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ABSTRACT

The basis of existing knowledge graph completion (KGC) models is to learn
the correlations in data, such as the correlation between entities or relations and
scores of triplets. Since the world is driven by causality rather than correlation,
correlation-driven KGC models are weak in interpretation and suffer from the data
bias issue. In this paper, we propose causal KGC models to alleviate the issues
by leveraging causal inference framework. Our models are intuitive and inter-
pretable by utilizing causal graphs, controllable by using intervention techniques
and model-agnostic. Causal graphs allow us to explain the causal relationships
between variables and the data generation process. Under the causal graph, data
bias can be seen as confounders. Then we block the bad effect of confounders
by intervention operators to mitigate the data bias issue. Due to the difficulty of
obtaining randomized data, causal KGC models pose unique challenges for eval-
uation. Thus, we show a method that makes evaluation feasible. Finally, we show
a group theory view for KGC, which is equivalent to the view of causal but further
reveals the relationships between causal graphs. Experimental results show that
our causal KGC models achieve better performance than traditional KGC models.

1 INTRODUCTION

A knowledge graph (KG) consists of a large number of triplets in the form of (head entity, relation,
tail entity). Many KGs suffer from the incompleteness problem. To complement KGs, knowledge
graph completion (KGC) models define a scoring function to measure the likelihood of triplets. The
basis of existing KGC models is to learn the correlation in data, such as the correlation between
entities or relations and scores of triplets. Since the world is driven by causality rather than corre-
lation, correlation-driven KGC models are weak in interpretation and suffer from data bias issues.
For example, due to ignoring popularity bias in KG data, KGC models are biased towards popular
entities and relations (Mohamed et al., 2020).

In this paper, we propose causal KGC models to alleviate the issues by leveraging causal inference
techniques (Pearl, 2009b). Our models are model-agnostic and just need to add an extra term to the
traditional KGC models. Causal inference defines causal graphs to describe the causal relationships
between variables. Causal graphs can help build intuitive, interpretable and controllable KGC mod-
els. Existing KGC models are only concerned with the correlations in the data, while ignoring the
causality and the data generation process. Roughly ignoring the data generation process can lead
to incorrect correlations between entities, relations and scores of triplets. Causal graphs allow us
to explain the causal relationships between variables and the data generation process. Under the
causal graph, data bias can be seen as confounders, where confounders in KG data are variables that
simultaneously affect entities or relations and scores of triplets. We utilize intervention operators
to eliminate the bad effect of confounders, which remove the path from confounders to entities and
relations in the causal graph. Then we can estimate the causal effect or correct correlations in KG
data by backdoor adjustment (Pearl, 2009b).

Causal KGC models present unique challenges for evaluation, which need to evaluate on a ran-
domized test. However, a randomized test set is often difficult and infeasible to obtain. Therefore,
based on the popularity of entities and relations, we define a new evaluation metric to to measure
the performance of KGC models.
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The main feature of causal is invariance or symmetry (Arjovsky et al., 2020). Group theory is a
language to describe symmetry. Thus, we finally show a group theory view for KGC, which is
equivalent to the view of causal but further reveals the relationships between the causal graphs.
Different causal graphs or models can be seen as learning different symmetries.

The main contributions of this paper are listed below:

1. To the best of our knowledge, we are the first to apply causal inference to KGC and show the
necessity of introducing causality into KGC.

2. We propose causal KGC models to enhance the interpretability of KGC models and alleviate the
data bias issue. Then we show a method to evaluate causal KGC models on observation datasets.

3. Experimental results show that our causal KGC models achieve better performance than tradi-
tional KGC models.

4. We show a view of group theory for KGC to further reveal the causal relationships.

2 BACKGROUND

In this section, we introduce the related background of our model, knowledge graph completion and
causal inference.

2.1 KNOWLEDGE GRAPH COMPLETION

Let E denotes the set of entities and R denotes the set of relations, a KG is composed of a set of
triplets D = {(h, r, t)} ⊂ E × R × E , where h is a head entity, r is a relation and t is a tail entity.
Lacroix et al. (2018) propose to augment every triplet (h, r, t) in D with its inverse triplet (t, r−1, h).
With this augmentation, KGC can be formulated as predicting the tail entities that satisfy a query
(h, r, ?). A KG can also be represented by a 3rd-order binary tensor X ∈ {0, 1}|E|×|R|×|E| with
Xh,r,t = 1 if (h, r, t) ∈ D and Xh,r,t = 0 if (h, r, t) /∈ D.

