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Abstract

The support/query episodic training strategy has been widely applied in modern1

meta learning algorithms. Supposing the n training episodes and the test episodes2

are sampled independently from the same environment, previous work has derived3

a generalization bound of O(1/
√
n) for smooth non-convex functions via algorith-4

mic stability analysis. In this paper, we provide fine-grained analysis of stability5

and generalization for modern meta learning algorithms by considering more gen-6

eral situations. Firstly, we develop matching lower and upper stability bounds for7

meta learning algorithms with two types of loss functions: (1) nonsmooth convex8

functions with α-Hölder continuous subgradients (α ∈ [0, 1)); (2) smooth (includ-9

ing convex and non-convex) functions. Our tight stability bounds show that, in10

the nonsmooth convex case, meta learning algorithms can be inherently less stable11

than in the smooth convex case. For the smooth non-convex functions, our stability12

bound is sharper than the existing one, especially in the setting where the number13

of iterations is larger than the number n of training episodes. Secondly, we derive14

improved generalization bounds for meta learning algorithms that hold with high15

probability. Specifically, we first demonstrate that, under the independent episode16

environment assumption, the generalization bound of O(1/
√
n) via algorithmic17

stability analysis is near optimal. To attain faster convergence rate, we show how18

to yield a generalization bound of O(lnn/n) with additional curvature condition19

of the loss function. Finally, we establish a generalization bound for meta learning20

with dependent episodes whose dependency relation is characterized by a graph.21

Experiments on regression problems are conducted to verify our theoretical results.22

1 Introduction23

The last decade has witnessed the success of deep learning techniques in machine learning community24

[28, 25, 11]. However, the need of large amount of annotated data hinders their application in real-life25

scenarios. To alleviate this issue, meta learning [4], which employs knowledge from past tasks to26

facilitate adaptation to the new task, has emerged as a promising direction to reduce annotation cost.27

Traditional meta learning algorithms directly minimize the empirical error over all samples in the28

training tasks [3, 33, 34, 37, 35]. To improve the generalization ability of meta learning algorithms,29

recent works propose the support/query (S/Q) episodic training strategy [44, 20, 40]. Specifically, in30

modern meta learning algorithms, each episode/task is split into two non-overlapped parts: support set31

and query set. The support set is used to learn a hypothesis, and the query set is used to measure the32

performance of the learned hypothesis on that episode. Therefore, the S/Q episodic strategy regards33

each task as a training instance and updates the meta learning model by implementing episode-level34

stochastic gradient descent (SGD). Supposing the n training episodes and the test episodes are35

sampled independently from the same environment, previous work [8] has derived a high-probability36
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generalization bound of O(1/
√
n) for modern meta learning. Such bound is obtained via algorithmic37

stability analysis [6] for smooth non-convex loss functions. However, it is still unknown whether such38

generalization bound of O(1/
√
n) is optimal, and whether we can obtain sharper bounds for modern39

meta learning. Further, there is still lack of comprehensive comparisons between the bounds obtained40

via S/Q episodic training and the bounds obtained via traditional empirical risk minimizing (ERM).41

In this work, we will address the above problems via algorithmic stability analysis. Algorithmic42

stability, roughly speaking, bounds the change in the model output by the algorithm when a single data43

in the dataset is replaced. Our goal is to provide fine-grained analysis of stability and generalization44

for modern meta learning algorithms by considering more general situations. Firstly, we develop45

matching lower and upper stability bounds for meta learning algorithms with two types of loss46

functions: (1) nonsmooth convex functions with α-Hölder continuous subgradients where 0 ≤ α < 1;47

(2) smooth (including convex and non-convex) functions. Our tight stability bounds demonstrate that,48

in the nonsmooth convex case, modern meta learning algorithms can be less stable than in the smooth49

convex case. In particular, the lower stability bound for nonsmooth convex functions is vacuous50

even if we train modern meta learning algorithms with a relatively small constant step size in SGD.51

In the smooth non-convex case, our derived bound is sharper than the existing one [8], especially52

in the setting where the number of SGD iterations is larger than the number n of training episodes.53

Secondly, we provide high-probability generalization bounds for modern meta learning algorithms54

with the aforementioned two types of loss functions. Specifically, we first demonstrate that, under55

the independent episode environment assumption, the bound of O(1/
√
n) is near optimal and is56

independent of the sample size m per episode. We thus show that, in terms of the sharpness of the57

generalization bounds, the S/Q episodic training strategy is superior to the traditional ERM strategy58

for meta learning (see Remark 6). To obtain faster convergence rate, we next show how to yield a59

generalization bound of O(lnn/n) with additional curvature assumption (i.e., the Polyak-Łojasiewicz60

condition [45]) of the objective function. Finally, we leverage the graph approximation technique61

[46] to obtain a bound for meta learning with dependent episodes whose dependency relation can be62

characterized by a graph. To the best of our knowledge, this is the first bound that captures how the63

dependency between episodes can affect the generalization performance of meta learning algorithms.64

Overall, our contributions are four-fold: (1) We provide matching lower and upper stability bounds65

for modern meta learning algorithms with general loss functions. The stability bound for nonsmooth66

convex functions implies that modern meta learning algorithms are not stable enough; and the stability67

bound in the smooth non-convex case is sharper than the existing one. (2) We develop a near-optimal68

high-probability bound of O(1/
√
n) on the transfer error for meta learning. Such bound is further69

used to reveal the advantage of the S/Q episodic strategy for meta learning over the traditional ERM70

strategy. (3) We derive a generalization bound of O(lnn/n) with additional curvature condition of71

loss functions. (4) We obtain the first bound for meta learning with dependent episodes. Experiments72

on regression problems are conducted to validate the convergence of our generalization bounds.73

