index
user set U, letter j to index item set V/, and letter k to index the union set X. The embedding learning
problem can be abstracted into the following stochastic optimization problem:

ohin  f(©) =Eqj~o (00053 9is)] = Y D(.5)e6:,05:5). (1)
€ ieU,jev
Here (i,7) denotes the user-item pair sampled from the unknown interaction distribution D, 6;,
0; € R4 (the 7, j-th row of ©) denotes their embedding vectors respectively, and the loss £(6;, 0;; y;;)
denotes the prediction loss for their interaction y;; € {—1, +1} (e.g., logistic loss). We further let

pi=Y_ D(i.j), YieU; pj=> D(i,j), Vi€V, 2
Jjev ieU

denote the marginal distribution over U and V.
Remark 2.1. Our analysis also allows treatment of additional network structure (with parame-
ters denoted by W) that takes nonlinear transformation of embedding vectors, e.g., f(©, W) =
E,j)~pl(0s, 05, W; ;). We omit their explicit treatment for presentation simplicity. In addition,
although we mainly discuss in the context of recommendation, our analysis and results only relies
on sparsity of stochastic gradient and the imbalancedness of token distributions, which allow one to
extend our results to other embedding learning problems (e.g., language model pretraining).

The full algorithmic descriptions of our proposed Frequency-aware Stochastic Gradient Descent
(FA-SGD) algorithm are presented in Algorithm[I] Note that randomly outputting a historical iter-
ate is commonly adopted in literature for showing convergence of stochastic gradient descent type
algorithms for non-convex problems (Ghadimi & Lan, 2013)). In practice, we can simply use the last
iterate ©7 as the output solution. In addition, Sectionpresents CF-SGD (Algorithm , which
does not need the token distribution as the input and can estimate it in an online fashion.

At iteration ¢, FA-SGD samples (i, j;) ~ D, and ob- o’
tain the sparse stochastic gradient g* defined in . V(,itg(amojt;yit’ jt)T
Note that only the 7;-th and j;-th row of g, are non-zero. . . 3)
One can readily verify that E(;, j,y.p [g:] = Ve f(©"). 9t = :
Going forward, we will denote V f,i as the k-th row of Vajtg (03, b, yihjt)T
gradient V f(©"), and g/, as the k-th row of stochastic 0’
gradient g;. Note that we have
Ej, [gi,lie = 1] =V fi/pi; Bi, [g,lie = i] = V fj/p;- “)
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We further denote 6% = pik fi — gt forall k € X. Then by definition E [4! |i; = i] = 0 and
E [5§t l7: = j] =0forall: € U,j € V. We pose the following assumptions on the its variance.

Assumption 1 (Bounded conditional variance). We assume that the variance of 5ft is bounded. That
is, there exists {J,%}ke x, such that

EM%WM:4g03EM%Wm:ﬂgﬁ,WeUJeV 5)

Assumption [T] allows us to provide a finer characterization on the variance of stochastic gradient
compared to typical variance assumption in literature. To illustrate, recall that standard assumption

in the stochastic optimization literature assumes Var(g') = E ||V f! — ¢'||” < o2 for some uni-

versal constant 0 > (0. Consider an extreme setting, where we have exact gradient for the sampled

user-item pair, i.e., g, = - -V {, and gi, = -V}, then we have o), = O forall k € X. In
, e ,

it
contrast, the variance of g’ is stlll non-zero. In general setting, we can bound the variance as shown
in the following proposition. Note that the variance lower bound arises naturally form the extreme
sparsity of the stochastic gradient.

Proposition 2.1. Given Assumption|I| we have
Z(l/l?k:—l vakr” < Var(g Zpk0k+ Z 1/pr — 1) vakH 6)
keX keX keX

Assumption 2 (Smoothness of prediction loss). We assume {(u, v;y) is symmetric w.r.t. uwand v for
anyy € {—1,+1}, and there exists L > 0 such that || V2, (( 2L L.