KGC models define a scoring function f(h, r, t) to measure the likelihood of a triplet (h, r, t) based
on the corresponding embedding (h, r, t). A number of KGC models have been proposed (Zhang
et al., 2021a), we list four popular KGC models that we consider in our experiments.

TransE (Bordes et al., 2013), a representative model of translation-based models, defines the scoring
function as the negative distance between h+ r and t, i.e.,

f(h, r, t) = −∥h+ r − t∥

where h, r, t ∈ Rn, n is the dimension of embedding and ∥ · ∥ is a norm of a vector. RotatE (Sun
et al., 2018) generalizes the embedding from real vector space to complex vector space to model
various relation patterns, and the scoring function is defined as

f(h, r, t) = −∥h⊙ r − t∥

where h, r, t ∈ Cn and ⊙ is Hadamard product.

DistMult (Yang et al., 2014), a representative model of multiplicative models, defines the scoring
function as the inner product of h, r and t, i.e.,

f(h, r, t) =

n∑
i=1

hiriti

where h, r, t ∈ Rn. ComplEx (Trouillon et al., 2017) extends DistMult to complex vector space to
handle asymmetric relation patterns and defines the scoring function as

f(h, r, t) = Re(

n∑
i=1

hirit
∗
i )

where h, r, t ∈ Cn, t∗i is the complex conjugate of ti and Re(·) is the real part of a complex number.
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Figure 1: (a) describes the causal graph of traditional KGC models. (b) describes the causal graph
with three confounders. (c) describes the causal graph after the intervention do(H,R, T ).

2.2 CAUSAL INFERENCE

Causal inference is the process of inferring the causal relationships from data (Yao et al., 2021).
There are two representative frameworks for causal inference: structural causal models (SCMs)
proposed by Pearl (2009b) and potential outcome framework developed by Rubin (1974). As shown
in (Pearl, 2009a), the two frameworks are logically equivalent. Since the causal graph in SCMs
describes the causal relationships more intuitively, we select the SCMs framework in this paper.

SCMs abstract the causal relationships between variables into a set of functions and then estimate
the causal effects of an intervention or a counterfactual. Every SCM is associated with a causal
graph, which is a directed acyclic graph where the nodes denote variables and the edges indicate
causal relationships between variables.

Given the causal graph, a fundamental manipulation on the causal graph is intervention. Technically,
the intervention on a variable H is formulated with do-calculus, do(H = h), which blocks the effect
of H’s parents and set the value of H as h. For example, do(H = h) in the middle of Figure 1 will
remove the path ZH −→ H and force H to be h.

3 METHOD

In this section, we first propose our causal KGC models by utilizing causal inference techniques.
Then, we show the method of evaluating causal KGC models. Finally, we show a group theory view
for KGC to further reveal the relationships between causal graphs.

3.1 CAUSAL KGC MODELS

Data Bias in KGs Data bias in KGs refers to the biased data collection that does not faithfully
reflect the likelihood of triplets. Many popular KGs (e.g. DBpedia, Wikidata, and YAGO) are au-
tomatically constructed from unstructured text by using information extraction algorithms (Ji et al.,
2021). The collected KG data often suffers from data bias, such as popularity bias, algorithm bias
and so on. For example, Mohamed et al. (2020) show that the distribution of entities and relations
in the benchmark KGs is highly skewed. The collected KG data is also affected by the information
extraction algorithms, which may only extract simple knowledge from the unstructured text while
ignoring complex knowledge. Existing correlation-driven KGC models not only learn the desired
likelihood of triplets but also the data bias, which leads to incorrect correlation.

A Causal View for KGC Causal inference allows us to find the fundamental cause of data bias
by studying the generation process of KG data and alleviates the effect of data bias. In most cases,
data bias can be seen as confounders in a causal graph, where confounders in KG data are variables
that simultaneously affect entities or relations and scores of triplets. Roughly ignoring confounders
can lead to incorrect correlations between entities, relations and scores of triplets. To eliminate con-
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founding effects, we abstract the data generation process into a causal graph, identify confounders,
and then block the effect of confounders by intervention.

