
Variational inference via Wasserstein gradient flows

Anonymous Author(s)
Affiliation
Address
email

Abstract

Along with Markov chain Monte Carlo (MCMC) methods, variational inference (VI)1

has emerged as a central computational approach to large-scale Bayesian inference.2

Rather than sampling from the true posterior π, VI aims at producing a simple but3

effective approximation π̂ to π for which summary statistics are easy to compute.4

However, unlike the well-studied MCMC methodology, VI is still poorly understood5

and dominated by heuristics. In this work, we propose principled methods for VI,6

in which π̂ is taken to be a Gaussian or a mixture of Gaussians, which rest upon7

the theory of gradient flows on the Bures–Wasserstein space of Gaussian measures.8

Akin to MCMC, it comes with strong theoretical guarantees when π is log-concave.9

1 Introduction10

This work brings together three active research areas: variational inference, variational Kalman11

filtering, and gradient flows on the Wasserstein space.12

Variational inference. The development of large-scale Bayesian methods has fueled the need for13

fast and scalable methods to approximate complex distributions. More specifically, Bayesian method-14

ology typically generates a high-dimensional posterior distribution π ∝ exp(−V ) that is known15

only up to normalizing constants, making the computation even of simple summary statistics such as16

the mean and covariance a major computational hurdle. To overcome this limitation, two distinct17

computational approaches are largely favored. The first approach consists of Markov chain Monte18

Carlo (MCMC) methods that rely on carefully constructed Markov chains which (approximately)19

converge to π. For example, the Langevin diffusion20

dXt = −∇V (Xt) dt+
√
2 dBt , (1)

where (Bt)t≥0 denotes standard Brownian motion on Rd, admits π as a stationary distribution.21

Crucially, the Langevin diffusion can be discretized and implemented without knowledge of the22

normalizing constant of π, leading to practical algorithms for Bayesian inference. Recent theoretical23

efforts have produced sharp non-asymptotic convergence guarantees for algorithms based on the24

Langevin diffusion (or variants thereof), with many results known when π is strongly log-concave or25

satisfies isoperimetric assumptions [see, e.g., Durmus et al., 2019, Shen and Lee, 2019, Vempala and26

Wibisono, 2019, Chen et al., 2020, Dalalyan and Riou-Durand, 2020, Chewi et al., 2021, Lee et al.,27

2021, Ma et al., 2021, Wu et al., 2021].28

More recently, Variational Inference (VI) has emerged as a viable alternative to MCMC [Jordan et al.,29

1999, Wainwright and Jordan, 2008, Blei et al., 2017]. The goal of VI is to approximate the posterior π30

by a more tractable distribution π̂ ∈ P such that31

π̂ ∈ argmin
p∈P

KL(p ∥ π) . (2)
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A common example arises when P is the class of product distributions, in which case π̂ is called32

the mean-field approximation of P . Unfortunately, by definition, mean-field approximations fail to33

capture important correlations present in the posterior π, and various remedies have been proposed,34

with varied levels of success. In this paper, we largely focus on obtaining a Gaussian approximation35

to π, that is, we take P to be the class of non-degenerate Gaussian distributions on Rd [Barber and36

Bishop, 1997, Seeger, 1999, Honkela and Valpola, 2004, Opper and Archambeau, 2009, Zhang et al.,37

2018]. The expressive power of the variational model may then be further increased by considering38

mixture distributions [Lin et al., 2019, Daudel and Douc, 2021, Daudel et al., 2021].39

Although the solution π̂ of (2) is no longer equal to the true posterior, variational inference remains40

heavily used in practice because the problem (2) can be solved for simple models P via scalable41

optimization algorithms. In particular, VI avoids many of the practical hurdles associated with MCMC42

methods—such as the potentially long “burn-in” period of samplers and the lack of effective stopping43

criteria for the algorithm—while still producing informative summary statistics. In this regard, we44

highlight the fact that obtaining an approximation for the covariance matrix of π via MCMC methods45

requires drawing potentially many samples, whereas for many choices of P (e.g., the Gaussian46

approximation) the covariance matrix of π̂ can be directly obtained from the solution to the VI47

problem (2).48

Figure 1: Left: randomly initialized mixture of 20
Gaussians (the initial covariances are depicted as
red circles) and contour plot of a logistic target π.
Right: contour lines of a mixture of Gaussians
approximation π̂ obtained from the gradient flow
in Section 5.