"';')Hzgl’ ’ H2

The assumption on the symmetry of £ is readily satisfied by almost all neural network architecture.
In essence, this assumption only requires that the parameterization of embedding vector is token
agnostic. On the other hand, the spectral upper bound on the Hessian matrix is a standard assumption
in optimization literature.

3 THEORETICAL RESULTS

We first present the convergence results of FA-SGD and standard SGD for embedding learning
problem formulated in (I}, and discuss the advantage that FA-SGD offers when the token distribution
{Pr} e x is highly imbalanced. We further propose a variant, named CF-SGD, which can estimate
frequency information in an online fashion and still provably enjoys the benefits of FA-SGD.

3.1 CONVERGENCE OF FA-SGD AND STANDARD SGD

Theorem 3.1 (FA-SGD). With Assumption[l|and[2] take learning rate policy to be

k. = min {1/(4L), 0/ \/Tpi } ™

where T denotes the total number of iterations, and o = \/(f(@o) — )/ (LY 1ex pio}), we
have

L(fOY — ) VP Siex nof(f(0°) = f)L
T + \/T 9

Remark 3.1 (Connection with Stochastic Block Coordinate Descent). Our FA-SGD shares some
similarities with Stochastic Block Coordinate Descent (SBCD) (Nesterov,2012;Dang & Lan, |[2015;
Richtarik & Takac| 2014)) applied to problem (1)), in the sense that each iteration we sample certain
blocks of variables (0;,, 0, in our case), and only update the sampled blocks by followmg its stochas-
tic gradient. Different from SBCD, the stochastic gradient of the block variable gZ in the FA-SGD
is biased, as shown in (4). Note that with unbiased stochastic gradient, SBCD method typically con-
verges slower than standard SGD by a factor that can be as large as number of blocks. As a concrete
example, when the token distribution is uniform, SBCD converges slower than standard SGD by a
factor of | X |, hence slower than FA-SGD by a factor of | X | from Corollary [3.1|{developed later.

E|Vf|?

VEEX. (8)

4
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Recall that from Proposition [2.1] the variance of stochastic gradient is heavily influenced by the
population gradient Vg f(©), and can be huge whenever the population gradient is, presumably
in the early phase of training. This relationship is also supported by empirical findings in [Zhang
et al.| (2019) (Figure 2a), where the authors show that for BERT pretraining, the noise distribution
in stochastic gradient g is highly non-stationary, which has large variance in the beginning of the
training and smaller variance at the end of training. Since existing analysis of SGD in literature
assumes a constant variance bound for the stochastic gradient, our observation in Proposition [2.1]
requires an alternative analysis of SGD for problem (T)).

To obtain the convergence rate of standard SGD in the presence of iterate-dependent variance (6)),
our key insight is to tailor the convergence analysis to the sparsity of the stochastic gradient for
problem (T)). We show the convergence of standard SGD as the following.

Theorem 3.2 (Standard SGD). With Assumption |I| and |2} take learning rate policy to be 1}, =

min {ﬁ, %} , where T' denotes the total number of iterations, and o« = %, we have
2 2 0 *
L(f(0e" — f* Yiex Pioi(f(©°) — f*)L
Elvi)?=o [ LU©) f)+\/ < L VkeX. (9

T VT

Note that both FA-SGD and standard SGD attain a rate of O(1/+/T'). Compared to existing rates of
standard SGD (Ghadimi & Lan, 2013)), we do not require constant variance bound on stochastic gra-
dient, as we have discussed above. Compared to existing rates of adaptive learning rate algorithms
(Zhou et al., 2018a} (Chen et al., [2018)), both rates obtained here exhibits dimension-free property.
We emphasize here that due to the dimension-free nature of the bounds for both SGD and FA-SGD,
we do not claim the proposed FA-SGD has better dependence on dimension, which is the main moti-
vation of adaptive algorithms (Duchi et al.| 2011} Kingma & Bal, 2014} |Redd: et al.,|2019). Instead,
the major difference on the convergence of FA-SGD (8] and that of standard SGD (9) is that the for-
mer one is foken-dependent. Specifically, for FA-SGD, each token k£ € X has its own convergence
characterization, while all the tokens have the same convergence characterization in the standard
SGD. We first make a simple observation stating the equivalence of FA-SGD and standard SGD,
when the token distribution {py},  y is uniform.