Causal graphs are intuitive and allow us to explain the causal relationships between variables. Figure
1 shows three causal graphs. Figure 1(a) describes the causal graph of traditional KGC models,
which ignores the confounders. Figure 1(b) describes the causal graph with three confounders.
Figure 1(c) describes the causal graph after the intervention of the causal graph in Figure 1(b). The
nodes and edges are illustrated as follows:

1. Nodes: Node H denotes the head entity variable. Node R denotes the relation variable. Node T
denotes the tail entity variable. Node Y denotes the score of triplets variable, which measures the
likelihood of triplets. Node ZH , ZR and ZT denote variables that are not explicitly considered
by traditional KGC models, e.g., the popularity of entities or relations.

2. Edges: Edges {H,R, T} −→ Y denote that {H,R, T} are the cause of Y , which is exactly
what the traditional KGC models consider. Edges {H,R, T, ZH , ZR, ZT } −→ Y denote that
{H,R, T, ZH , ZT , ZT } are the cause of Y , which have three extra edges ZH −→ Y , ZR −→ Y
and ZT −→ Y compared to edges {H,R, T} −→ Y . Edge ZH −→ Y /ZR −→ Y /ZH −→ Y means
that ZH /ZR/ZT is also contributed to Y . Edge ZH −→ {H}/ZR −→ {R}/ZT −→ {T} denotes that
the variables ZH/ZR/ZT can influence the data generation process of H/R/T .

The causal graph in Figure 1(b) shows that ZH/ZR/ZT simultaneously affects H/R/T and Y , so
ZH/ZR/ZT are confounders. The confounder ZH leads to two paths from ZH to Y : ZH −→ Y and
ZH −→ H −→ Y . The first path combines edges {H,R, T} −→ Y to model Y , as expected. For
example, if ZH denote the popularity of persons, then persons with high ZH are more likely to have
relation is friend of with others. Therefore, ZH is also a cause of Y . The second path means that
ZH can affect the data generation of H . For example, if ZH denotes the popularity of head entities,
then ZH will influence the likelihood of head entities being collected, making the collected data
more popular head entities (Mohamed et al., 2020). This causes bias amplification, which should
be avoided because a KGC model should faithfully estimate the likelihood of triplets and not be
affected by the way of data collection. The confounders ZR and ZT are similar to ZH . Thus, the
bad effect caused by the paths ZH −→ H , ZR −→ R and ZT −→ T should be blocked.

Deconfounded KGC Models To eliminate the bad effect of confounders {ZH , ZR, ZT }, we
should rule out the paths ZH −→ H , ZR −→ R and ZT −→ T from the causal graph in Figure
1(b), that is exactly do(H,R, T ) operator, which results the causal graph in Figure 1(c). Thus, the
causal effect of {H,R, T} on Y can be measured by probability function P (Y |do(H,R, T )) in
Figure 1(b), i.e., P (Y |H,R, T ) in Figure 1(c). To estimate P (Y |do(H,R, T )), one method is to
conduct randomized experiments. During the data collection process, we randomly select head en-
tities, relations and tail entities, and then judge whether the corresponding triplets are true. This can
make {H,R, T} unaffected by confounders {ZH , ZR, ZT }. However, randomized experiments are
difficult to conduct. On the one hand, only the data collector can decide how the data is collected.
On the other hand, since the triplets are obtained indirectly from unstructured text by algorithms,
even the data collectors may not be able to manipulate the way of data collection. Therefore, it is
crucial to estimate P (Y |do(H,R, T )) from only the observation data. Our method is to first convert
P (Y |do(H,R, T )) into a statistical estimate. Then the statistical estimate can be obtained from the
observation data.

The backdoor adjustment enables us to achieve it (Pearl, 2009b). The variables {ZH , ZR, ZT }
satisfy the backdoor criterion because they blocks all the backdoor paths from variables {H,R, T}
to variable Y . Then P (Y = y|do(H = h,R = r, T = t)) can be obtained with backdoor adjustment
as follows:

P (Y = y|do(H = h,R = r, T = t)) =
∑

zh∈ZH ,zr∈ZR,zt∈ZT

P (y|h, r, t, zh, zr, zt)P (zh, zr, zt)