However, in contrast with MCMC methods, to49

date there have not been many theoretical guar-50

antees for VI, even when π is strongly log-51

concave and P is taken to be the class of Gaus-52

sians N (m,Σ). The problem stems from the53

fact that the objective in (2) is typically non-54

convex in the pair (m,Σ). Obtaining such guar-55

antees remains a pressing challenge for the field.56

Variational Kalman filtering. There is also57

considerable interest in extending ideas behind58

variational inference to dynamical settings of59

Bayesian inference. Consider a general frame-60

work where (πt)t represents the marginal laws61

of a stochastic process indexed by time t, which62

can be discrete or continuous. The goal is to recursively build a Gaussian approximation to (πt)t.63

As a concrete example, suppose that (πt)t≥0 denotes the marginal law of the solution to the Langevin64

diffusion (1). In the context of Bayesian optimal filtering and smoothing, Särkkä [2007] proposed65

the following heuristic. Let (mt,Σt) denote the mean and covariance matrix of πt. Then, it can be66

checked (see Section B.4) that67

ṁt = −E∇V (Xt)

Σ̇t = 2I − E[∇V (Xt)⊗ (Xt −mt) + (Xt −mt)⊗∇V (Xt)]
(3)

where Xt ∼ πt. These ordinary differential equations (ODEs) are intractable because they involve68

expectations under the law of Xt ∼ πt, which is not available to the practitioner. However, if we69

replace Xt ∼ πt with a Gaussian Yt ∼ pt = N (mt,Σt) with the same mean and covariance as Xt,70

then the system of ODEs71

ṁt = −E∇V (Yt)

Σ̇t = 2I − E[∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt)]
(4)

yields a well-defined evolution of Gaussian distributions (pt)t≥0, which we may optimistically believe72

to be a good approximation of (πt)t≥0. Moreover, the system of ODEs can be numerically approxi-73

mated efficiently in practice using Gaussian quadrature rules to compute the above expectations. This74

is the principle behind the unscented Kalman filter [Julier et al., 2000].75
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In the context of the Langevin diffusion, Särkkä’s heuristic (4) provides a promising avenue towards76

computational VI. Indeed, since π = exp(−V ) is the unique stationary distribution of the Langevin77

diffusion (1), an algorithm to approximate (πt)t≥0 is expected to furnish an algorithm to solve the78

VI problem (2). However, at present there is little theoretical understanding of how the system (4)79

approximates (3); moreover, Särkkä’s heuristic only provides Gaussian approximations, and it is80

unclear how to extend the system (4) to more complex models (e.g., mixtures of Gaussians).81

Our contributions: bridging the gap via Wasserstein gradient flows. We show that the approxi-82

mation (pt)t≥0 in Särkkä’s heuristic (4) arises precisely as the gradient flow of the Kullback–Leibler83

(KL) divergence KL(· ∥ π) on the Bures–Wasserstein space of Gaussian distributions on Rd endowed84

with the 2-Wasserstein distance from optimal transport [Villani, 2003]. This perspective allows us to85

not only understand its convergence but also to extend it to the richer space of mixtures of Gaussian86

distributions, and propose an implementation as a novel system of interacting “Gaussian particles”.87

Below, we proceed to describe our contributions in greater detail.88

Our framework builds upon the seminal work of Jordan et al. [1998], which introduced the celebrated89

JKO scheme in order to give meaning to the idea that the evolving marginal law of the Langevin90

diffusion (1) is a gradient flow of KL(· ∥ π) on the Wasserstein space P2(Rd) of probability measures91

with finite second moments. Subsequently, in order to emphasize the Riemannian geometry underlying92

this result, Otto [2001] developed his eponymous calculus on P2(Rd), a framework which has had93

tremendous impact in analysis, geometry, PDE, probability, and statistics.94

Inspired by this perspective, we show in Theorem 1 that Särkkä’s approximation (pt)t≥0 is also a gra-95

dient flow of KL(· ∥ π), with the main difference being that it is constrained to lie on the submanifold96

BW(Rd) of P2(Rd) consisting of Gaussian distributions, known as the Bures–Wasserstein manifold.97