Corollary 3.1 (Uniform Distribution). Suppose the user distribution {p;};cv and item distribution
{p;}jev is the uniform distribution. Then FA-SGD and standard SGD is equivalent to each other,
in terms of both algorithmic execution and convergence rate.

3.2 WHEN DOES FA-SGD OUTPERFORM STANDARD SGD?

We show FA-SGD shines when the token distribution {py } e x, defined in (2)), is highly imbalanced.
Before we present detailed discussions, we make an important remark that highly imbalanced token
distributions are ubiquitous in social systems, presented in the form power-law. Examples of such
distributions include the degree of individuals in the social network (Muchnik et al. [2013); the
frequency of words in natural language (Zipfl 2016); citations for academic papers (Brzezinski,
2015); number of links on the internet (Albert et al.l [1999). For more discussions on power-law
distributions in social and natural systems, we refer readers to[Kumamoto & Kamihigashi (2018)).

In Figure[Ic| [Td|we plot the user and item counting distribution of Movielens-1M dataset. One could
clearly see that the user and item distributions are highly imbalanced, with a small percentages of
users/items taking up the majority of rating records. We defer details on the skewness of token
distributions for Criteo dataset to Appendix

To illustrate the comparative advantage of FA-SGD when the token distribution {py }, . y is highly
skewed. We consider two classes of distribution families with different tail properties, one with
exponential tail, and one with polynomial tail.

Corollary 3.2 (Exponential Tail). Let U = {in}‘Ul V= {jm}lv| where i,, denote the user with

n=1’ m=1’

n-th largest frequency, and j,, denote the item with the m-th largest frequency. Suppose

pi, xexp(—tn), pj,. xexp(—tm), Vn € [|U|],m e [|V]] (10)
for some T > (. Define Ur as the set of users whose frequencies are within e-factor from the highest
frequency: Up = {i,, : n < 1}, and Vy similarly as Vi = {jp : m < L}. We refer to Ur as the
top users, and Vr as the top items.
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Figure 1: Token distribution with an exponential and polynomial tail, and the user/item counting
distributions for Movielens-1M dataset.

Then given |U|,|V| > L, the proposed FA-SGD, compared to standard SGD:

(1) Obtains the same rate of convergence, for the top users Ur and top items Vrp;
(2) E ||Vf17n H2 can converge faster by a factor of Q {exp (7(n — |Ur|))} for i, € U\ Ur ;
(3) E HijTm H2 can converge faster by a factor of Q {exp (7(m — |Vr|))} for jm € V' \ Vr.

We remark that U], |V| > % is a very mild condition, as it only requires that the most infrequent
user/item should have its frequency smaller than the most frequent user/item by at least a factor of
e. i.e., the non-top user/item set U \ Urp, V' \ Vr is nonempty, This is readily satisfied by the token
distributions in recommendation systems and natural language modeling (Celma, 2010} Zipf, |2016),
where the lowest frequency is at least orders of magnitude smaller than the highest frequency. The

factor of e in defining Uz, Vir can also be readily replaced by any constant larger than 1.

From Corollary[3.2] we can see that FA-SGD improves significantly over standard SGD for user/item
distribution with exponential tail. Specifically, FA-SGD achieves the same convergence rate of top
users/items compared to SGD, meanwhile it significantly improves the convergence of the non-top
users/items. Moreover, the strength of such an improvement increases exponentially as we move
towards the tail users/items.