Thus, we can first estimate P (y|h, r, t, zh, zr, zt) from the observation data, which is feasible. Then
we compute P (y|do(h, r, t)) by backdoor adjustment formula. P (y|h, r, t, zh, zr, zt) evaluates that
given a triplet (h, r, t) and the confounders (zh, zr, zt). We first define the confounders (zh, zr, zt).
The confounders is reflected in the observation data, so they are functions of a 3rd-order binary
tensor X . We define two types of confounders as follows:
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1. Artificially designed confounders:

zh = ln(1T vec(Xh,:,:)) = ln(|{(h0, r0, t0) ∈ D|h0 = h}|) = ln(d(h))

zr = ln(1T vec(X:,r,:)) = ln(|{(h0, r0, t0) ∈ D|r0 = r}|) = ln(d(r))

zt = ln(1T vec(X:,:,t)) = ln(|{(h0, r0, t0) ∈ D|t0 = t}|) = ln(d(t))

where 1 is a vector of appropriate size whose elements are all 1 and vec(·) is an operation that
expands a tensor into a vector. We define d(h)/d(r)/d(t) as the popularity of a head entity h/a
relation r/a tail entity t. The logarithmic function is to prevent the case where d(h)/d(r)/d(t) is
too large. The computational complexity of zh/zr/zt is O(1) because we can compute the value
of zh/zr/zt in advance.

2. Learnable confounders: zh = qH(Xh,:,:), zr = qR(X:,r,:),zt = qT (X:,:,t)

where qH(·)/qR(·)/qT (·) can be a L-layer neural network. We implement qH(·) as a one-layer
neural network for efficiency, i.e. qH(Xh,:,:) = W T

Hvec(Xh,:,:) + bH , where WH is the weight
matrix and bH is the bias vector. qR(·) and qT (·) are similar to qH(·). Then the computational
complexity of zh/zr/zt is O(d(h))/O(d(r))/O(d(t)).

Let f(h, r, t) be a scoring function of a traditional KGC model. We define P (y|h, r, t, zh, zr, zt) as

P (y|h, r, t, zh, zr, zt) ∝ g(h, r, t, zh, zr, zt) = g(f(h, r, t), zh, zr, zt)

=f(h, r, t) + αhzh + αrzr + αtzt

where αh, αr and αt are hyper-parameters to control the weight of confounders. Since
P (y|h, r, t, zh, zr, zt) is used to rank tail entities, we do not need to normalize P (y|h, r, t, zh, zr, zt)
to make it a rigorous probability function. In principle, g(·) can be any function, we implement g(·)
as the addition of f(h, r, t) and αhzh + αrzr + αtzt for simplicity. g(h, r, t, zh, zr, zt) can be
seen as the new scoring function from the old scoring function f(h, r, t). If αh = αr = αt = 0,
g(h, r, t, zh, zr, zt) reduces to the traditional scoring function f(h, r, t).

Now we can train a model to get g(h, r, t, zh, zr, zt). We use the multi-class loss function as in
(Lacroix et al., 2018). For a training triplet (h, r, t), our loss function is

ℓ(g(h, r, t, zh, zr, zt)) =− g(h, r, t, zh, zr, zt) + log(

|E|∑
t′=1

exp(g(h, r, t
′
, zh, zr, z

′

t)))

where {zh, zr, z
′

t} is the value of confounding variables corresponding to the triplet (h, r, t
′
).

After getting g(h, r, t, zh, zr, zt), we can compute P (Y = y|do(H = h,R = r, T = t)) by back-
door adjustment:

y =P (Y = y|do(H = h,R = r, T = t))

=
∑

zh∈ZH ,zr∈ZR,zt∈ZT

P (y|h, r, t, zh, zr, zt)P (zh, zr, zt)

∝
∑

zh∈ZH ,zr∈ZR,zt∈ZT

g(h, r, t, zh, zr, zt)P (zh, zr, zt)

=
∑

zh∈ZH ,zr∈ZR,zt∈ZT

(f(h, r, t) + αhzh + αrzr + αtzt)P (zh, zr, zt)

=f(h, r, t) +
∑

zh∈ZH ,zr∈ZR,zt∈ZT

(αhzh + αrzr + αtzt)P (zh, zr, zt)

Since
∑

zh∈ZH ,zr∈ZR,zt∈ZT
(αhzh + αrzr + αtzt)P (zh, zr, zt) is equal for all triplets (h, r, t), we

can use f(h, r, t) to surrogate P (Y = y|do(H = h,R = r, T = t)).

Our final result is easy, we only need to add an extra term αhzh+αrzr+αtzt to the traditional KGC
model f(h, r, t) in the training process and then get the deconfounded/causal KGC model f(h, r, t).
Our model is model-agnostic, which can be appilied to any traditional KGC model.

