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Abstract

Vision and diverse languages are important information sources in our living world.1

A model that understands multi-modalities and multi-languages can be applied to2

a wider range of real-life scenarios. To build such a multimodal and multilingual3

model, existing works try to ensemble vision-language data from multiple lan-4

guages in pre-training. However, due to the large number of languages, these works5

often require huge computing resources and cannot be flexibly extended to new6

languages. In this work, we propose a MultiLingual Acquisition (MLA) frame-7

work that can easily empower a monolingual Vision-Language Pre-training (VLP)8

model with multilingual capability. Specifically, we design a lightweight language9

acquisition encoder based on state-of-the-art monolingual VLP models. We further10

propose a two-stage training strategy to optimize the language acquisition encoder,11

namely the Native Language Transfer stage and the Language Exposure stage.12

With much less multilingual training data and computing resources, our model13

achieves state-of-the-art performance on multilingual image-text and video-text14

retrieval benchmarks.15

1 Introduction16

En

DeFr

Cs 

Zh

Ja ImageCs En

Fr De

Zh

Ja

Ko

(a) Multilingual Vision-Language Pre-training (b) MultiLingual Acquisition

Text DataImage Data Monolingual Vision-Language Pre-training

Image

Figure 1: Comparison of data usage between M-
VLP and MLA. The size of a circle reflects the
amount of training data.

We live in a multimodal and multilingual world.17

The information we receive in our daily lives18

may come from different modalities and lan-19

guages. Therefore, building multimodal and20

multilingual models to effectively understand21

such information has attracted much research22

attention [12, 36, 20, 3]. Recently, Multilin-23

gual Vision-Language Pre-training (M-VLP)24

achieves convincing performance in various25

cross-lingual cross-modal tasks such as multilin-26

gual image-text retrieval [27, 42, 11, 15, 17] and27

multimodal machine translation [34]. As shown28

in Figure 1(a), M-VLP models handle multiple29

languages and modalities simultaneously during pre-training. Despite their successes, M-VLP mod-30

els suffer from two problems. First, pre-training on vision and multilingual data consumes huge31

computing resources. For example, the state-of-the-art M-VLP model MURAL [17] is pre-trained on32

128 Cloud TPUv3 for four days. It could support multimodal tasks on 100+ languages. However,33

considering there are 6,900+ languages worldwide [42], building such a single model to handle all34

languages will be highly expensive. Second, M-VLP models cannot be flexibly extended to new35

languages. Additional training is required for M-VLP models to achieve satisfactory performance36

on a new language. However, this training process will cause performance degeneration of M-VLP37
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models on the original languages due to the limited model capacity. For example, the limited model38

capacity even results in M-VLP models performing worse than their monolingual counterparts on39

English [27, 42].40

To build multimodal and multilingual models with low-cost and high-flexibility, we refer to our41

human learning habits when acquiring new languages. We humans normally learn our native language42

during childhood and practice it through interactions with the multimodal living environments. When43

learning a new language, we humans initially tend to align it with the native language, as we can44

easily map words in the native language to real-world objects and concepts. After having a certain45

language foundation, we could further master it by interacting with the environment directly using46

the new language. This is known as the language exposure [5]. The whole learning process rarely47

degrades our native language capability.48

Inspired by this, we propose a new framework, MultiLingual Acquisition (MLA), which constructs49

multimodal and multilingual models based on monolingual VLPs. The topology of the MLA-based50

multimodal and multilingual model is illustrated in Figure 1(b). Unlike M-VLPs, which handle data51

from multiple languages and modalities in a single model, MLA empowers monolingual VLPs with52

multilingual capability using much less training data through a language acquisition encoder. The53

language acquisition encoder is realized by inserting our proposed lightweight language acquirers54

into the pre-trained monolingual encoder of the VLP model. During training, original parameters in55

the pre-trained monolingual encoder are fixed, only multi-lingual embeddings and language acquirers56

for each new language are optimized. Following the human learning habits, we propose a two-stage57

training strategy to train the language acquisition encoder. In the Native Language Transfer (NLT)58

stage, the model is trained to establish the correspondence between the new languages with the59

native language. In the Language Exposure (LE) stage, the model is optimized to build cross-modal60

alignment between new languages and images. We apply our proposed MLA to the monolingual61

VLP model CLIP [30] and achieve state-of-the-art results on both multilingual image-text and62

video-text retrieval benchmarks with much less training data and computing resources. Ablation63

studies demonstrate the effectiveness of our training strategy. Owing to the independence merit of64

the language acquirers, the MLA-based models can be easily extended to new languages without65

compromising the performance of their original languages.66

The main contributions of our work are as follows: 1) We propose a lightweight MultiLingual Acqui-67

sition (MLA) framework that can easily empower monolingual VLPs with multilingual capability. 2)68

We propose a two-stage training strategy to optimize the MLA-based models inspired by the language69

learning habits of humans. Ablation studies prove the effectiveness of the strategy. 3) We apply MLA70

to the monolingual VLP model CLIP and achieve the new state-of-the-art results on both multilingual71

image-text and video-text retrieval benchmarks with much less training data and parameters.72