In turn, our result paves the way for new theoretical understanding via the powerful theory of gradient98

flows. As a first step, using well-known results about convex functionals on the Wasserstein space,99

we show in Corollary 1 that (pt)t≥0 converges rapidly to the solution of the VI problem (2) with100

P = BW(Rd) as soon as V is convex. Moreover, in Section 4.1, we apply numerical integration101

based on cubature rules for Gaussian integrals to the system of ODEs (4), thus arriving at a fast102

method with robust empirical performance (details in Sections H and I).103

This combination of results brings VI closer to Langevin-based MCMC both on the practical and104

theoretical fronts, but still falls short of achieving non-asymptotic discretization guarantees as105

pioneered by Dalalyan [2017] for MCMC. To further close the theoretical gap between VI and the106

state of the art for MCMC, we propose in Section 4.2 a stochastic gradient descent (SGD) algorithm as107

a time discretization of the Bures–Wasserstein gradient flow. This algorithm comes with convergence108

guarantees that establish VI as a solid competitor to MCMC not only from a practical standpoint but109

also from a theoretical one. Both have their relative merits; whereas MCMC targets the true posterior,110

VI leads to fast computation of summary statistics of the approximation π̂ to π.111

In Section 5, we consider an extension of these ideas to the substantially more flexible class of112

mixtures of Gaussians. Namely, the space of mixtures of Gaussians can be identified as a Wasserstein113

space over BW(Rd) and hence inherits Otto’s differential calculus. Leveraging this viewpoint, in114

Theorem 3 we derive the gradient flow of KL(· ∥ π) over the space of mixtures of Gaussians and115

propose to implement it via a system of interacting particles. Unlike typical particle-based algorithms,116

here our particles correspond to Gaussian distributions, and the collection thereof to a Gaussian117

mixture which is better equipped to approximate a continuous measure. We validate the empirical118

performance of our method with promising experimental results (see Section I). Although we focus119

on the VI problem in this work, we anticipate that our notion of “Gaussian particles” may be a broadly120

useful extension of classical particle methods for PDEs.121

Related work. Classical VI methods define a parametric family P = {pθ : θ ∈ Θ} and minimize122

θ 7→ KL(pθ ∥ π) over θ ∈ Θ using off-the-shelf optimization algorithms [Paisley et al., 2012, Ran-123

ganath et al., 2014]. Since (2) is an optimization problem over the space of probability distributions,124

we argue for methods that respect a natural geometric structure on this space. In this regard, previous125
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approaches to VI using natural gradients implicitly employ a different geometry [Wu et al., 2019,126

Khan and Håvard, 2022], namely the Fisher–Rao geometry [Amari and Nagaoka, 2000]. The appli-127

cation of Wasserstein gradient flows to VI was introduced earlier in work on normalizing flows and128

Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016, Liu, 2017].129

The connection between VI and Kalman filtering was studied in the static case by Lambert et al. [2021,130

2022a], and extended to the dynamical case by Lambert et al. [2022b], providing a first justification131

of Särkkä’s heuristic in terms of local variational Gaussian approximation. In particular, the closest132

linear process to the Langevin diffusion (1) is a Gaussian process governed by a McKean–Vlasov133

equation whose Gaussian marginals have parameters evolving according to Särkkä’s ODEs.134

Constrained gradient flows on the Wasserstein space have also been extensively studied [Carlen and135

Gangbo, 2003, Caglioti et al., 2009, Tudorascu and Wunsch, 2011, Eberle et al., 2017], although our136

interpretation of Särkkä’s heuristic is, to the best of our knowledge, new.137

2 Background138

In order to define gradient flows on the space of probability measures, we must first endow this space139

with a geometry; see Appendix B for more details. Given probability measures µ and ν on Rd, define140

the 2-Wasserstein distance141

W2(µ, ν) =
[

inf
γ∈C(µ,ν)

∫
∥x− y∥2 dγ(x, y)

]1/2
,

where C(µ, ν) is the set of couplings of µ and ν, that is, joint distributions on Rd × Rd whose142

marginals are µ and ν respectively. This quantity is finite as long as µ and ν belong to the space143