5



Under review as a conference paper at ICLR 2023

3.2 EVALUATION OF CAUSAL KGC MODELS

Traditional KGC models are trained on a set of true triplets and evaluated on holdout test triplets.
The ranking metrics, MRR and H@N, are often used to evaluate the KGC models. The definitions
of MRR and H@N are as follows:

MRR =
∑

(h,r,t)∈D
1

|D|
1

rank(h,r,t) , where rank(h, r, t) is the rank of tail entity t in the predicted list
for the query (h, r, ?). Higher MRR indicates better performance.

H@N =
∑

(h,r,t)∈D
1

|D| I(rank(h, r, t) ≤ N), where I(·) is the indicator function. H@N is the ratio
of the ranks that no more than N . Higher H@N indicates better performance.

However, causal KGC models present unique challenges for evaluation. Which test set should we
use to evaluate causal KGC models? If we evaluate the models on the observation test set, the result
gives a biased evaluation: it favours popular entities and relations. One solution is to evaluate on
a randomized test set. However, a randomized test set is often difficult to obtain. Another solution
is to evaluate the models on the observation test set with new evaluation metrics. Mohamed et al.
(2020) propose a new evaluation metric based on the popularity of entities and relations. Similar to
(Mohamed et al., 2020), we define a evaluation metric Metric(βh, βr, βt) as

Metric(βh, βr, βt) =
∑

(h,r,t)∈D

w(h, r, t)u(h, r, t)

where w(h, r, t) = d(h)βhd(r)βrd(t)βt∑
(h,r,t)∈D d(h)βhd(r)βrd(t)βt

,
∑

(h,r,t)∈D w(h, r, t) = 1, d(h)/d(r)/d(t) is the

popularity of h/r/t and u(h, r, t) = 1
rank(h,r,t) or u(h, r, t) = I(rank(h, r, t) ≤ N).

Let βh = βr = βt = 0, then Metric(βh, βr, βt) = Metric(0, 0, 0) =MRR or H@N. Thus,
Metric(βh, βr, βt) can be seen as a generalization of MRR or H@N. Let βh = −1, βr = 0, βt = 0,
then

Metric(βh, βr, βt) =Metric(−1, 0, 0) =
∑

(h,r,t)∈D

1/d(h)∑
(h,r,t)∈D 1/d(h)

u(h, r, t)

=
∑

h∈E,d(h)>0

1

|{h ∈ E|d(h) > 0}|
∑

(h0,r0,t0)∈D,h0=h

u(h, r0, t0)

d(h)

=
∑

h∈E,d(h)>0

v(h)

|{h ∈ E|d(h) > 0}|

where v(h) =
∑

(h0,r0,t0)∈D,h0=h
u(h,r0,t0)

d(h) . For each head entity h, Metric(−1, 0, 0) first com-
putes the mean of u(h, r0, t0), i.e., v(h). While popular head entities receive more u(h, r0, t0),
Metric(−1, 0, 0) treats all head entities equally, regardless of the popularity d(h). This can elim-
inate the influence of d(h). Metric(−1, 0, 0) then computes the mean of v(h) of all head entities.
Thus, Metric(−1, 0, 0) is to evaluate the average per-head-entity v(h).

Similarly, Metric(0,−1, 0)/Metric(0, 0,−1) is to evaluate the average per-relation/per-tail-
entity v(r)/v(t). Combining these three metrics, we evaluate causal KGC models with
Metric(−1,−1,−1), which simultaneously takes into account the popularity of head entities, rela-
tions and tail entities. For every triplet (h, r, t), we use 1/(d(h)d(r)d(t))∑

(h,r,t)∈D 1/(d(h)d(r)d(t)) to weight u(h, r, t).

3.3 A GROUP THEORY VIEW FOR KGC

The main feature of causal is invariance or symmetry (Arjovsky et al., 2020). Group theory is a
language to describe symmetry. Thus, we show a group theory view for KGC, which is equivalent
to the view of causal but further reveals the relationships between the causal graphs. With the group
theory view, different causal graphs can correspond to different subgroups of a symmetry group.