2 Related Work73

Vision-Language Pre-training: There are increasing interest in building Vision-Language Pre-74

training (VLP) models. From the perspective of how to interact between vision and language75

modalities, existing models can be divided into two categories: single-stream and dual-stream76

models. The single-stream models perform interaction on image and text directly with a cross-77

modal transformer [7, 25, 21]. In contrast, the dual-stream models encode image and text with78

two independent encoders and optimize via simple objectives like image-text contrastive learning79

[30, 18, 41]. Compared with the single-stream models, the dual-stream models are more efficient to80

utilize noisy image-text data harvested from the web [16], and thus achieve better performance on81

downstream tasks. Meanwhile, the dual-stream models are more flexible for extension. Since the82

dual-stream models process images and text through independent encoders, we can fix the vision83

encoders and focus on extending the text encoders to support new languages. Therefore, we focus on84

empowering dual-stream VLPs with multilingual capability in this work.85

Multilingual Vision-Language Pre-training: To achieve both multilingual and multimodal capa-86

bility, many works try to learn the relationship between multiple languages and modalities simulta-87

neously through pre-training. M3P [27] introduces the multimodal code-switched training method88

to enhance multilingual transferability. UC2 [42] augments the English image-text data to other89

languages through machine translation and proposes fine-grained pre-training objectives to encourage90

alignment between image regions and multilingual tokens. More recently, MURAL [17] adopts91
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Figure 2: Model illustration: (a) The overview of MLA framework. (b) The structure of a language
acquirer

the dual-stream structure. It is pre-trained with image-text and text-text contrastive objectives on92

multilingual image-text pairs and translation pairs. M-VLP models significantly outperform previous93

non-pretraining models [12, 36, 20, 3] on multilingual image-text retrieval. Despite their success,94

these models typically consume huge computing resources and large-scale multilingual training data.95

Moreover, they fail to take full advantage of the cross-modal knowledge learnt in monolingual VLP,96

and building cross-modal cross-lingual representations from scratch can be very hard. In contrast, our97

MLA framework aims to empower VLP models with multilingual capability and it builds multimodal98

and multilingual models with much less data and computing cost.99

Multilingual Extension: Some works explore making pre-trained monolingual language models100

multilingual. Reimers et al. [31] extend sentence embeddings from monolingual to multilingual by101

Multilingual Knowledge Distillation (MKD). Artetxe et al. [2] extend monolingual models by training102

additional word embeddings . MAD-X [29] extends multilingual pre-training models to support103

low-resource languages through adapters [14]. By extending state-of-the-art pre-trained language104

models, these works have achieved impressive results in NLP tasks such as bitext retrieval [31],105

cross-lingual QA and NER [29, 31]. However, few works focus on making VLP models multilingual.106

Work in [28] is the first to extend single-stream VLP model OSCAR [25]. It adopts a similar107

strategy with MAD-X [29] that trains language adapters with Masked Language Modeling (MLM) for108

each language. During inference, it replaces the English language adapters with the target language109

adapters to achieve zero-shot cross-lingual transfer. However, it generalizes poorly on other languages110

since the MLM-based training strategy can only implicitly establish the correspondence between111

other languages and English, let alone vision correspondences. In contrast, MLA directly builds the112

connection of other languages with English and then with vision in the two-stage training strategy.113

Therefore, MLA achieves comparable results on other languages as on English in downstream tasks.114

3 Method115

The MultiLingual Acquisition (MLA) framework is proposed to empower a dual-stream monolingual116

VLP model with multilingual capability. We define the native language of a VLP as its pre-training117

language. In this paper, we choose CLIP-ViT-B [30] as the VLP model. It is pre-trained with 400M118

image-text pairs in English [30]. Note that MLA can also be applied to VLP models with different119

native languages.120

Since the state-of-the-art VLP models can project vision and native language into a shared multimodal121

space, we design a language acquisition encoder to process non-native languages. We then simulate122

the learning habits of human beings and propose a two-stage training strategy to optimize the language123

acquisition encoder. We first introduce the architecture of the MLA framework in Sec.3.1. Then, we124

describe our training strategy in Sec.3.2.125

3.1 Architecture126

Figure 2(a) illustrates the overview of the MLA framework, which consists of three modules: the127

pre-trained text encoder, the pre-trained vision encoder, and the language acquisition encoder.128
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Pre-trained Text Encoder. Given a sentence S in the native language, the corresponding sentence129

representation s = Φ(S; θΦ) is generated through the pre-trained text encoder Φ. To preserve the130

cross-model knowledge of VLP, θΦ is keep fixed during training. As shown in the top part of Figure131

2(a), the pre-trained text encoder contains a native embedding block and l transformer layers [35].132

The native embedding block first tokenizes S with byte pair encoding (BPE) [32]. Then, it converts133

words into embeddings ES = [e0=[SOS], e1, . . . , eM=[EOS]]. [SOS] and [EOS] are special tokens134

denoting the boundary of S. The word embeddings are then passed through the transformer layers:135