2 Related Work74

Algorithmic Stability Theory. Algorithmic stability analysis is an important tool to provide75

theoretical guarantee for the learnability of machine learning models. [39] has shown that there76

are non-trivial problems where traditional uniform convergence analysis (i.e., empirical process77

theory [43]) fails to hold, but stability can be identified as the sufficient and necessary condition78

for learnability. There are two main groups in this direction: (1) The first group develop different79

notations of stability and connect their relation to the generalization of specific algorithms. Among80

them, uniform stability is the most widely used notation and has been utilized to analyze the stability81

and generalization of regularized ERM algorithms [6]. Hypothesis stability is a weaker notation and82

has been used to show the stability of k-Nearest Neighbor model [12]. Both of the above algorithmic83

stability notions have been extended to the randomized setting to demonstrate the stability of Bagging84

algorithm [15]. In recent years, different notations have been employed to analyze the stability85

and in-expectation generalization bounds of stochastic gradient descent method, which include86

uniform stability [24], on-average stability [29], uniform argument stability [32, 2], on-average87

model stability [30] and locally elastic stability [10]. (2) The second group aims to derive tight88

high-probability generalization bounds for uniformly stable algorithm in single-task learning. The89

first high-probability bound has been derived by [6], and has been improved in [18]. Recently, nearly90

optimal generalization bounds of O(1/
√
n) have been established in [19, 7], where n is the size of91

training dataset. Further, with additional Bernstein condition, [27] derives a generalization bound92

of O(1/n). In this work, we aim to provide tight stability bounds and improved high-probability93

2



generalization bounds for episodic meta learning algorithms. The key step to achieve our goal is to94

reveal the equivalence of notations between single-task learning and episodic meta learning, hence95

we can extend the demonstration techniques from [7, 27, 46] to the episodic meta learning setting.96

Generalization Bounds for Meta Learning. Supposing the n training tasks and the novel tasks97

are sampled independently from the same environment, [4] derives the first generalization bound on98

the transfer error over the novel task for meta learning. Under the independent task environment99

assumption, we can categorize existing transfer error bounds into three main groups: (1) transfer100

error bounds of hypothesis space. Such bounds are always achieved via covering number analysis [4]101

or VC theory [5], and hence are always dimension-dependent. The latest upper bound in this group102

is of O(1/
√
nm + 1/

√
m) in [22, Theorem 5], where m is the sample size per task. (2) transfer103

error bounds of the hyper-distribution of prior. Such bounds are obtained via PAC-Bayes analysis104

[37, 38, 13]. The tightest bound in this group is of order O(1/
√
n+ 1/m) in [17, Theorem 3]. (3)105

transfer error bounds of the algorithm. Such bounds are obtained via algorithmic stability analysis106

[33, 1]. The tightest bound in this group is of O(1/
√
n) in [8, Theorem 4] for episodic meta learning107

algorithms. Detailed comparisons between different transfer error bounds can be found in Table A.2108

of Appendix A. There also exist other works without the task environment assumption. Instead, they109

choose to bound the excess risk on the novel task by proposing task-similarity measurement [14, 42],110

or using the total variation distance as the diversity measurement between novel task and training111

tasks [16]. In this work, we take the task environment assumption and follow the work of [8]. Our112

first improvement is to demonstrate that the bound of O(1/
√
n) is near optimal for modern meta113

learning. Besides, we show how to obtain a bound of O(lnn/n) with additional curvature assumption114

of the loss function. Further, we derive a bound with dependent training episodes, revealing how115

dependency relation between episodes can affect the generalization of meta learning algorithms.116

3 Problem Formulation117

In supervised learning, a sample space Z = X×Y is a product space of an input space X and an output118

space Y . H = {hw : w ∈ W} is the hypothesis space where the hypothesis hw ∈ H is parameterized119

by parameter w in the parameter space W . A measurable function f : H×Z → [0,M ](M > 0) is120

defined as a nonnegative and bounded loss function, whose loss of a hypothesis hw over a sample z121

is denoted by f(hw, z) or f(w, z). Let M1(A) denote the set of probability measures over the set A.122

Loss Functions. Throughout we assume that the parameter space W ⊂ Rd. Thus, we use unambigu-123

ously || · || = || · ||2 as the Euclidean norm. Let ProjW be the Euclidean projection onto W , which is124

nonexpansive ||ProjW(u)−ProjW(v)|| ≤ ||u−v||. For any fixed z ∈ Z , a function f(·, z) : W → R125

is convex if for all u, v ∈ W , f(u, z) ≥ f(v, z) + ⟨g, u − v⟩, where g ∈ ∂f(v, z), and ∂f(v, z)126

denotes the set of subgradients of f(·, z) at v. Let ∂0f(v, z) denote the subgradient with the least127

norm. If f(·, z) is differentiable, ∂f(·, z) denotes the gradient of f(·, z), i.e., ∂f(·, z) = {∇f(·, z)}.128