Corollary 3.3 (Polynomial Tail). Let U = {in}‘Ul V=/{ jm}lv‘ where i,, denote the user with

n=1> m=1’

n-th largest frequency, and j,, denote the item with the m-th largest frequency. Suppose
pi, xn”’, pj. xm™, ¥YnellUl]l,me][|V]] (11)

for some v > 2. Define Ut as the set of users whose frequencies are within 2-factor from the highest
frequency: Up = {iy, : n™" > 1/16}, and Vr similarly as Vp = {jp, : m™" > 1/16}. We refer to
Ur as the top users, and V as the top items.

Then given |U|,|V| > 16'/", the FA-SGD, compared to standard SGD:

(1) Obtains the same rate of convergence, for the top users Ur and top items Vrp;
(2) E va; H2 can converge faster by a factor of ) { (‘U—”ﬂ) }for each i, € U\ U,

(3) E HijTm H2 can converge faster by a factor of Q) { (ﬁ) V} foreach j,, € V\ Vr.

We remark that polynomial tail is also the prototypical example of the power law distribution
class for modeling social behaviors (Kumamoto & Kamihigashi,[2018)). The constant 2 in the condi-
tion v > 2 can be replaced by any constant strictly larger than 1, with slight changes to the constant
factor in the statements of the corollary.

From Corollary[3.3] we can see that FA-SGD improves significantly over standard SGD for user/item
distribution with polynomial tail. Specifically, FA-SGD achieves the same convergence rate of top
users/items compared to SGD, meanwhile it significantly improves the convergence of the non-top
users/items. Moreover, the strength of such an improvement increases in polynomial order as we
move towards the tail users/items.

3.3 ONLINE ESTIMATION OF FREQUENCY INFORMATION

In certain application scenarios, the token distribution {pj}rex can be unknown in advance of
learning. To apply FA-SGD, one needs to employ a preprocessing step in order to estimate the token
distribution to a high accuracy, and then run the algorithm with estimated token distribution. Such a
preprocessing step often requires additional human efforts and data. To remove such an undesirable
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Algorithm 2 Counter-based Frequency-aware Stochastic Gradient Descent

Input: Total iteration number 7'
Initialize: ©° € RY>*4, counter sample 7 ~ Unif({T/2,...,T}).
fort =0,...7do

(1) Sample (i¢, j¢) ~ D, calculate the stochastic gradient

9i, = Vo, (0:,, 05,91, 5.), 95, = Vo, £(0i,,05,5 i, 5,)
(2) Compute counter-based learning rate 7}, (cf, ), 7%, (c%,) specified by
(3) Update parameters
0 = 0! — il g, Ol =08, Vie Ui+,
05 =05, =05, 077 =05, Vi€ V.j# i
(4) Update counters
it =c +1, M =c, VieUi#i

dtfl=cl +1, =, VeV, i

end for
Output: O7

preprocessing step, below we present an online variant of FA-SGD, which uses the counter of tokens
collected during training to estimate the token distribution dynamically. We show that the proposed
Counter-based Frequency-aware Stochastic Gradient Descent (CF-SGD) is able to retain the benefits
of FA-SGD despite unknown token distribution.

Theorem 3.3 (Counter-based FA-SGD). In addition to Assumption[l|and[2} suppose |V f ()| < G.
Take counter-based learning rate policy in Algorithm2to be

ﬁtk(cg):min{l/(zLL),l/ Tﬁk}, pL=ch/t, Vke X, te T, (12)

where T' denotes the total number of iterations, o = \/Mf/ (L D iex plg?) and My = f(6°) —
¥+ Y wex Peoz/ L, we have

LM, Ve Siex oL (£(8°) = f7) | VI (Siex o)
T VT VT ’

E|Vf|° =0 Vk € X.