H0 = [e0=[SOS], e1, . . . , eM=[EOS]] + Epos (1)

Hi = TransformerLayer(Hi−1; θiΦ) (2)

where Hi = [hi
0, . . . , h

i
M ] is the hidden state of the layer i. θiΦ denotes the parameters of the layer i.136

Epos is the positional encoding. Note that the causal self-attention mask is used in the transformer137

layers [30]. The last hidden state of the [EOS] token is chosen to generate the sentence representation:138

s = Wah
l
M (3)

where s is the sentence representation of S, and Wa denotes a linear projection.139

Pre-trained Vision Encoder. We extract the representation v = Ψ(V ; θΨ) of an image V with140

the pre-trained vision encoder Ψ. Similar with the pre-trained text encoder, θΨ is also frozen. The141

pre-trained vision encoder is implemented as a Vision Transformer [9]. As shown in the bottom part142

of Figure 2(a), it consists of a image embedding block and l transformer layers. Given an image V ,143

the image embedding block first divides V into patches V ′ = [v′1, . . . , v
′
N ] following [9]. Then, they144

are linearly projected into patch embeddings Ep = [e[CLASS],Wpv
′
1, . . . ,Wpv

′
N ], where e[CLASS] is a145

special embedding for the whole image and Wp is the linear projection. The patch embeddings are146

then fed into transformer layers:147

Z0 = [e[CLASS],Wpv
′
1, . . . ,Wpv

′
N ] + Epos (4)

Zi = TransformerLayer(Zi−1; θ
i
V ) (5)

where Zi = [zi0, . . . , z
i
N ] is the hidden state of the layer i. The last hidden state of the [CLASS]148

embedding zl0 is selected to produce the representation of image V :149

v = Wbz
l
0 (6)

where v is the image representation of V , and Wb denotes a linear projection.150

Language Acquisition Encoder. As shown in the middle part of Figure 2(a), the language ac-151

quisition encoder is built upon the pre-trained text encoder. Suppose T is a sentence written in152

a non-native language L, we get the representation of T through language acquisition encoder153

t = Φ′(T ; θΦ, θemb, θL), where θΦ are fixed parameters of the pre-trained text encoder, θemb154

refers to a shared non-native embedding block and θL represents specialized language acquirers155

for language L. Non-native sentence T is first tokenized and processed into word embeddings156

ET = [u0=[SOS], . . . , uM=[EOS]] through the non-native embedding block. The word embeddings are157

then encoded through the pre-trained transformer layers and language acquirers:158

X0 = [Weu0=[SOS],Weu1, . . . ,Weum=[EOS]] + Epos (7)

Hi = TransformerLayer(Xi−1; θiΦ) (8)

Xi = LA(Hi; θiL) (9)

where Xi = [xi
0, . . . , x

i
m] is the hidden state of the layer i. We is a linear projection to keep159

dimension consistency. θiL denotes the parameters of the i-th language acquirer for language L.160

As shown in Figure 2(b), the language acquirer is implemented as a bottleneck MLP with residual161

connection [13]:162

LA(X) = WupperReLU(WdownX) +X (10)

Similar with the pre-trained text encoder, the last hidden state of the [EOS] token is projected into163

the sentence representation t:164

t = Wax
l
m (11)

Eq.11 shares the same linear projection Wa with Eq.3. The main advantage of the language acquisition165

encoder is that it can extend the VLP models to support new languages without influencing the existing166

languages, as it handles different languages with independent language acquirers.167
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3.2 Training Strategy168

To simulate the language learning habits of humans, we optimize the model in two stages: the Native169

Language Transfer (NLT) stage and the Language Exposure (LE) stage.170

Native Language Transfer. When learning a new language, we humans initially tend to align it171

with the native language. To simulate this learning phase, we align the non-native representations to172

the native representations during the Native Language Transfer (NLT) stage. Specifically, suppose173

{(S1, T1), ..., (Sn, Tn)} are translation pairs, where Si is in the native language, and Ti is in a174

non-native language L. The objective in the NLT stage is minimizing the Mean Square Error175

(MSE) between the native representation si = Φ(Si; θΦ) and the non-native representation ti =176

Φ′(Ti; θΦ, θL, θemb):177

LNLT =
1

B

B∑
i=1

∥si − ti∥2 (12)

where B is the batch size. Note that θΦ is loaded from the VLP model and is kept frozen. θL is trained178

for non-native language L. θemb is shared among non-native languages.179

During the NLT stage, the non-native language correspondence with vision can be built by pivoting180

on the native language, since the correspondence between the native language and vision is well181

established through VLP.182

Language Exposure. After the NLT stage, the model has built an implicit connection between183

non-native languages and vision. However, due to the existence of synonyms, two same words in184

the native language may correspond to different images. Thus, ambiguity may arise when learning185

non-native languages solely by relying on the native language. Actually, we can regard the language186

acquisition encoder after the NLT stage as a person with a certain language foundation. He/She has187

learned the basic usage of a language through native language teaching. To master it, he/she may188

practice the non-native language by interacting with the multimodal living environments. Inspired by189

this learning phase, we directly establish the cross-modal alignment between non-native languages190

and vision during the Language Exposure (LE) stage. Given image-text pairs {(V1, T1), ..., (Vn, Tn)}191

where Ti is in a non-native language L, the sentence representation ti = Φ
′
(Ti; θΦ, θL, θemb) should192

be closer to the aligned image representation vi = Ψ(Vi; θΨ), and away from the misaligned one193

vj = Ψ(Vj ; θΨ), j ̸= i. This can be achieved by performing contrastive learning between non-native194

languages and images. For a non-native sentence Ti, we treat the corresponding image Vi as a positive195

sample, and other images in the same batch Vj , j ̸= i as negative samples. Vice versa for images.196