For any z ∈ Z , f(·, z) is σ-Lipschitz if ∀u, v ∈ W , |f(u, z)− f(v, z)| ≤ σ||u− v||. For any z ∈ Z ,129

f(·, z) is G-smooth if ∀u, v ∈ W , ||∂f(u, z)− ∂f(v, z)|| ≤ G||u− v||. We also give the definition130

of function with (α,G)-Hölder continuous subgradient as follows. We may refer to such functions as131

(α,G)-Hölder smooth or α-Hölder smooth function for simplicity when the context is clear.132

Definition 1 Let G > 0, α ∈ [0, 1]. For any z ∈ Z , a function f(·, z) is called (α,G)-Hölder133

smooth if its subgradient is (α,G)-Hölder continuous, i.e., ∂f(·, z) satisfies the following conditions:134

135

∀u, v ∈ W, ||∂f(u, z)− ∂f(v, z)|| ≤ G||u− v||α. (1)

If (1) holds with α = 1, then f(·, z) is a G-smooth function; if (1) holds with α = 0, this implies the136

subgradient boundedness of f(·, z). The examples of loss functions in machine learning satisfying137

(1) include the q-norm hinge-loss f(w, z) =
(
max(0, 1− y⟨w, x⟩)

)q
for classification and the q-th138

power absolute distance loss f(w, z) = |y − ⟨w, x⟩|q for regression, whose subgradients are both139

(q − 1, C)-Hölder continuous for some C > 0 if q ∈ [1, 2] (see [9]). For (α,G)-Hölder smooth140

function, define cα = (1 + 1/α)
α

1+αG
1

1+α if α ∈ (0, 1]; and cα = supz ||∂f(0, z)||+G, if α = 0.141

Single-Task Learning. The training dataset S = {zj = (xj , yj)}mj=1 is given by m independent142

draws from an unknown distribution D on Z (i.e., D ∈ M1(Z)). An algorithm A takes S as input143

and outputs a hypothesis A(S) in H. The set of such algorithms depends only on H and Z and will144

be denoted by A(H,Z). In single-task learning, a hypothesis A(S) is always obtained by minimizing145

the empirical error on S: L̂(A(S), S) ≜ 1
m

∑m
j=1 f(A(S), zj). The performance of the returned146
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hypothesis A(S) is measured by the expected/generalization error with respect to (w.r.t.) the data147

distribution D: L(A(S), D) ≜ Ez∼Df(A(S), z). The goal of learning theory is thus to give a (lower148

or upper) bound on the expected error based on the empirical error on the training dataset S.149

Meta Learning. Following existing theoretical works for meta learning[4, 33, 37, 8], we assume150

that the distributions {Di}ni=1 associated with different training tasks are drawn from the same task151

environment τ , which is a probability distribution over the set of all data distributions on Z (i.e.,152

τ ∈ M1(M1(Z))). During the training process, a meta-sample S = {Si = Str
i ∪ Sts

i }ni=1 is153

available, where Str
i

i.i.d.∼ DK
i of size K is the training set, and Sts

i
i.i.d.∼ Dq

i of size q is the test set of154

the i-th training task. In this work, we assume that K+ q = m for notation convenience. The training155

set and the test set are also called support set and query set [8], respectively. Let A(A(H,Z),Zm)156

be the set of meta learning algorithms. For any A ∈ A(A(H,Z),Zm), it takes the meta-sample157

S = {Si}ni=1 as input and outputs an algorithm (inner-task algorithm) A(S) : ∪∞
m=1Zm → H. The158

performance of the learned inner-task algorithm is measured by the expectation of the generalization159

error w.r.t. the task environment τ , which is defined as the transfer error by [33, 8] as follows:160

er(A(S), τ) ≜ ED∼τEStr∼DKEz∼Df(A(S)(Str), z). (2)
Actually, the environment τ can define an induced distribution Dτ ∈ M1(Zm), by setting161

Dτ (F ) = ED∼τD
m(F ) for any measurable set F ⊆ Zm. Define the estimator l(A(S), S) ≜162

L̂(A(S)(Str), Sts), where S = Str ∪ Sts, S i.i.d.∼ Dm. Then we can rewrite the transfer error as163

a simple form: er(A(S), τ) = ES∼Dτ l(A(S), S). This means that, the training error l(A(S), S)164

is the unbiased version of the transfer error er(A(S), τ) = ES∼Dτ l(A(S), S). This is similar to165

the fact that, in single-task learning, the empirical error f(A(S), z) is the unbiased version of the166

generalization error L(A(S), D) = Ez∼Df(A(S), z). Therefore, a transfer error bound is formally167

equivalent to a single-task generalization error bound under the identifications Z ↔ Zm, f ↔ l,168

A ↔ A. The relation of the notations between single-task learning and meta learning is listed in169

Table B.1 in Appendix B. In practice, it is difficult to minimize er(A(S), τ) directly as we have170

no information of the environment distribution τ . Instead, we choose to minimize the following171

empirical risk based on the S/Q episodic training strategy. The goal of meta learning theory is thus to172

give a bound on the transfer error, based on the empirical multi-task error on the meta-sample S:173

êr(A(S),S) ≜
1

n

n∑
i=1

L̂(A(S)(Str
i ), Sts

i ) =
1

n

n∑
i=1

l(A(S), Si). (3)

Uniform Stability of Meta Learning Algorithms. We say two meta-samples S = {Si}ni=1 and174