P2(Rd) of probability measures over Rd with finite second moments. The 2-Wasserstein distance has144

the interpretation of measuring the smallest possible mean squared displacement of mass required145

to transport µ to ν; we refer to Villani [2003, 2009], Santambrogio [2015] for textbook treatments146

on optimal transport. Unlike other notions of distance between probability measures, such as the147

total variation distance, the 2-Wasserstein distance respects the geometry of the underlying space Rd,148

leading to numerous applications in modern data science [see, e.g., Peyré and Cuturi, 2019].149

The space (P2(Rd),W2) is a metric space [Villani, 2003, Theorem 7.3], and we refer to it as the150

Wasserstein space. However, as shown by Otto [Otto, 2001], it has a far richer geometric structure:151

formally, (P2(Rd),W2) can be viewed as a Riemannian manifold, a fact which allows for considering152

gradient flows of functionals on P2(Rd). A fundamental example of such a functional is the KL153

divergence KL(· ∥ π) to a target density π = exp(−V ) on Rd, for which Jordan et al. [1998] showed154

that the Wasserstein gradient flow is the same as the evolution of the marginal law of the Langevin155

diffusion (1). This optimization perspective has had tremendous impact on our understanding and156

development of MCMC algorithms [Wibisono, 2018].157

3 Variational inference with Gaussians158

In this section we describe our problem using two equivalent approaches: a variational approach based159

on a modified version of the JKO scheme of Jordan et al. [1998] (Section 3.1), and a Wasserstein160

gradient flow approach based on Otto calculus (Section 3.2). Both lead to the same result (Section161

3.3). While the former is more accessible to readers who are unfamiliar with gradient flows on the162

Wasserstein space, the latter leads to strong convergence guarantees (Section 3.4).163

3.1 Variational approach: the Bures–JKO scheme164

The space of non-degenerate Gaussian distributions on Rd equipped with the W2 distance forms the165

Bures–Wasserstein space BW(Rd) ⊆ P2(Rd). On BW(Rd), the Wasserstein distance W 2
2 (p0, p1)166

between two Gaussians p0 = N (m0,Σ0) and p1 = N (m1,Σ1) admits the following closed form:167

W 2
2 (p0, p1) = ∥m0 −m1∥2 + B2(Σ0,Σ1) , (5)
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where B2(Σ0,Σ1) = tr(Σ0 +Σ1 − 2 (Σ
1
2
0 Σ1Σ

1
2
0 )

1
2 ) is the squared Bures metric [Bures, 1969].168

Given a target density π = exp(−V ) on Rd, and with a step size h > 0, we may define the iterates169

of the proximal point algorithm170

pk+1,h := argmin
p∈BW(Rd)

{
KL(p ∥ π) + 1

2h
W 2

2 (p, pk,h)
}
. (6)

Using (5), this is an explicit optimization problem involving the mean and covariance matrix of p.171

Although (6) is not solvable in closed form, by letting h ↘ 0 we obtain a limiting curve (pt)t≥0172

via pt = limh↘0 p⌊t/h⌋,h, which can be interpreted as the Bures–Wasserstein gradient flow of the173

KL divergence KL(· ∥ π). This procedure mimics the JKO scheme [Jordan et al., 1998] with the174

additional constraint that the iterates lie in BW(Rd), and we therefore call it the Bures–JKO scheme.175

3.2 Geometric approach: the Bures–Wasserstein gradient flow of the KL divergence176

In the formal sense of Otto described above, BW(Rd) is a submanifold of P2(Rd). Moreover, since177

Gaussians can be parameterized by their mean and covariance, BW(Rd) can be identified with the178

manifold Rd × Sd
++, where Sd

++ is the cone of symmetric positive definite d× d matrices. Hence,179

BW(Rd) is a genuine Riemannian manifold in its own right [see Bhatia et al., 2019], and gradient180

flows can be defined using Riemannian geometry [do Carmo, 1992]. See Section B.3 for more details.181

Since the functional µ 7→ F(µ) = KL(µ ∥ π) defined over P2(Rd) restricts to a functional over182

BW(Rd), we can also consider the gradient flow of F over the Bures–Wasserstein space; note that183

this latter gradient flow is necessarily a curve (pt)t≥0 such that each pt is a Gaussian measure.184