The objective in the LE stage is minimizing the NCE loss defined as follows:197

LLE =
1

2
(Lv2t + Lt2v) (13)

Lv2t = − 1

B

B∑
i=1

log
exp(sim(vi, ti)/τ)∑N

k=1 exp(sim(vi, tk)/τ)
(14)

Lt2v = − 1

B

B∑
i=1

log
exp(sim(vi, ti)/τ)∑N

k=1 exp(sim(vk, ti)/τ)
(15)

where B is the batch size. sim(x,y) = x⊤y
∥x∥∥y∥ is the cosine similarity between two vectors. τ is198

a temperature hyper-parameter to scale the logits. Note that though the image-to-text loss Lv2t is199

optimized, the pre-trained vision encoder is kept frozen during training. Similar to NLT, the trainable200

parameters in LE come from the language acquirers and the non-native embedding block.201

4 Experiments202

4.1 Dataset Description203

We train our model with the Conceptual Captions (CC) dataset [33] and two translation enhanced204

versions of the CC [42, 4]. We use Multi30K [10], MSCOCO [6, 24, 38] and XTD [1] for multilingual205

image-text retrieval evaluation, and MSRVTT [37, 15] for multilingual video-text retrieval evaluation.206

Conceptual Captions (CC) [33] contains 3.3 million image-text pairs in English crawled from207
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the Web.1 We also randomly select 300K image-text pairs denoted as CC300K for training our208

model to show the low-cost merit of MLA. For multilingual sentences, we leverage two translation209

augmented CC datasets: (1) CC6L [42] that translates all English captions of the CC into 5 languages210

(German(de), French(fr), Czech(cs), Chinese(zh));2 and (2) CC69L [4] that contains 27K captions in211

each of the 68 languages translated from English.3 Considering the languages of the downstream212

datasets, we train the model with CC6L for multilingual image-text retrieval, and with CC69L for213

multilingual video-text retrieval.214

Multi30K [10] is built upon Flickr30K [39]. The English(en) captions are manually translated into215

German(de), French(fr) and Czech(cs). It contains 31K images paired with 5 captions per image in216

English and German, and 1 caption in French and Czech. We use the standard train, dev and test217

splits defined in [39].218

MSCOCO [6] contains 123K images with 5 English captions per image. [38] annotates 5 Japanese219

captions per image, and [24] extends MSCOCO with Chinese captions for 20K images. We follow220

the standard train, dev and test splits for English and Japanese as in [19]. For Chinese, we can only221

perform zero-shot evaluation on the test split defined in [24], as the full splits have overlaps with222

English and Japanese splits.223

XTD [1] provides captions in 11 languages (English(en), German(de), French(fr), Chinese(zh),224

Japanese(ja), Italian(it), Spanish(es), Russian(ru), Polish(pl), Turkish(tr), Korean(ko)) for 1K225

MSCOCO images. Except for Japanese, all non-English captions are translated from the English226

caption directly. We use this dataset for zero-shot image-text retrieval evaluation only.227

MSRVTT [37] is a video caption dataset with 10K videos, where each video is annotated with 20228

English captions. Huang et al.[15] translates the English captions into 8 languages (German(de),229

French(fr), Russian(ru), Spanish(es), Czech(cz), Swahili(sw), Chinese(zh) and Vietnamese(vi)) via230

machine translation service. We follow the standard train/dev splits in [37], and evaluate on the 1K231

test split as described in [40].232

4.2 Implementation Details233

We apply MLA on two VLP models: CLIP-ViT-B-32 and CLIP-ViT-B-16 [30], denoted as MLACLIP234

and MLACLIP16 respectively. The hidden dimension of the language acquirers is set to 256, and235

all language acquirers for each non-native language cost only 3.14 MB parameters. The non-native236

embedding matrix is initialized with M-BERT [8]. It costs 92.2 MB and shared with all non-native237

languages. We train two separate models for multilingual image-text retrieval and video-text retrieval.238