S′ = {S′
i}ni=1 are neighboring, denoted by S ≃ S′, if they only differ on a single entry, i.e., there175

exists i ∈ [n] s.t. ∀j ̸= i, Sj = S′
j ; and Si ̸= S′

i . We also define Si = {S1, .., S
′
i, ...Sn} as the176

neighboring meta sample of S that differs only on the i-th entry. We next define the uniform stability177

of meta algorithms with episodic training strategy, which is formulated explicitly in [8, Definition 3].178

Definition 2 (Uniform stability of modern meta learning algorithms) A meta algorithm A has179

uniform stability w.r.t. the loss function L̂ if the following holds for any meta-sample S and for any180

i ∈ [n], any D ∼ τ , Str ∼ DK , Sts ∼ Dq: |L̂(A(S)(Str), Sts)− L̂(A(Si)(Str), Sts)| ≤ γ.181

Since l(A(S), S) = L̂(A(S)(Str), Sts), we can also define the uniform stability of A as: ∀S ∼182

Dτ ,∀i ∈ [n], |l(A(S), S)− l(A(Si), S)| ≤ γ. Such definition is analogous to the uniform stability183

of an inner-task algorithm A in single-task learning (see Definition E.1 in Appendix E) under the184

identifications: l ↔ f,A ↔ A,S ↔ S. Thus, we can directly apply the existing uniform stability185

based generalization bound from single-task learning [6, Theorem 12] to obtain the uniform stability186

based transfer bound for episodic meta learning [8, Theorem 2], without lengthy and somewhat187

duplicate proof in [8]. We list such fundamental uniform stability based transfer error bound in188

Theorem 1 for later comparison. To derive sharper transfer error bounds, our key step is to utilize the189

equivalent relation between the notations of single-task learning and episodic meta learning, thus190

extending fast-rate bounds in single-task learning [7, 27, 46] to the episodic meta learning setting.191

Theorem 1 Suppose the S/Q episodic meta learning algorithm A has uniform stability γ w.r.t. the192

estimator l(·, S) bounded by M . Then, for any task distribution τ ∈ M1(M1(Z)), any δ ∈ (0, 1),193

the following inequality holds with probability at least 1− δ over the draw of meta sample S:194

er(A(S), τ) ≤ êr(A(S), S) + γ + (2nγ +M)

√
ln (1/δ)

2n
.
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195 4 Uniform Argument Stability Bounds of Meta Learning Algorithms196

For a modern meta learning algorithm with deep neural networks [20, 40], we always employ stochas-197

tic gradient descent (SGD) method to minimize the empirical error 1
n

∑n
i=1 L̂(A(S)(Str

i ), Sts
i ) to198

learn a good feature embedding. Formally, we define the sampling-with-replacement gradient update199

rule at (t + 1)-th step as: wt+1 = ProjW [wt − ηt∂wt
L̂(A(S)(Str

it
), Sts

it
)], where it is indepen-200

dently and identically drawn (i.i.d.) from the uniform distribution Unif([n]). Therefore, although201

L̂(A(S)(Str
it
), Sts

it
) is the loss only calculated over the query samples Sts

it
, it is still related to the202

support samples Str
it

, and the updated parameter wt+1 is also related to Str
it

. Therefore, we define203

an equivalent empirical loss R̂(A(S)(S), S) ≜ L̂(A(S)(Str), Sts) to indicate that: the empirical204

loss over the episode S = Str ∪ Sts is related to the whole episode sample S, and so is the output205

hypothesis A(S)(S). Therefore, for the empirical error 1
n

∑n
i=1 R̂(A(S)(Si), Si), the episode-level206

SGD update rule is: wt+1 = ProjW [wt − ηt∂wtR(wt, Sit)]. The pseudo code as well as several207

examples of modern meta learning algorithms can be found in Appendix C. In this section, we provide208

lower and upper stability bounds for meta learning with sampling-with-replacement SGD method.209

We first give the definition of uniform argument stability of episodic meta learning algorithms.210

Definition 3 (Uniform argument stability of meta learning algorithms). Given a meta learning211

algorithm A, any neighboring meta samples S,S′, and any training episode S ∈ Zm, we define the212

uniform argument stability random variable of A as δA(S,S′;S) = ||A(S)(S)−A(S′)(S)||.213

A is defined as a uniform argument β-stable meta learning algorithm if for some β > 0, we have214

supS≃S′,S δA(S,S′;S) ≤ β or supS≃S′,S EAδA(S,S′;S) ≤ β, where EA denote the expectation215

w.r.t. the internal randomness of A. For a meta learning algorithm with SGD method, the internal216

randomness of A comes from the randomness of sampling at each iteration. Note that if R̂(·, S) is a217

Lipschitz function for any S ∈ Zm, the uniform argument stability of A implies the uniform stability218

of A in Definition 2. In this work, we investigate the stability of modern meta learning algorithms219

with deep neural network, and focus on the sampling-with-replacement SGD training strategy. Thus,220

we will derive lower and upper bounds on EA||A(S)(S)−A(S′)(S)|| across different settings.221

4.1 Stability Bounds for Nonsmooth Functions with α-Hölder Continuous Subgradients222

In this subsection, we provide lower and upper stability bounds for episodic meta learning algorithm223

whose loss function is nonsmooth convex and has α-Hölder continuous subgradient with 0 ≤ α < 1.224

Theorem 2 ∀ fixed S ∈ Zm, let R̂(·, S) be a convex and (α,G)-Hölder smooth function, where225