3.3 Variational inference via the Bures–Wasserstein gradient flow185

Using either approach, we can prove the following theorem.186

Theorem 1. Let π = exp(−V ) be the target density on Rd. Then, the limiting curve (pt)t≥0 where187

pt = N (mt,Σt) is obtained via the Bures–JKO scheme (6), or equivalently, the Bures–Wasserstein188

gradient flow (pt)t≥0 of the KL divergence KL(· ∥ π), satisfies Särkkä’s system of ODEs (4).189

Proof. The proof using the Bures–JKO scheme is given in Section A.1 and the proof using Otto190

calculus is presented in Section C.191

This theorem shows that Särkkä’s heuristic (4) precisely yields the Wasserstein gradient flow of the192

KL divergence over the submanifold BW(Rd). Equipped with this interpretation, we are now able193

to obtain information about the asymptotic behavior of the approximation (pt)t≥0. Namely, we can194

hope that it converges to constrained minimizer π̂ = argminp∈BW(Rd) KL(p ∥ π), i.e., precisely the195

solution to the VI problem (2). In the next section, we show that this convergence in fact holds as196

soon as V is convex, and moreover with quantitative rates.197

The solution π̂ to (2), and consequently the limit point of Särkkä’s approximation, is well-studied in198

the variational inference literature [see, e.g., Opper and Archambeau, 2009], and we recall standard199

facts about π̂ here for completeness. It is known that π̂ satisfies the equations200

Eπ̂∇V = 0 and Eπ̂∇2V = Σ̂−1, (7)

where Σ̂ is the covariance matrix of π̂ (these equations can also be derived as first-order necessary201

conditions by setting the Bures–Wasserstein gradient derived in Section C to zero). In particular, it202

follows from (7) that if ∇2V enjoys the bounds αI ⪯ ∇2V ⪯ βI for some −∞ ≤ α ≤ β ≤ ∞,203

then any solution π̂ to the constrained problem also satisfies β−1 I ⪯ Σ̂ ⪯ (α ∨ 0)−1 I .204

3.4 Continuous-time convergence205

Besides providing an intuitive interpretation of Särkkä’s heuristic, Theorem 1 readily yields conver-206

gence criteria for the system (4) which rest upon general principles for gradient flows. We begin with207

5



0 100 200 300
step

10 1

100

101

KL
 d

iv
er

ge
nc

e

VI
Laplace

0 20 40 60 80 100
step

103

KL
 d

iv
er

ge
nc

e

VI
Laplace

Figure 2: Two left plots: approximation of a bimodal target and a logistic target. Two right plots:
convergence of the KL in dimension 2 and 100 for the logistic target. Our algorithm yields better
approximation in KL than the Laplace approximation (see Appendix H.4 for details).

a key observation. For a functional F : BW(Rd)→ R ∪ {∞} and α ∈ R, we say that F is α-convex208

if for all constant-speed geodesics (pt)t∈[0,1] in BW(Rd),209

F(pt) ≤ (1− t)F(p0) + tF(p1)−
α t (1− t)

2
W 2

2 (p0, p1) , t ∈ [0, 1] .

Lemma 1. For any α ∈ R, if∇2V ⪰ αI , then KL(· ∥ π) is α-convex on BW(Rd).210

Proof. The assumption that ∇2V ⪰ αI entails that the functional KL(· ∥ π) is α-convex on the211

entire Wasserstein space (P2(Rd),W2) [see, e.g., Villani, 2009, Theorem 17.15]. Since BW(Rd) is a212

geodesically convex subset of P2(Rd) (see Section B.3), then the geodesics in BW(Rd) agree with213

the geodesics in P2(Rd), from which it follows that KL(· ∥ π) is α-convex on BW(Rd).214

Consequently, we obtain the following corollary. Its proof is postponed to Section D.215

Corollary 1. Suppose that ∇2V ⪰ αI for some α ∈ R. Then, for any p0 ∈ BW(Rd), there is a216

unique solution to the BW(Rd) gradient flow of KL(· ∥ π) started at p0. Moreover:217