Let X = E × R × E , a KGC model is to find a scoring function f(x) that holds for all triplets
x ∈ X , i.e., the form of f(x) should invariant for all x ∈ X . We next show the invariance of
f(x) can be associated with the notations of groups. We define a group action γ of SX on X as
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γ(g, x) = g(x), where g ∈ SX , x ∈ X and SX is the the symmetry group of X . Then the orbit of
x ∈ X is SX · x = {γ(g, x)|g ∈ SX}, which is exactly equal to X . Thus, the form of f(x) should
invariant for all x ∈ SX · x. Now we have established the correspondence between f(x) and group
SX . We say a scoring function f(x) satisfies G invariance if the form of f(x) is invariant for all
x ∈ G ·x, where G is a subgroup of SX . Thus, traditional KGC models are to learn a SX invariance
scoring function. The causal graph in Figure 1(a) can correspond to a group SX .

If we have all the data, we can obviously learn the correct SX invariance scoring function f(x).
However, we only have part of the data, which may do not match the overall data due to data bias.
Thus, we should not treat all x ∈ SX · x equally. That is, the scoring function learned from data
should not satisfy SX invariance. So what kind of invariance should a scoring function have? We
can artificially select a subgroup G of SX . This is similar as the artificially designed confounders in
causal KGC models. Or we can learn a G from data, similar to the learnable confounders. Therefore,
different causal graphs can be seen as learning different subgroups of SX . Then we learn a G
invariance scoring function from the data. This can correspond to learning P (y|h, r, t, zh, zr, zt)
in causal KGC models. After we learn the G invariance scoring function, we can recover the SX

invariance scoring function by using the quotient group SX/G to act on g(x). This can correspond
to computing P (Y = y|do(H = h,R = r, T = t)).

In summary, we want to learn a SX invariance scoring function f(x). However, the biased data
only allows us to learn a G invariance scoring function g(x). In order to recover SX invariance, we
can use the quotient group SX/G to act on the G invariance scoring function g(x) to get the SX

invariance scoring function f(x).

4 RELATED WORK

Data bias refers to data that does not reflect the true distribution. Although the data bias problem has
been extensively studied in many machine learning fields, such as imbalanced classification problem
(Krawczyk, 2016) and data bias in recommendation systems (Chen et al., 2020), there are few works
considering data bias in KGs. Mohamed et al. (2020) show that benchmark datasets suffer from the
popularity bias and existing KGC models are biased towards popular entities and relations. Bonner
et al. (2022) show the existence of popularity bias of entities in biomedical KGs.

Causal inference techniques have been used to alleviate the data bias issue (Gao et al., 2022), includ-
ing SCMs and potential outcome framework. Under SCMs, data bias can be seen as confounders,
then backdoor adjustment (Zhang et al., 2021b) and frontdoor adjustment (Xu et al., 2021) are uti-
lized to eliminate the confounding effect. Based on the potential outcome framework, Schnabel
et al. (2016) propose the inverse propensity score (IPS) method, which aims to reweight the samples
by the chances that they receive the treatments.

5 EXPERIMENTS

We first introduce the experimental settings. Then we show the results of our causal KGC models
and compare with other models. Finally, we conduct ablation studies. Please see Appendix A.1 for
more experimental details.

5.1 EXPERIMENTAL SETTINGS

Datasets We evaluate the models on three popular KGC datasets, FB15k-237 (Toutanova et al.,
2015), WN18RR (Dettmers et al., 2018) and YAGO3-10 (Dettmers et al., 2018).

Models We use original TransE (Bordes et al., 2013), RotatE (Sun et al., 2018), DistMult (Yang
et al., 2014) and ComplEx (Toutanova et al., 2015) as baselines. We denote TransE with IPS (Schn-
abel et al., 2016) method as IPS-TransE. We denote TransE with our causal method as Causal-
TransE. We denote Causal-TransE with artificially designed confounders as Causal-TransE-1 and
TransE with learnable confounders as Causal-TransE-2. The notations of RotatE, DistMult and
ComplEx are similar to TransE.
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Table 1: Knowledge graph completion results on FB15k-237, WN18RR and YGAO3-10 test sets
with evaluation metrics Metric(-1, -1, -1).