For the image model, we train with CC6L [42]. For the video model, we use multilingual captions239

from CC69L [4]. For both models, we optimize multiple language acquirers iteratively with a batch240

size of 128. The NLT stage performs 117,150 steps with a learning rate of 1e-4, and the LE stage241

performs 11,715 steps with a learning rate of 3e-6. The temperature τ is set to 0.01. For both stages,242

we use the Adam optimizer [22] with a linear warm-up for the first 10% of steps. The whole training243

process takes about 12 hours to converge on 1 Nvidia V100 GPU.244

4.3 Evaluation on Multilingual Image-Text Retrieval245

In multilingual image-text retrieval, models are given a sentence in a certain language to find the most246

semantically relevant image from an image database and vice versa. We compare our model with247

state-of-the-art multilingual vision-language pre-training methods under three settings: (1) Zero-shot:248

we directly evaluate the model without fine-tuning on downstream datasets. (2) Fine-tune on English:249

we first fine-tune the VLP model on downstream English data. We then insert the language acquirers250

and non-native embedding block into the fine-tuned model and evaluate on other languages directly.251

(3) Fine-tune on All: after (2), we fine-tune the language acquirers and non-native embedding block252

on the downstream dataset and freeze other parts of the model. Following previous works [27, 42, 17],253

we report Average Recall (AR), which is the average score over Recall@1, Recall@5, and Recall@10254

on two retrieval directions (image→text, text→image). The results are shown in Table 1. Also, the255

comparison of computing costs and parameters can be found in Table 2.256

1We can only access ∼2.5 million images due to some broken URLs.
2Dataset released at https://github.com/zmykevin/UC2, under MIT license.
3Released at https://github.com/FreddeFrallan/Multilingual-CLIP, under MIT license. We

remove captions of unaccessible images, leaving ∼20K captions for each language.
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Table 1: Multilingual image-text retrieval results on Multi30K and MSCOCO. TrTrain: Translate-
train, FT-En: Fine-tune on English, FT-All: Fine-tune on All. †: Models trained with publicly
unavailable datasets. ‡: Models fine-tuned on COCO-CN [24], which has an overlap train split with
the test split of English and Japanese. Best results are in bold and second best are underlined.

Method Training Data Multi30K MSCOCO 1K MSCOCO 5K

en de fr cs en ja en ja
Z

er
o-

sh
ot

Unicoder-VL CC3M (English only) 72.0 - - - 63.7 - - -
ALIGN AT-en (English only) 84.3 - - - 80.0 - 60.6 -
M3P CC3M+Wiki 57.9 36.8 27.1 20.4 63.1 33.3 - -
UC2 TrTrain(CC3M) 66.6 62.5 60.4 55.1 70.9 62.3 - -
MKDCLIP TrTrain(CC300k) 82.1 77.1 75.2 72.3 78.5 73.6 - -
MURAL TrTrain(CC12M)+EOBT 80.9 76.0 75.7 68.2 78.1 72.5 58.0 49.7
MURAL† AT+MBT 82.4 76.2 75.0 64.6 79.2 73.4 59.5 54.4
MLACLIP TrTrain(CC300K) 84.4 78.7 77.7 70.8 79.4 74.9 60.5 54.1
MLACLIP16 TrTrain(CC300K) 86.4 80.8 80.9 72.9 80.9 76.7 62.6 57.0

FT
-E

n

M3P CC3M+Wiki 87.4 82.1 67.3 65.0 88.6 56.0 - -
UC2 TrTrain(CC3M) 87.2 83.8 77.6 74.2 88.1 71.7 - -
MLACLIP TrTrain(CC300K) 92.0 82.6 85.1 76.2 89.3 80.4 75.7 62.1
MLACLIP16 TrTrain(CC300K) 94.5 86.4 87.3 79.5 91.3 82.6 79.4 65.5

FT
-A

ll

M3P‡ CC3M+Wiki 87.7 82.7 73.9 72.2 88.7‡ 87.9‡ - -
UC2‡ TrTrain(CC3M) 88.2 84.5 83.9 81.2 88.1‡ 87.5‡ - -
MURAL TrTrain(CC12M)+EOBT 91.0 87.3 86.4 82.4 89.4 87.4 73.7 71.9
MURAL† AT+MBT 92.2 88.6 87.6 84.2 88.6 88.4 75.4 74.9
MLACLIP TrTrain(CC300K) 92.0 86.8 85.4 82.3 89.3 88.1 75.7 73.2
MLACLIP16 TrTrain(CC300K) 94.5 89.7 89.2 85.9 91.3 90.4 79.4 76.5

Table 2: Comparison of trainable parameters and
computing costs between MLA and M-VLPs.

Method Trainable Params Computing Costs

M3P 566 M 4×V100×7d
UC2 478 M 8×V100×4d
MURAL 300 M 128×TPUv3×4d

Ours (MLACLIP) 108 M 1×V100×0.5d

Under the Zero-shot setting, we observe that257

MLACLIP performs significantly better than258

state-of-the-art M-VLP models on English. This259

is because MLACLIP could completely maintain260

the strong English performance of CLIP. In con-261

trast, M-VLP models typically perform worse262

than their monolingual counterparts on English263

(M3P 57.9 vs. Unicoder-VL[23] 72.0, MURAL264

80.9 vs. ALIGN[18] 84.3). MLACLIP also outperforms M-VLP models on other languages. For265

example, MLACLIP achieves 78.7 average recall score on German, outperforming MURAL by266