1. If α > 0, then for all t ≥ 0, W 2
2 (pt, π̂) ≤ exp(−2αt)W 2

2 (p0, π̂).218

2. If α > 0, then for all t ≥ 0, KL(pt ∥ π)− KL(π̂ ∥ π) ≤ exp(−2αt) {KL(p0 ∥ π)− KL(π̂ ∥ π)}.219

3. If α = 0, then for all t > 0, KL(pt ∥ π)− KL(π̂ ∥ π) ≤ 1
2t W

2
2 (p0, π̂).220

The assumption that ∇2V ⪰ αI for some α > 0, i.e., that π is strongly log-concave, is a standard221

assumption in the MCMC literature. Under this same assumption, Corollary 1 yields convergence222

for the Bures–Wasserstein gradient flow of KL(· ∥ π); however, the flow must first be discretized in223

time for implementation. If we assume additionally that the smoothness condition ∇2V ⪯ βI holds,224

then a surge of recent research has succeeded in obtaining precise non-asymptotic guarantees for225

discretized MCMC algorithms. In Section 4.2 below, we will show how to do the same for VI.226

4 Time discretization of the Bures–Wasserstein gradient flow227

We are now equipped with dual perspectives on a dynamical solution to Gaussian VI: ODE and228

gradient flow. Each perspective leads to a different implementation. On the one hand, we discretize229

the system of ODEs defined in (4) using numerical integration. On the other, we discretize the230

gradient flow using stochastic gradient descent in the Bures–Wasserstein space.231

4.1 Numerical integration of the ODEs232

The system of ODEs (4) can be integrated in time using a classical Runge–Kutta scheme. The233

expectations under a Gaussian support are approximated by cubature rules used in Kalman filter-234

ing [Arasaratnam and Haykin, 2009]. Moreover, a square root version of the ODE is also considered235

to ensure that covariance matrices remain symmetric and positive. See Appendix H.2 for more details.236

We have tested our method on a bimodal distribution and on a posterior distribution arising from a237

logistic regression problem. We observe fast convergence as shown in Figure 2.238
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4.2 Bures–Wasserstein SGD and theoretical guarantees for VI239

Although the ODE discretization proposed in the preceding section enjoys strong empirical perfor-240

mance, it is unclear how to quantify its impact on the convergence rates established in Corollary 1.241

Therefore, we now propose a stochastic gradient descent algorithm over the Bures–Wasserstein space,242

for which useful analysis tools have been developed [Chewi et al., 2020, Altschuler et al., 2021]. This243

approach bypasses the use of the system of ODEs (4), and instead discretizes the Bures–Wasserstein244

gradient flow directly. Under the standard assumption of strong log-concavity and log-smoothness, it245

leads to an algorithm (Algorithm 1) for approximating π̂ with provable convergence guarantees.246

Algorithm 1 Bures–Wasserstein SGD
Require: strong convexity parameter α > 0; step

size h > 0; mean m0 and covariance matrix Σ0

for k = 1, . . . , N do
draw a sample X̂k ∼ pk
set mk+1 ← mk − h∇V (X̂k)

set Mk ← I − h (∇2V (X̂k)− Σ−1
k )

set Σ+
k ←MkΣkMk

set Σk+1 ← clip1/α Σk

end for

Algorithm 1 maintains a sequence of Gaussian247

distributions (pk)k∈N; here (mk,Σk) denote the248

mean vector and covariance matrix at iteration k249

(see Section E for a derivation of the algorithm250

as SGD in the Bures–Wasserstein space). The251

clipping operator clipτ , which is introduced252

purely for the purpose of theoretical analysis,253

simply truncates the eigenvalues from above;254

see Section E. Our theoretical result for VI is255

given as the following theorem, whose proof is256

deferred to Section E.257

Theorem 2. Assume that 0 ≺ αI ⪯ ∇2V ⪯ I . Also, assume that h ≤ α
6 and that we initialize258

Algorithm 1 at a matrix satisfying α
4 I ⪯ Σµ0 ⪯ 1

α I . Then, for all k ∈ N,259

EW 2
2 (pk, π̂) ≤ exp(−αkh)W 2

2 (p0, π̂) +
21dh

α2
.