13)

for T > max 4 minjey - 2log G—log(M; (1/2L+a//Pk) )
2 1EX s o ]

We believe the assumption on gradient bound ||V f(-)|| < G is not strictly necessary and can be re-
moved with more refined analysis. Nevertheless, the requirement on 7" only logarithmically depends
on the gradient bound G. In addition, we highlight that the convergence characterization in Theorem
[3.3]is still token-dependent. Specifically, we can show that despite not knowing token distribution
beforehand, CF-SGD can gain the same advantages that FA-SGD enjoys over SGD.

Corollary 3.4 (Exponential Tail). Suppose we have the same set of conditions given in Corollary

and o /\/L (f(O°) — f*) < 1. Define Ur as the set of users whose frequencies are within e-
factor from the highest frequency: Up = {i, : n < 1}, and Vi similarly as Vi = {jm : m < 1}.
We refer to Ut as the top users, and Vr as the top items.

Then given |U|,|V| > % the proposed CF-SGD, compared to standard SGD:

(1) Obtains the same rate of convergence, for the top users Ur and top items Vrp;
(2) E ||fo ||2 can converge faster by a factor of Q {exp (t(n — |Ur|))} for i, € U\ Ur ;
(3) E vaij H2 can converge faster by a factor of Q {exp (r(m — |V|))} for jm € V' \ Vr.
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Corollary 3.5 (Polynomial Tail). Suppose we have the same set of conditions given in Corollary
and o/\/L(f(0Y%) — f*) < 1. Define Ur as the set of users whose frequencies are within
2-factor from the highest frequency: Ur = {in, : n=% > 1/16}, and V similarly as Vi = {jm :
m~Y > 1/16}. We refer to Ut as the top users, and Vr as the top items.

Then given |U|,|V| > 16'/", the FA-SGD, compared to standard SGD:

(1) Obtains the same rate of convergence, for the top users Ur and top items Vr;
(2) E ||fo ||2 can converge faster by a factor of ) { (ﬁ) }for eachi, € U\ Ur;

(3) E ||Vf;m H2 can converge faster by a factor of §2 { (%) V}fOr each j,, € V\ V.

The proofs of Corollary [3.4] and [3.5] follow similar lines as in the proofs of Corollary [3.2] and 3.3
which we defer to Appendix [C]

4 EXPERIMENTS

We conduct extensive experiments to verify the effectiveness of our proposed algorithms and our de-
veloped theories, on both publicly available benchmark recommendation datasets, and a large-scale
industrial recommendation system. We list key elements of our experiment setup for benchmark
datasets below.

Datasets: Benchmark recommendation datasets MovieLens-lMﬂ and Crite(ﬂ

Models: Factorization Machine (FM) (Rendlel 2010), and DeepFM (Guo et al.,[2017).

Metric: Training loss (cross-entropy loss), and test AUC (Area Under the ROC Curve).

Baseline algorithms: SGD, Adam (Kingma & Bal, 2014)), Adagrad (Duchi et al., 2011)). Note that
the latter adaptive algorithms are very popular in training ultra-large recommendation systems and
language models.

Note that we also empirically verify that the token distributions for both Movielens-1M (Figure [I)
and Criteo (Appendix [B) dataset are highly imbalanced, with most of the token distributions having
a clear polynomially or exponentially decaying tail.

Since CF-SGD does not require frequency information, which is a huge practical benefit compared
to FA-SGD, in our experiments we mainly evaluate our proposed CF-SGD against the baseline
algorithms. To ensure a fair comparison, for each dataset and model type, we carefully tune the
learning rate of each algorithm for best performanceﬂ We apply early stopping and stop training
whenever the validation AUC do not increase for 2 consecutive epochs, which is widely adopted in
practice (Takécs et al.,[2009; |Dacrema et al., 2021).