α ∈ [0, 1). Let A be a meta learning algorithm with sampling-with-replacement SGD. Denote by226

wj and w′
j the outputs after j(j ∈ [T ]) steps of SGD on S and Si, respectively. Define RS(w) =227

n−1
∑n

i=1 R̂(w, Si), ∀w ∈ W . Then ∀S ∈ Zm, EAδA(S,S′;S) is upper bounded by228

√
2cα

[ T∑
j=1

η2jE
[
R

2α
1+α

S (wj) +R
2α

1+α

Si (w′
j)
]] 1

2

+
2cα
n

T∑
j=1

ηj
[
R̂

α
1+α (wj , Si) + R̂

α
1+α (wj , S

′
i)
]
. (4)

In addition, if R̂(·, S) is bounded by M and the step size ηj = η ∀j ∈ [T ], we can obtain the229

lower and upper bounds of the uniform argument stability of A: cαM
α

1+α (min{1, T
n }η

√
T + ηT

n ) ≤230

supS,S′,S EAδA(S,S′;S) ≤ 4cαM
α

1+α
(
min{1, T

n }η
√
T + ηT

n

)
.231

Remark 1 Our upper stability bound in Eq. (4) depends on the empirical risk during the optimization232

process. Formally, Eq. (4) shows that, the stability of modern meta algorithm increases if we find233

good parameters wj with small empirical risk RS(wj) at the j-th optimization step. This illustrates234

a key insight that optimization is beneficial to improve the generalization of algorithms. Besides, our235

stability upper bound also implies the importance of a good embedding [41] (which may have a good236

initialization and low empirical risk during the first several optimization steps) to generalization.237

Remark 2 We additionally suppose the function to be bounded by M such that the stability bounds238

can be used to analyze the generalization bounds in the next section where the loss function is always239

assumed to be bounded. Note that when α = 0, R̂(·, S) is a nonsmooth cα-Lipschitz convex function,240

and our lower and upper stability bounds recover the results in [2]. For bounded convex α-Hölder241

smooth functions, the lower stability bound implies that modern meta learning algorithms are not242

stable enough even if we train them with a relatively small constant step size in each SGD iteration.243
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Remark 3 The above result shows that, for bounded convex α-Hölder smooth function (α ∈ [0, 1)),244

the uniform argument stability parameter β = O
(
cαM

α
1+α (min{1, T/n}η

√
T + ηT/n)

)
. Another245

work [30] also focuses on convex α-Hölder smooth function. Using the technique from [30], we obtain246

the upper stability bounds for bounded convex α-Hölder smooth function under the same conditions:247

β ≤ O
(
cαM

α
1+α (η

1
1−αT + ηT/n)

)
or β ≤ O

(
cαM

α
1+α (η

1
1−α

√
T + η

√
T/n)

)
(see Theorems D.1-248

D.2 in Appendix D.2.2), both of which are larger than our tight stability bound in Theorem 2 under249

the setting T ≤ n. When T > n, the upper bound β ≤ O
(
cαM

α
1+α (η

1
1−α

√
T + η

√
T/n)

)
in250

Theorem D.2 is slightly sharper than the upper bound O
(
cαM

α
1+α (η

√
T + ηT/n)

)
in Theorem 2.251

4.2 Stability Bounds for Smooth Functions252

In this subsection, we provide lower and upper uniform argument stability bounds for modern meta253

learning algorithms with smooth functions. First, we consider smooth convex functions.254

Theorem 3 ∀ fixed S ∈ Zm, let R̂(·, S) be a G-smooth convex function. Let A be a meta learning255

algorithm with sampling-with-replacement SGD. Denote by wj and w′
j the outputs after j(j ∈ [T ])256

steps of SGD on neighboring meta samples S and Si, respectively. Then ∀S ∈ Zm, ηj ≤ 2/G,257

EA||A(S)(S)−A(Si)(S)|| ≤
√
2G

n

T∑
j=1

ηjEA

[√
R̂(wj , Si) +

√
R̂(w′

j , S
′
i)
]
.

In addition, if R̂(·, S) is bounded by M , we can obtain the lower and upper bounds of the uniform258

argument stability of A: 1
n

∑T
j=1 ηj ≤ supS,S′,S EAδA(S,S′;S) ≤ 2

√
2MG
n

∑T
j=1 ηj .259

If we set all ηj = η, then for bounded convex functions, the tight stability bound of O(ηTn ) under the260

smooth case is sharper than the stability bound of O(min{1, T
n }η

√
T + ηT

n ) in Theorem 2 under the261

nonsmooth case. This indicates that in the smooth case, meta learning algorithms are more stable262

than in the nonsmooth case. Finally, we give stability bounds for smooth non-convex functions.263

Theorem 4 ∀ fixed S ∈ Zm, let R̂(·, S) be a σ-Lipschitz and G-smooth function. Let A be a meta264

learning algorithm. Denote by wj and w′
j the outputs after j(j ∈ [T ]) steps of SGD on S and Si,265

respectively. Define the learning rate ηj =
a
jG , ∀j ∈ [T ] with a > 0. Then ∀S ∈ Zm, the lower and266

upper stability bounds of A satisfy: Ta

6n1+a ≤ supS,S′,S EAδA(S,S′;S) ≤ 11 ln (n)σTa

n1+a .267

Under the same step size setting, existing upper uniform argument stability bound in [8, Theorem3]268

or in [32, Proposition 4] for non-convex, smooth and Lipschitz function is of O(T
a