FB15k-237 WN18RR YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE 0.279 0.168 0.509 0.224 0.061 0.568 0.303 0.205 0.480
IPS-TransE 0.307 0.210 0.512 0.279 0.078 0.566 0.299 0.196 0.498
Causal-TransE-1 0.283 0.166 0.514 0.227 0.062 0.565 0.307 0.207 0.488
Causal-TransE-2 0.285 0.175 0.507 0.225 0.058 0.559 0.303 0.203 0.484

RotatE 0.274 0.177 0.477 0.514 0.479 0.581 0.330 0.237 0.496
IPS-RotatE 0.281 0.191 0.470 0.502 0.475 0.553 0.260 0.202 0.385
Causal-RotatE-1 0.288 0.186 0.493 0.525 0.487 0.603 0.364 0.282 0.529
Causal-RotatE-2 0.280 0.189 0.465 0.521 0.485 0.600 0.341 0.264 0.496

DistMult 0.302 0.195 0.514 0.521 0.478 0.607 0.362 0.284 0.535
IPS-DistMult 0.304 0.208 0.501 0.522 0.480 0.611 0.328 0.270 0.445
Causal-DistMult-1 0.312 0.206 0.533 0.523 0.478 0.617 0.382 0.295 0.550
Causal-DistMult-2 0.325 0.217 0.553 0.521 0.477 0.608 0.362 0.284 0.537

ComplEx 0.307 0.204 0.517 0.535 0.493 0.619 0.370 0.278 0.573
IPS-ComplEx 0.307 0.205 0.511 0.532 0.488 0.623 0.335 0.263 0.473
Causal-ComplEx-1 0.330 0.223 0.555 0.535 0.493 0.617 0.386 0.292 0.586
Causal-ComplEx-2 0.323 0.220 0.541 0.532 0.491 0.611 0.375 0.286 0.567

Evaluation Metrics We use MRR(-1,-1,-1) and H@N(-1,-1,-1) as evaluation metrics and choose
the hyper-parameters with the best MRR(-1,-1,-1) on the validation set.

5.2 RESULTS

The results show that our causal KGC models achieve improvement on different datasets, different
models and different evaluation metrics. This demonstrates the effectiveness of our causal KGC
models. Models with artificially designed confounders overall is better than models with learnable
confounders. The reason is that models with learnable confounders are more difficult to optimize.

Our models are better than the IPS method. IPS method do not achieve consistent performance
due to the difficulty of estimating propensity score. The improvement of our causal KGC models
is significant on FB15k-237 dataset and YAGO3-10 dataset, and is little on WN18RR dataset. The
reason is that the degree of data bias on WN18RR dataset, as shown in Table 4.

5.3 ABLATION STUDIES

We conduct ablation studies to analyze which of the confounders {ZH , ZR, ZT } influences the
models most. We use the models with αh = αr = αt = 0 as baselines. We train models with only
one of the hyper-parameters {αh, αr, αt}. We also train models that use fewer hyper-parameters
by setting αh = αt and αh = αr = αt. All experiments are trained on FB15k-237 dataset with
ComplEx model. See Table 2 for the results. Since Zh and Zt are similar, one is a confounder of
head entities and the other one is a confounder of tail entities, we set αh = αt.

The results show that ZT influences models most, ZH and ZR influence models little. The reason
is that KGC is formulated as predicting the tail entities. The performance of the models have no
obvious attenuation if we set αh = αt or αh = αr = αt. Since we do not search all hyper-
parameters combinations for models with hyper-parameters {αh, αr, αt}, the models may not be
performing optimally. Thus, we can reduce the computation by using fewer hyper-parameters.
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Table 2: The results on FB15k-237 datasets with different hyper-parameters.

Causal-ComplEx-1 Causal-ComplEx-2

MRR H@1 H@10 MRR H@1 H@10

αh = 0, αr = 0, αt = 0 0.307 0.204 0.517 0.307 0.204 0.517
αh ̸= 0, αr = 0, αt = 0 0.308 0.210 0.519 0.307 0.204 0.517
αh = 0, αr ̸= 0, αt = 0 0.308 0.211 0.528 0.308 0.211 0.528
αh = 0, αr = 0, αt ̸= 0 0.333 0.227 0.553 0.327 0.218 0.558
αh ̸= 0, αr ̸= 0, αt ̸= 0 0.330 0.223 0.555 0.323 0.220 0.541

αh = αt 0.327 0.222 0.551 0.326 0.222 0.558
αh = αr = αt 0.322 0.216 0.553 0.328 0.218 0.557

6 CONCLUSION

Existing KGC models only consider correlation in the data and ignore causality, which leads to weak
interpretability of the models and data bias. In this paper, we propose causal KGC models to allevi-
ate the issues by leveraging causal inference framework. Our models are intuitive and interpretable
by utilizing causal graphs, controllable by using intervention techniques and model-agnostic. Exper-
imental results show that our causal KGC models achieve better performance than traditional KGC
models. Some research directions on how to apply cause inference to KGC deserve further thought.