2.7%. Note that the pre-training dataset of MURAL contains 12 million image-text pairs for each267

language, while MLACLIP only uses 300K training image-text pairs. It demonstrates that MLA is a268

high-data-efficient method to empower monolingual VLP models with multilingual capability. Under269

the Fine-tune on English setting, MLA shows strong cross-lingual transfer capability. Under the270

Fine-tune on All setting, MLACLIP performs slightly worse than MURAL which was pre-trained271

on publicly unavailable dataset AT+MBT [17]. We consider the reason is that MURAL has more272

trainable parameters than MLACLIP (300M vs 108M, as shown in Table 2) for fine-tuning, which273

makes it easier to fit the downstream datasets with a certain scale such as Multi30K and MSCOCO.274

MLACLIP16 achieves state-of-the-art results on all languages under three settings. It indicates that if275

stronger VLP models such as ALIGN-L2 [18] or Florence [41] are provided, better performance on276

multilingual image-text retrieval could be reached through MLA.277

4.4 Evaluation on Multilingual Video-Text Retrieval278

In multilingual video-text retrieval, the model searches for the most semantically relevant videos279

given a text query in a certain language. Following [26], we first uniformly sample 12 frames from280

each video, and use the pre-trained vision encoder to extract representations for each frame. We then281

perform mean pooling over frame representations to get the video representation. We also evaluate282

the models under three settings as in Sec.4.3. We report the text→video Recall@1 score in Table283

3. Under Zero-shot setting, MLACLIP, which is trained on CC69L without using any video data,284

achieves comparable or even better results than the fine-tuning results of the state-of-the-art M-VLP285

model XLM-R-MMP [15] on several languages (de: 20.1 vs. 21.1; fr: 22.0 vs. 21.8; es: 20.2 vs.286

21.9). Under the Fine-tune on English and Fine-tune on All settings, MLACLIP also outperforms287

XLM-R-MMP significantly. We consider the convincing performance comes from two reasons: 1)288
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Table 3: Multilingual video-text retrieval results on MSRVTT. ZS: Zero-shot, FT-En: Fine-tune on
English, FT-All: Fine-tune on All.

Method en de fr cs zh ru vi sw es mean

Z
S Ours(MLACLIP w/o LE) 30.8 18.3 18.9 14.5 18.6 12.6 7.2 10.2 19.3 16.7

Ours(MLACLIP) 30.8 20.1 22.0 15.7 18.3 14.4 8.2 10.7 20.2 17.8

FT
-E

n XLM-R-MMP [15] 23.8 19.4 20.7 19.3 18.2 19.1 8.2 8.4 20.4 17.5
Ours(MLACLIP) 42.5 26.1 26.7 20.5 25.3 18.9 12.9 12.6 27.2 23.6

FT
-A

ll XLM-R-MMP [15] 23.1 21.1 21.8 20.7 20.0 20.5 10.9 14.4 21.9 19.4
Ours(MLACLIP) 42.5 33.1 34.5 30.5 31.6 28.9 16.9 24.3 33.5 30.6

CLIP is a strong VLP model that can generalize well on video data. 2) The proposed MLA framework289

can well transfer the open-domain knowledge learned by CLIP to other languages. These results290

suggest that MLA could maintain the open-domain capability of the VLP model which generalizes291

well on different downstream data.292

4.5 Ablation Studies293

A. Training Strategy294

Table 4: Ablation study on training strategy.
Row Stage one Stage two Multi30K MSCOCO 1K

NLT LE NLT LE de fr cs ja zh

1 ✓ 76.3 74.2 67.2 72.1 75.7
2 ✓ 68.2 67.7 58.6 65.9 71.7
3 ✓ ✓ 71.1 69.7 59.8 67.6 73.9
4 ✓ ✓ 78.7 77.7 70.8 74.9 78.5
5 ✓ ✓ ✓ 78.4 77.3 69.9 74.2 78.1

We conduct an ablation study in Table 4 to val-295

idate the effectiveness of the proposed MLA296

training strategy. For those settings with NLT297

and LE at the same stage, we add the loss of298

the two objectives together during training. By299

comparing row 1 to row 2&3, we observe that300

LE at stage one leads to poor performance. This301

indicates that aligning with the native language302

is more important for the VLP model to acquire new languages at an early stage. It is consistent with303

the learning habits of humans. By comparing row 1 and row 4, we see that LE at stage two could304

bring improvements on the new languages. Additionally, comparing row 4 and row 5 suggests that305

optimizing the model with NLT and LE together at stage two does not bring improvements.306

B. Language Acquirers and Embedding Initialization307

Table 5: Ablation study on language acquirers and
embedding initialization. LA: Language Acquirers,
EI: M-BERT Embedding Initialization

Methods Multi30K MSCOCO 1K
de fr cs ja zh

MLACLIP 78.7 77.7 70.8 74.9 78.5
MLACLIP w/o LA 76.1 74.9 65.7 70.3 76.5
MLACLIP w/o EI 77.9 76.2 69.4 74.6 78.1

In order to validate the effectiveness of the pro-308

posed Language Acquirers, we remove the lan-309

guage acquirers and the M-BERT embedding310

initialization from the model respectively and311

evaluate on zero-shot multilingual image-text312

retrieval. As shown in Table 5, the performance313

on all languages drops significantly without lan-314

guage acquirers. Meanwhile, initializing the315

embedding with M-BERT [8] only brings incre-316

mental improvements. It indicates that the language acquirers contribute most to the performance,317

and MLA does not depend much on the initialization of non-native embedding.318

C. Low-resource Languages319

Table 6: Low resource performance on image-
Korean retrieval.