1+a /n) . Our269

bound of order O(T a/n1+a) is improved over the existing bound when T
a

1+a ≤ n. Besides, our270

stability bound can be non-vacuous for multi-pass SGD setting (i.e., when T = kn, k ∈ N) where271

the number T of SGD iterations is larger than n, as long as k ≤ n1/a.272

5 High Probability Transfer Error Bounds for Meta Learning273

In this section, we establish high probability bounds for transfer error er(A(S), τ). Specifically, we274

still consider two kinds of loss function: (1) convex and (α, G)-Hölder smooth function (α ∈ [0, 1]);275

(2) non-convex, σ-Lipschitz and G-smooth function. We always assume that the loss function R̂(·, ·)276

is bounded by M . Define σα = cαM
α

1+α if R̂(w, S) is a convex and (α,G)-Hölder smooth function;277

σα = σ if R̂(w, S) is a σ-Lipschitz and G-smooth function. We just exhibit the generalization278

bounds of randomized algorithm A by supposing PA[δA(S,S′;S) > β] ≤ δ0. We provide an279

example to illustrate how to calculate δ0 in Example E.1 in Appendix E. The generalization bound280

for deterministic meta algorithm (e.g. with gradient descent) can be stated by setting δ0 = 0.281

5.1 Near Optimal Transfer Error Bound for Meta Learning with Independent Episodes282

We denote by a ≲ b the existence of some universal constant c > 0 such that a ≤ cb. Then we obtain283

the following near optimal bound of O(1/
√
n) under the independent task environment assumption.284

Theorem 5 Let A ∈ A(A(H,Z),Zm) be a uniform argument β-stable meta algorithm, i.e.,285

supS≃S′,S EA||A(S)(S) − A(S′)(S)|| ≤ β. For any S ∈ Zm, let R̂(·, S) be [0,M ]-valued,286
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and satisfy one of the two following conditions: (1) R̂(·, S) is convex and (α,G)-Hölder smooth287

(α ∈ [0, 1]); (2) R̂(·, S) is σ-Lipschitz and G-smooth. Suppose PA[δA(S,S′;S) > β] ≤ δ0. Then288

for any independent task environment τ ∈ M1(M1(Z)), any δ ∈ (0, 1), the following holds with289

probability at least 1− δ − δ0 over the draw of S and the internal randomness of A:290

σαβ ln
1

δ
+

M√
n

√
ln (1/δ) ≲ er(A(S), τ)− êr(A(S),S) ≲ σαβ ln

n

δ
+

M√
n

√
ln (1/δ).

291 Remark 4 Our transfer error bound in Theorem 5 has three advantages over the bound in Theorem292

1 from [8]: (1) Theorem 1 gives a high-probability upper bound of O(
√
nγ +M/

√
n) for transfer293

error, where γ is the uniform stability parameter and always scales as O(1/n); in contrast, our upper294

bound of O(β lnn+M/
√
n) is improved by replacing the

√
n factor before the stability parameter295

with lnn. (2) In [8], the uniform stability γ = O(T
a

a+1 /n), whereas our uniform argument stability296

β = O(T a/n1+a) is tighter when T
a

a+1 ≤ n, i.e., when the uniform stability bound γ = O(T
a

a+1 /n)297

is non-vacuous. (3) Our high-probability transfer error bound of order O(1/
√
n) is near optimal.298

Remark 5 We uncover two limitations of stability-based meta learning theory: (1) Recall the lower299

stability bound for meta learning algorithms with convex α-Hölder smooth function (α ∈ [0, 1)) in300

Theorem 2, we find that the lower transfer error bound in Theorem 5 is er(A(S), τ)− êr(A(S),S) ≳301

σα ln (1/δ)cαM
α

1+α (η
√
T + ηT/n) when T ≥ n. This indicates that the lower transfer error bound302

is greater than a constant and will not converge to zero with the increase of n. Thus, the stability-based303

transfer error bound is vacuous and cannot provide asymptotic guarantees for convex Hölder smooth304

functions. (2) The stability-based transfer error bound of O(1/
√
n) in Theorem 5 is near optimal.305

Such result is assistant with the observation in [35, Section 2] that under the (i.i.d.) task environment306

assumption, the term O(1/
√
n) in the generalization bound is unavoidable. Thus, to obtain sharper307

generalization bounds for meta learning (e.g. the bound of O(1/
√
mn) or even O(1/mn)), we need308

to consider other stability notions (e.g. [16]), or suppose stronger task relatedness in the environment309

(e.g. [5, 22]), or even drop the task environment assumption (e.g. [14, 42]).310

Remark 6 Under the independent task environment assumption, we compare our bound of O(1/
√
n)311

via S/Q episodic training strategy with other transfer error bounds that are obtained via traditional312

ERM strategy over all samples in training tasks. In detail, the bound from [33, Theorems 2 and 6]313

via algorithmic stability analysis is of O(1/m+ 1/
√
n); the bounds from [37, Theorem 1] and [38,314