In particular, we obtain EW 2
2 (pk, π̂) ≤ ε2 provided we set h ≍ α2ε2

d and the number of iterations to260

be k ≳ d
α3ε2 log(W2(p0, π̂)/ε).261

The upper bound∇2V ⪯ I is notationally convenient for our proof but not necessary; in any case,262

any strongly log-concave and log-smooth density π can be rescaled so that the assumption holds.263

Theorem 2 is similar in flavor to modern results for MCMC, both in terms of the assumptions (Hessian264

bounds and query access to the derivatives1 of V ) and the conclusion (a non-asymptotic polynomial-265

time algorithmic guarantee). We hope that such an encouraging result for VI will prompt more266

theoretical studies aimed at closing the gap between the two approaches.267

5 Variational inference with mixtures of Gaussians268

Thus far, we have shown that the tractability of Gaussians can be readily exploited in the context of269

Bures–Wasserstein gradient flows and translated into useful results for variation inference. Never-270

theless, these results are limited by the lack of expressivity of Gaussians, namely their inability to271

capture complex features such as multimodality and, more generality, heterogeneity. To overcome272

this limitation, mixtures of Gaussians arise as a natural and powerful alternative; indeed, universal273

approximation of arbitrary probability measures by mixtures of Gaussians is well-known [see, e.g.,274

Delon and Desolneux, 2020]. As we show next, the space of mixtures of Gaussians can also be275

equipped with a Wasserstein structure which gives rise to implementable gradient flows.276

5.1 Geometry of the space of mixtures of Gaussians277

We begin with the key observation already made by Chen et al. [2019], that any mixture of Gaussians278

can be canonically identified with a probability distribution (the mixing distribution) over the param-279

eter space Θ = Rd × Sd
++ (the space of means and covariance matrices). Explicitly a probability280

1A notable downside of Algorithm 1 is the requirement of a Hessian oracle for V , which results in a higher
per-iteration cost than typical MCMC samplers.
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measure µ ∈ P(Θ) corresponds to a Gaussian mixture as follows:281

µ ↔ pµ :=

∫
pθ dµ(θ) , (8)

where pθ is the Gaussian distribution with parameters θ ∈ Θ. Equivalently, µ can be thought of as a282

probability measure over BW(Rd), and hence the space of Gaussian mixtures on Rd can be identified283

with the Wasserstein space P2(BW(Rd)) over the Bures–Wasserstein space which is endowed with284

the distance (5) between Gaussian measures. Indeed, the theory of optimal transport can be developed285

with any Riemannian manifold (rather than Rd) as the base space [Villani, 2009]. As before, the286

space P2(BW(Rd)) is endowed with a formal Riemannian structure, which respects the geometry of287

the base space BW(Rd), and we can consider Wasserstein gradient flows over P2(BW(Rd)).288

Note that this framework encompasses both discrete mixtures of Gaussians (when µ is a discrete289

measure) and continuous mixtures of Gaussians. In the case when the mixing distribution µ is290

discrete, the geometry of P2(BW(Rd)) was studied by Chen et al. [2019], Delon and Desolneux291

[2020]. An important insight of our work, however, is that it is fruitful to consider the full space292

P2(BW(Rd)) for deriving gradient flows, even if we eventually develop algorithms which propagate293

a finite number of mixture components.294

5.2 Gradient flow of the KL divergence and particle discretization295

We consider the gradient flow of the KL divergence functional296

µ 7→ F(µ) := KL(pµ ∥ π) (9)

over the space P2(BW(Rd)). The proof of the following theorem is given in Section F.297

Theorem 3. The gradient flow (µt)t≥0 of the functional F defined in (9) over P2(BW(Rd)) can be298

described as follows. Let θ0 = (m0,Σ0) ∼ µ0, and let θt = (mt,Σt) evolve according to the ODE299

ṁt = −E∇ ln
pµt

π
(Yt)

Σ̇t = −E∇2 ln
pµt

π
(Yt) Σt − Σt E∇2 ln

pµt

π
(Yt)

(10)

where Yt ∼ N (mt,Σt). Then θt ∼ µt.300

The gradient flow in Theorem 3 describes the evolution of a particle θt which describes the parameters301

of a Gaussian measure, hence the name Gaussian particle. The intuition behind this evolution is302

as follows. Suppose we draw infinitely many initial particles (each being a Gaussian) from µ0.303

By evolving all those particles through (10), which interact with each other via the term pµt
, they304

tend to aggregate in some parts of the space of Gaussian parameters and spread out in others. This305

distribution of Gaussian particles is precisely the mixing measure µt, which, in turn, corresponds to a306

Gaussian mixture. Since an infinite number of Gaussian particles is impractical, consider initializing307

this evolution at a finitely supported distribution µ0, thus corresponding to a more familiar Gaussian308

mixture model with a finite number of components:309

µ0 =
1

N

N∑
i=1

δ
θ
(i)
0

=
1

N

N∑
i=1

δ
(m

(i)
0 ,Σ

(i)
0 )

↔ pµ0
:=

1

N

N∑
i=1

p
(m

(i)
0 ,Σ

(i)
0 )

.