Methods Data Training samples
100 / 200 / 600

1 UC2 Img-Txt 47.0 / 60.1 / 78.3
2 MLACLIP Txt-Txt 51.7 / 62.8 / 78.7
3 MLACLIP Both 56.7 / 66.9 / 80.1

Image-text pairs may be rare for low-resource320

languages. To explore the performance of MLA321

under this situation, we further simulate a low-322

resource scenario using XTD dataset. We fine-323

tune MLACLIP and UC2 (pre-trained on CC6L)324

with small amount of data from XTD in an un-325

seen language. We randomly sample 600 pairs for finetuning, and the remained 400 samples are326

evenly divided for validation and testing. Korean is chosen to perform simulation as its script and327

language family are not covered by CC6L. Experimental results in Table 6 show that MLA can328

achieve competitive results with very small amount of text-text pairs only (row 2), and adding329

image-text pairs brings further improvement (row 3). It demonstrates that MLA is still an attractive330

method for low-resource languages even without any image-text pairs.331
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D. Amount of Training Data332

We conduct experiments to control the numbers of image-text pairs used for each language.333

10K 30K 100K 300K 1M 3M
# of image-text pairs per language

55

60

65

70

75

M
ea

n 
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er
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ll
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Figure 3: Mean AR vs. number of image-text pairs
per language.

We train the models with CC6L and evaluate on334

MSCOCO 1K and Multi30K under the zero-shot335

setting. The corresponding mean AR over non-336

English languages (de, fr, cs, ja, zh) are drawn337

in Figure 3. We observe that MLA performs338

significantly better than MKD [31] in all cases.339

Note that when the amount of training data is340

small, the advantage of MLA is more obvious,341

which could outperform MKD even without the342

LE training stage. Additionally, when training343

with only 30K image-text pairs per language,344

MLA outperforms UC2, which is pre-trained345

with 3M pairs per language. MLA is thus a346

data-efficient method to build multilingual and347

multimodal models.348

E. Language Extensibility349

Multilingual models often encounter the need to support new languages that do not occur in the350

training stage. We conduct language extension experiments to compare MLACLIP with M-VLP351

model UC2 [42] on the XTD dataset [1]. XTD supports 11 languages, and 5 of them (en, de, fr, cs,352

zh, ja) are seen in the pre-training stage of UC2, while other 6 languages (it, es, ru, pl, tr, ko) are353

unseen. To make a fair comparison, we first train MLACLIP with the same data as UC2 and then train354

both of them on unseen languages with CC69L. The zero-shot image-text retrieval results on XTD355

are shown in Table 7. We observe a significant performance degeneration on the seen languages for356

UC2 when training solely with unseen languages (row 1 vs. row 2). Even keep training with the seen357

languages, the performance is still significantly reduced due to the limited model capacity (row 1 vs.358

row 3). In contrast, as MLA decoupled multiple languages through acquirers, the performance of the359

seen languages is rarely affected (row 4 vs. row 5) . This suggests that MLA framework can build360

multimodal multilingual models that are suitable for supporting increasing numbers of languages.

Table 7: Language extention experiments on XTD dataset.

Row Method Seen languages Unseen languages
en de fr zh ja it es ru pl tr ko

1 UC2 w/o unseen language training 71.8 67.5 68.4 61.9 51.5 - - - - -
2 UC2 w/ unseen language training 63.6 57.8 57.6 57.6 48.4 56.4 56.2 51.3 56.4 51.62 51.3
3 UC2 w/ all language training 65.2 59.3 59.7 60.1 50.5 57.7 56.5 50.9 55.3 53.2 50.2

4 MLACLIP w/o unseen language training 75.9 72.6 72.9 73.7 67.2 - - - - - -
5 MLACLIP w/ unseen language training 76.0 72.6 72.9 73.8 67.2 64.7 62.8 58.1 63.0 56.5 57.3

361

5 Conclusion and Limitations362

In this paper, we propose the MultiLingual Acquisition (MLA) framework that can empower mul-363

tilingual capability on monolingual Vision-Language Pre-training models with low-cost and high-364

flexibility. MLA injects language acquirers and a non-native embedding block into VLPs to support365

new languages. Inspired by the language learning habits of humans, we propose a two-stage training366

strategy to optimize the language acquirers and non-native embedding block. MLA applied on CLIP367

achieves state-of-the-art performances on multilingual image-text and video-text retrieval benchmarks368

with much less computing costs and training data. Extensive ablation studies demonstrate that MLA is369

a flexible, effective, and efficient method to empower multilingual capability on multimodal models.370