Theorem 2] via PAC-Bayes analysis are of O(1/
√
n+ 1/

√
m); the bound from [22, Theorem 5] via315

covering number analysis is of O(1/
√
nm+1/

√
m). All of these bounds via ERM strategy involve a316

term O(1/
√
m), and such term can be large when m is relatively small (e.g. m = 5 or m = 10 in the317

few-shot learning setting). Thus, in terms of the tightness of transfer error bounds, the S/Q episodic318

training strategy is superior to the ERM strategy for meta learning, when m << n. Such result was319

also pointed out by [8] and is more rigorously demonstrated in this work . Detailed comparisons320

between different transfer error bounds for meta learning are shown in Table A.2 in Appendix A.321

5.2 Fast Transfer Error Bound of O(lnn/n) for Meta Learning with Independent Episodes322

To obtain faster convergence rate, we need to take additional assumption. The generalized Bernstein323

condition is one of the most widely used condition to attain fast convergence rate of generalization324

bound in single-task learning [32, 27]. Next, we extend the generalized Bernstein condition to the325

meta learning setting, where we study the optimal algorithm A∗ instead of the optimal hypothesis.326

Definition 4 (Generalized Bernstein Condition for Meta Learning) Assume that A∗(H,Z) =327

ArgminA∈A(H,Z)er(A, τ) is a set of risk minimizers in a closed set. We say that an algorithm328

A together with the environment τ and the empirical estimator l satisfies the generalized Bernstein329

condition if for some B > 0, ∀A ∈ A(H,Z), there is a A∗ ∈ A∗(H,Z), such that330

ES∼Dτ

(
l(A,S)− l(A∗, S)

)2 ≤ B
(
er(A, τ)− er(A∗, τ)

)
. (5)

331 [27] has shown that in single-task learning, a strongly-convex and Lipschitz function satisfies the332

generalized Bernstein condition. In this work, we relax the strong-convexity condition by considering333

the following Polyak-Łojasiewicz condition, one of the weakest curvature conditions of functions.334

Definition 5 (Polyak-Łojasiewicz [45]) Any function f : W → R satisfies the Polyak-Łojasiewicz335

(PL) condition on W with parameter µ > 0 if for all w ∈ W , f(w) − f(w∗) ≤ 1
2µ ||∂0f(w)||22,336

where w∗ denotes the Euclidean projection of w onto the set of global minimizer of f in W .337
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A key insight into the PL condition is that it is the sufficient and necessary condition to guarantee338

the linear convergence of gradient descent methods for smooth convex optimization problem [36].339

Such PL condition can also be satisfied by many non-convex neural network models, such as the340

two-layer neural networks with ReLU activation functions [31] and the deep linear residual networks341

[23]. We will show that if the functions in Theorem 5 additionally satisfy the PL condition, then the342

loss functions in meta learning also satisfy the generalized Bernstein condition in Definition 4. Thus,343

we can derive a "deformed" transfer error bound of O(lnn/n) for modern meta learning algorithms.344

Theorem 6 Under the same conditions of Theorem 5, for any fixed S ∈ Zm, let R̂(·, S) additionally345

satisfy Polyak-Łojasiewicz condition in Definition 5. Suppose PA[δA(S,S′;S) > β] ≤ δ0. Then,346

there exist c > 0, such that for any environment τ ∈ M1(M1(Z)), and any δ ∈ (0, 1), the following347

holds with probability at least 1− δ − δ0 over the draw of S and the internal randomness of A:348

er(A(S), τ) ≤ (1 + η)êr(A(S),S) + c(1 + 1/η)
(
σαβ lnn+

M

n

)
ln

1

δ
.

349 Recall in Section 4, our stability parameter is always β = O(1/n). Hence, when the empirical error350

in the RHS of the above bound is close to zero, the transfer error bound always scales as O(lnn/n).351

5.3 Transfer Error Bound for Meta Learning with Dependent Episodes352

In this subsection, we investigate the generalization bound for meta learning algorithms with depen-353

dent episodes whose dependency relation can be characterized by a graph. The approach undertaken354

to establish our results is based on the forest approximation of the dependency graph [26]. Formally,355

a dependency graph is an undirected graph Γ = (V,E) of a random vector S = (S1, ..., Sn) if the356

following two conditions are satisfied: (1) V (Γ) = [n]; (2) if I, J ⊂ [n] are non-adjacent in Γ, then357

{Si}i∈I and {Sj}j∈J are independent. We next give the concept of forest approximation.358

Definition 6 (Forest Approximation [46]) Given a graph Γ, a forest F , and a mapping ϕ : V (Γ) →359

V (F ), if ϕ(u) = ϕ(v) or ⟨ϕ(u), ϕ(v)⟩ ∈ E(F ) for any ⟨u, v⟩ ∈ E(Γ), we say that (ϕ, F ) is a forest360

approximation of Γ. Let Φ(Γ) denote the set of forest approximations of Γ.361

Intuitively, a forest approximation transform a graph into a forest by merging vertices and removing362

self-loops. We then give the definition of forest complexity, which measures how a dependency graph363

looks like a forest, and hence measures the strength of dependency among random variables in S.364

Definition 7 (Forest Complexity [46]) Given a graph Γ and any forest approximation (ϕ, F ) ∈ Φ(G)365

with F consisting of trees {Ti}i∈[k]. Define λ(ϕ,F ) =
∑

⟨u,v⟩∈E(F )