FM FM DeepFM DeepFM
0.9 —— Adam 0.8 0.9 —— Adam 0.80
—— CF-SGD SGD 0.75
0.8 —— Adagrad 0.8 —— Adagrad
SGD 0.7 —— CF-SGD 0.70
207 o 807 o
Q 2 S 2 0.65
= = =
0.6 | —— Adam 0.6 0.60 —— Adam
05 0.6 —— CF-SGD : . SGD
- —— Adagrad 05 0.55 —— Adagrad
0.4 05 SGD : 0.50 —— CF-SGD
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Iteration Iteration Iteration Iteration
(a) Training loss (b) Validation AUC (c) Training loss (d) Validation AUC

Figure 2: Movielens-1M dataset with FM and DeepFM model. CF-SGD significantly outperforms
standard SGD, and is highly competitive against Adam, Adagrad.

Movielens-1M: We can observe from Figure 2] that for FM and DeepFM model: (1) SGD yields the
slowest convergence in training loss and AUC. (2) The proposed CF-SGD yields significantly faster
convergence than SGD for training loss. In addition, CF-SGD converges even faster than the adap-
tive learning algorithms in the early stage of training; (3) All the algorithms eventually reaches peak
AUC around 81.0%, while CF-SGD attains the peak AUC much faster than baseline algorithms.

"https://grouplens.org/datasets/movielens/1m/
2https://ailab.criteo.com/ressources/
3Further details on architecture and hyper-parameter choice can be found at Appendix
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These empirical observations help us confirm the effectiveness of the proposed CF-SGD algorithm.
We further make an empirical observation that draws a close connection between adaptive algorithms
and CF-SGD. We plot the second-order gradient moment maintained by Adagrad and Adam against
the estimated frequency maintained by CF-SGD. Surprisingly, the second-order gradient moment
quickly develops a close-to linear relationship with the frequency information accumulated by CF-
SGD (Figure [3a]3b) . This observation suggests that Adagrad and Adam are exploiting frequency
information implicitly to a large extent.

Criteo: We observe qualitative behavior of CF-SGD similar to Movielens-1M dataset, as can be

seen in Figure Aal4p]
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Figure 3: (a-b) Second-order gradient moment correlates linearly with frequency maintained by
CF-SGD; (c-d) Comparisons on Criteo dataset with FM model.
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Figure 4: (a-b) Comparisons on Criteo dataset with DeepFM model; (c-d) Comparisons on a
industrial-scale recommendation dataset with an ultra-large recommender model.

Industrial Recommendation System: We train an ultra-large

industrial recommendation model with the proposed CF-SGD. Alg NE Diff %
The training data contains 10 days of user-item interaction Adagrad | 0.78643 0.0
records, with ~2.5 billion examples per day. We use around [~GE.SGD 1 0.78628 | -0.02

800 features, with ~100 million average number of tokens per -
feature. We compare CF-SGD with A%iagrad, which has belt)en Table 1: Eval NE Diff %
carefully tuned in production usage. For both algorithms, we use a batch size of 64k and do one-
pass training. Different from benchmark academic datasets, we use Normalized Entropy (NE) as
the evaluating metric (He et al., 2014) (smaller is better), which is the cross-entropy loss normal-
ized by the entropy of background click through rate. Note that due to numerous iterations of the
production model, any relative improvement ~ 0.02% is considered to be significant. In Figure
[d we compare the training NE curve CF-SGD and Adagrad, we can see that CF-SGD shows faster
convergence than Adagrad during training. Moreover, from Table [I| we can observe that CF-SGD
also improves over Adagrad during the serving phase.

5 CONCLUSION

We propose (Counter-based) Frequency-aware SGD for embedding learning problems, which adopts
frequency-dependent learning rate schedule for each token. We demonstrate provable benefits that
FA/CF-SGD enjoy over standard SGD for imbalanced token distributions, with extensive exper-
iments supporting our theoretical findings. Our empirical findings also suggest that adaptive al-
gorithms can implicitly exploit frequency information and hence share close connections with the
proposed algorithms, this connection might be helpful in the direct analysis of adaptive algorithms
for embedding learning problems, which we leave as a future direction. Moreover, we will further
investigate whether the convergence upper bounds for SGD and FA/CF-SGD are minimax optimal
for the embedding learning problem.
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