Though MLA has shown high performance in our experiments, it has one limitation that it learns371

multilingual representations at a coarse grained level. Therefore, our future works include exploring372

fine-grained alignment between different languages. Furthermore, the majority of our training data is373

automatically constructed through machine translation, so the ethical prejudice from the machine374

translation service may potentially affect the behavior of multilingual models produced by MLA.375

One way to mitigate such concern is to use human annotated or reviewed data for training.376
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[29] Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based458

framework for multi-task cross-lingual transfer. In 2020 Conference on Empirical Methods in459

Natural Language Processing (EMNLP), pages 7654–7673, 2020.460

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-461

wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya462

Sutskever. Learning transferable visual models from natural language supervision. In 38th463

International Conference on Machine Learning, volume 139, pages 8748–8763, 2021.464

[31] Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings multilingual465

using knowledge distillation. In 2020 Conference on Empirical Methods in Natural Language466

Processing (EMNLP), pages 4512–4525, 2020.467

[32] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words468

with subword units. In 54th Annual Meeting of the Association for Computational Linguistics469

(Volume 1: Long Papers), pages 1715–1725, 2016.470

[33] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A471

cleaned, hypernymed, image alt-text dataset for automatic image captioning. In 56th Annual472

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages473

2556–2565, 2018.474

11



[34] Yuqing Song, Shizhe Chen, Qin Jin, Wei Luo, Jun Xie, and Fei Huang. Product-oriented475

machine translation with cross-modal cross-lingual pre-training. In 29th ACM International476

Conference on Multimedia, 2021.477

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,478

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information479

processing systems, pages 5998–6008, 2017.480

[36] Jonatas Wehrmann, Douglas M Souza, Mauricio A Lopes, and Rodrigo C Barros. Language-481

agnostic visual-semantic embeddings. In IEEE/CVF International Conference on Computer482

Vision, pages 5804–5813, 2019.483

[37] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for484

bridging video and language. In IEEE Conference on Computer Vision and Pattern Recognition485

(CVPR), June 2016.486

[38] Yuya Yoshikawa, Yutaro Shigeto, and Akikazu Takeuchi. Stair captions: Constructing a487

large-scale japanese image caption dataset. In 55th Annual Meeting of the Association for488

Computational Linguistics (Volume 2: Short Papers), 2017.489

[39] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions490

to visual denotations: New similarity metrics for semantic inference over event descriptions.491

Transactions of the Association for Computational Linguistics, 2:67–78, 2014.492

[40] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint sequence fusion model for video493

question answering and retrieval. In European Conference on Computer Vision (ECCV), 2018.494

[41] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong495

Hu, Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for496

computer vision. arXiv preprint arXiv:2111.11432, 2021.497

[42] Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu, and Jingjing498

Liu. Uc2: Universal cross-lingual cross-modal vision-and-language pre-training. In IEEE/CVF499

Conference on Computer Vision and Pattern Recognition (CVPR), pages 4155–4165, June 2021.500

Checklist501

1. For all authors...502

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s503

contributions and scope? [Yes]504

(b) Did you describe the limitations of your work? [Yes] See Sec.5505

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec.5506

(d) Have you read the ethics review guidelines and ensured that your paper conforms to507

them? [Yes]508

2. If you are including theoretical results...509

(a) Did you state the full set of assumptions of all theoretical results? [N/A]510

(b) Did you include complete proofs of all theoretical results? [N/A]511

3. If you ran experiments...512

(a) Did you include the code, data, and instructions needed to reproduce the main experi-513

mental results (either in the supplemental material or as a URL)? [Yes] Please check514

the supplementary material for code and model.515

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they516

were chosen)? [Yes] See Sec.4.2517

(c) Did you report error bars (e.g., with respect to the random seed after running experi-518

ments multiple times)? [No]519

(d) Did you include the total amount of compute and the type of resources used (e.g., type520

of GPUs, internal cluster, or cloud provider)? [Yes] Sec.4.2521

12



4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...522

(a) If your work uses existing assets, did you cite the creators? [Yes]523

(b) Did you mention the license of the assets? [Yes] See the footnote of page 6.524

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]525

Please check the supplementary material for code and model.526

(d) Did you discuss whether and how consent was obtained from people whose data you’re527

using/curating? [Yes]528

(e) Did you discuss whether the data you are using/curating contains personally identifiable529

information or offensive content? [N/A]530

5. If you used crowdsourcing or conducted research with human subjects...531

(a) Did you include the full text of instructions given to participants and screenshots, if532

applicable? [N/A]533

(b) Did you describe any potential participant risks, with links to Institutional Review534

Board (IRB) approvals, if applicable? [N/A]535

(c) Did you include the estimated hourly wage paid to participants and the total amount536

spent on participant compensation? [N/A]537

13


	Introduction
	Related Work
	Method
	Architecture
	Training Strategy

	Experiments
	Dataset Description
	Implementation Details
	Evaluation on Multilingual Image-Text Retrieval
	Evaluation on Multilingual Video-Text Retrieval
	Ablation Studies

	Conclusion and Limitations