Interestingly, it can be readily checked that the system of ODEs (10) thus initialized maintains a finite
mixture distribution:

µt =
1

N

N∑
i=1

δ
θ
(i)
t

=
1

N

N∑
i=1

δ
(m

(i)
t ,Σ

(i)
t )

,

where the parameters θ(i)t = (m
(i)
t ,Σ

(i)
t ) evolve according to the following interacting particle310

system, for i ∈ [N ]311

ṁ
(i)
t = −E∇ ln

pµt

π
(Y

(i)
t ) , (11)

Σ̇
(i)
t = −E∇2 ln

pµt

π
(Y

(i)
t ) Σ

(i)
t − Σ

(i)
t E∇2 ln

pµt

π
(Y

(i)
t ) , (12)
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where Y (i)
t ∼ p

θ
(i)
t

. This finite system of particles can now be implemented using the same numerical312

tools as for Gaussian VI, see Section I. Note that due to this property of the dynamics, we can hope at313

best to converge to the best mixture of N Gaussians approximating π, but this approximation error is314

expected to vanish as N →∞.315

The above system of particles may also be derived using a proximal point method similar to the316

Bures–JKO scheme, see Section A.2. Indeed, infinitesimally, it has the variational interpretation317

(θ
(1)
t+h, . . . , θ

(N)
t+h) ≈ argmin

θ(1),...,θ(N)∈Θ

{
KL

( 1

N

N∑
i=1

pθ(i)

∥∥∥ π)+
1

2Nh

N∑
i=1

W 2
2 (pθ(i) , p

θ
(i)
t
)

}
.

Reassuringly, Equations (11)-(12) reduce to (4) when µ0 = δ(m0,Σ0) is a point mass, indicating that318

the theorem provides a natural extension of our previous results. However, although the model (8)319

is substantially more expressive than the Gaussian VI considered in Section 3, it has the downside320

that we lose many of the theoretical guarantees. For example, even when V is convex, the objective321

functional F considered here need not be convex; see Section G. We nevertheless validate the practical322

utility of our approach in experiments (see Figure 3 and Section I).323

Unlike typical interacting particle systems which arise from discretizations of Wasserstein gradient324

flows, at each time t, the distribution pµt
is continuous. This extension provides considerably more325

flexibility—from a mixture of point masses to a mixture of Gaussians—compared to interacting326

particle-based algorithms hitherto considered for either sampling [Liu and Wang, 2016, Liu, 2017,327

Duncan et al., 2019, Chewi et al., 2020], or solving partial differential equations [Carrillo et al., 2011,328

2012, Bonaschi et al., 2015, Craig and Bertozzi, 2016, Carrillo et al., 2019, Craig et al., 2022].329

Figure 3: Approximation of a Gaussian mixture target π with 40 Gaussian particles. The particles are
represented by their covariance ellipsoids shown at Steps 0, 1, and 2. The right figure shows the final
step with the approximated density in contour-lines. More figures are available in Appendix I.

6 Conclusion330

Using the powerful theory of Wasserstein gradient flows, we derived new algorithms for VI using either331

Gaussians or mixtures of Gaussians as approximating distributions. The consequences are twofold.332

On the one hand, strong convergence guarantees under classical conditions contribute markedly to333

closing the theoretical gap between MCMC and Gaussian VI. On the other hand, discretization of the334

Wasserstein gradient flow for mixtures of Gaussians yields a new Gaussian particle method which335

appears to be significantly more powerful than classical particle methods.336

We conclude by briefly listing some possible directions for future study. For Gaussian variational337

inference, our theoretical result (Theorem 2) can be strengthened by weakening the assumption that π338

is strongly log-concave, or by developing algorithms which do not require Hessian information for V .339

For mixtures of Gaussians, it is desirable to design a principled algorithm which also allows for the340

mixture weights to be updated.341
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