We suppose that the confounders {ZH , ZR, ZT } in the causal graph of Figure 1(b) affect {H,R, T}
individually. Confounders that affect at least two of {H,R, T} at the same time or other types of
confounders are worth considering. In the design of learnable confounders, we let qH(·), qR(·) and
qT (·) to be shallow one-layer neural networks, deeper neural networks are worth exploring. We
use backdoor adjustment to get our causal KGC models, how to use frontdoor adjustment in KGC
models is also worth exploring.

The view of group theory gives us a different view of KGC. Since group theory has been widely
studied and applied, it is worth considering how to apply group theory well to KGC.

Counterfactual reasoning is another technique of causal inference, which can be used to augment
KG data. We can first construct a counterfactual world, and then collect the missing data via coun-
terfactual reasoning.

Besides accuracy, KGC models should also consider interpretable, controllability, robustness and so
on. Causal inference can help us build a more trustworthy model.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

Datasets We evaluate our models on three popular knowledge graph completion datasets,
WN18RR Dettmers et al. (2018), FB15k-237 Toutanova et al. (2015) and YAGO3-10 Dettmers
et al. (2018). WN18RR is a subset of WN18, with inverse relations removed. WN18 is extracted
from WordNet, a database containing lexical relations between words. FB15k-237 is a subset of
FB15k, with inverse relations removed. FB15k is extracted from Freebase, a large database of real
world facts. YAGO3-10 is a subset of YAGO3 that only contains entities with at least 10 relations.
The statistics of the datasets are shown in Table 3.

Table 3: The statistics of the datasets.

Dataset #entity #relation #training #validation #test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YGAO3-10 123,188 37 1,079,040 5,000 5,000

Data Bias in Datasets We use the standard deviation of d(h) to measure the data bias of h in the
dataset D, denote as ch(D). Denote the training set as D1, validation set as D2, and test set as D3.
The data bias of WN18RR, FB15k-237 and YAGO3-10 datasets is shown in Table 4.

Table 4: The data bias in datasets

Dataset ch(D1) cr(D1) ct(D1) ch(D2) cr(D2) ct(D2) ch(D3) cr(D3) ct(D3)

WN18RR 8.043 11,711 8.043 0.733 408 0.733 0.789 421 0.789
FB15k-237 111.2 2,173 111.2 10.06 164 10.06 11.32 192 11.32
YGAO3-10 183.8 78,634 183.8 3.321 383 3.321 3.224 370 3.224

Hyper-parameters We add the N3 regularization (Lacroix et al., 2018) to the loss function and
let the regularization coefficient be λ. We set the batch size to 1024, epoch to 50 and embed-
ding dimension to 2048 for all models. We use Adam Kingma & Ba (2014) with exponential
decay as the optimizer. We search the learning rate in {0.001, 0.003, 0.005, 0.01}, decay rate in
{0.9, 0.93, 0.95, 1.0}, β1, β2, β3 in {0.1, 0.3, 0.5, 0.7, 0.9}, λ in {0.0, 0.001, 0.003, 0.01, 0.03}. We
first set β1 = β2 = β3 = λ = 0 and search the learning rate and decay rate. For WN18RR dataset,
we set learning rate to 0.01 and decay rate to 0.9 for all models. For FB15k-237 dataset, we set
learning rate to 0.005 and decay rate to 0.93 for all models. For YAGO3-10 dataset, we set learning
rate to 0.003 and decay rate to 0.9 for all models.

Learnable Confounders We design the learnable confounders zh = qH(Xh,:,:) =
W T

Hvec(Xh,:,:) + bH , zr = qR(X:,r,:) = W T
R vec(X:,r,:) + bR and zt = qT (X:,:,t) =

W T
T vec(X:,:,t) + bT . The number of parameters of WH/WT is the product of the number of

entities and the number of relations. The number of parameters of WR is the square of the number
of entities, which is too large for large datasets. Thus, we use a weight sharing method to reduce the
number of parameters to a reasonable size. The number of parameters of bH/bR/bT is 1.
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