(
|ϕ−1(u)| + |ϕ−1(v)|

)2
+366 ∑k

i=1 minu∈V (Ti) |ϕ−1(u)|2. We call Λ(Γ) = min(ϕ,F )∈Φ(Γ) λ(ϕ,F ) the forest complexity of the367

graph Γ = (V,E). Here, ϕ−1(u) is the set of pre-images of the element u.368

For sample S whose components are independent, we choose the identity map and its dependency369

graph as the forest approximation. Hence Λ(Γ) =
∑n

i=1 1
2 = n. For sample S whose dependency370

graph Γ is a tree, the identity map between Γ and itself is a forest approximation of Γ. Then371

Λ(Γ) ≤ |E(Γ)|(1+1)2+1 = 4n−3 = O(n). More examples of forest approximation can be found372

in [46, Section 3.3]. We next give a forest-complexity based transfer error bound for meta learning.373

Theorem 7 Under the same conditions of Theorem 5, except that S is a meta sample of size n with374

dependency graph Γ. Let the maximum degree of the graph Γ is △. Suppose PA[δA(S,S′;S) >375

β] ≤ δ0. Then, for any environment τ ∈ M1(M1(Z)), any δ ∈ (0, 1), the following holds with376

probability at least 1− δ − δ0 over the draw of S and the internal randomness of A:377

er(A(S), τ) ≤ êr(A(S),S) + σαβ
(
△+ 1

)
+

(
2σαβ +

M

n

)√Λ(Γ) ln 1/δ

2
,

378 When S is an independent sample, the forest complexity Λ(Γ) = n, the maximum degree △ = 0, and379

the above forest-complexity based generalization bound degenerates to the bound in Theorem 1 for380

meta learning with independent episodes. When S is a dependent sample, Λ(Γ) will be greater than n.381

Both the complexity Λ(Γ) and the maximum degree △ will increase with more dependency relation382

between samples in S (i.e., with more adjacent edges in its dependency graph Γ = (V,E)). In the383

next section, we conduct experiments on regression problems to show the convergence performance384

of the generalization bound for meta learning with dependent episodes. The corresponding forest-385

complexity based generalization bound for such problem is provided in Example E.2 in Appendix E.3.386
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6 Experiments387
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êr(A(S),S)

|er − êr|
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Figure 1: Convergence analysis of generalization gaps for independent tasks.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

log# of tasks

0

1

2

3

4

5

6

7

8

E
rr

or

er(A(S), τ)
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êr(A(S),S)

|er − êr|
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Figure 2: Convergence analysis of generalization gaps for dependent tasks.

To verify our theoretical analysis, we conduct experiments on few-shot regression problems to show388

the convergence performance of our generalization bounds with independent and dependent episodes.389

Experimental Settings. We follow the experimental setting in [20, 8]. The problem aims to390

approximate the distribution of parameters of function f(x) = α sin(βx). The task environment τ is391

the joint distribution p(α, β) of the parameters α and β. We set p(α) = U [−5, 5], p(β) = U [0, π].392

For independent setting, we construct training episodes by sampling pairs (α, β) from the task393

distribution τ = p(α, β); for dependent setting, we construct the first half training episodes by394

sampling pairs (α, β) from τ = p(α, β) independently, and construct the rest half training episodes395

by setting (−α, π−β) with (α, β) from the first half training episodes. Each training episode contains396

5 support samples and 1 query samples. In both settings, the 600 test episodes are constructed by397

sampling (α, β) from τ independently, each containing 5 support samples and 15 query samples. We398

implement meta learning algorithms MAML [20] and Bilevel Programming [21] with square loss (l2)399

and absolute loss (l1). The neural network has two hidden layers of size 40 with ReLU activation400

functions. The generalization gap is the absolute distance between the training error and test error.401

Experimental Results. From Figures 1-2, we can observe that: (1) The generalization gap in both402

independent and weakly dependent episode settings can converge to 0 with the increase of the training403

episodes, demonstrating the asymptotic behaviour of our transfer error bounds in Theorems 5 and 7.404

(2) The generalization gap with independent episodes can converge to zero more quickly than the gap405

with dependent episodes. The test error with independent episodes also always converge to the lower406

level than the one with dependent episodes. The better convergence performance with independent407

episodes truly demonstrate how the dependency between episodes can affect the generalization408

of meta learning algorithms. (3) With non-convex neural network models, both square loss and409

nonsmooth absolute loss can lead to similar convergence performance of generalization bounds.410

7 Conclusion and Future Work411

In this work, we provide fine-grained analysis of stability and generalization for modern meta learning412

algorithms. From the perspective of stability, our tight stability bounds implies that in the nonsmooth413

convex case the meta learning algorithm is less stable than in the smooth convex case. The stability414

bounds in the smooth non-convex case enjoys an order of O(1/n) even for the multi-pass SGD setting.415

From the perspective of generalization, we demonstrate that the high-probability transfer error bound416

of O(1/
√
n) is optimal. Based on this bound, we uncover the limitations of algorithmic stability417

analysis for meta learning, and reveal the advantage of episodic training strategy for meta learning418

over tradition ERM training strategy. Further, by extending the generalized Berstein condition to the419

meta learning setting, we obtain a fast-rate generalization bound of O(lnn/n) with additional Polyak-420

Łojasiewicz condition. Finally, we derive a generalization bound for meta learning with dependent421

episodes. Experiments are also provided to show the convergence performance of generalization422

error with independent and dependent episodes. In the future, we will explore new stability notions423

to see whether we can develop sharper generalization bounds (e.g. of O( 1
nm )) for meta learning.424
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