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ABSTRACT

We consider the classical version of the optimal partial transport problem. Let µ
(with a mass of U ) and ν (with a mass of S) be two discrete mass distributions
with S ≤ U and let n be the total number of points in the supports of µ and ν.
For a parameter α ∈ [0, S], consider the minimum-cost transport plan σα that
transports a mass of α from ν to µ. An OT-profile captures the behavior of the
cost of σα as α varies from 0 to S. There is only limited work on OT-profile
and its mathematical properties (see Figalli (2010)). In this paper, we present a
novel framework to analyze the properties of the OT-profile and also present an
algorithm to compute it. When µ and ν are discrete mass distributions, we show
that the OT-profile is a piecewise-linear non-decreasing convex function. Let K
be the combinatorial complexity of this function, i.e., the number of line segments
required to represent the OT-profile. Our exact algorithm computes the OT-profile
in Õ(n2K) time. Given δ > 0, we also show that the algorithm by Lahn et al.
(2019) can be used to δ-approximate the OT-profile in O(n2/δ + n/δ2) time. This
approximation is a piecewise-linear function of a combinatorial complexity of
O(1/δ). An OT-profile is arguably more valuable than the OT-cost itself and can
be used within applications. Under a reasonable assumption of outliers, we also
show that the first derivative of the OT-profile sees a noticeable rise before any of
the mass from outliers is transported. By using this property, we get an improved
prediction accuracy for an outlier detection experiment. We also use this property
to predict labels and estimate the class priors within PU-Learning experiments.
Both these experiments are conducted on real datasets.

1 INTRODUCTION

Given two discrete probability distributions µ (with a mass of U = 1) with the set A as the support
and ν (with a mass of S = 1) with B as the support, where |A|+ |B| = n, in the optimal transport
problem, one wishes to compute the minimum cost plan to transport mass from ν to µ. When the
mass U ̸= S, the problem is called the unbalanced optimal transport. In the partial optimal transport
problem, given a parameter α ∈ [0, S], one wishes to determine the α-optimal partial transport cost
which is the minimum work required to transport a mass of α from ν to µ.

Owing to its strong statistical properties, the optimal transport cost (Villani (2003); Peyré & Cuturi
(2019)) is considered to be an attractive dissimilarity metric between probability distributions, and
has found numerous applications in areas involving GANs, image processing, (Arjovsky et al. (2017);
Liu et al. (2018); Balaji et al. (2020); Lin et al. (2021); Schmitz et al. (2018); Chen et al. (2019)),
variational inference (Ambrogioni et al. (2018)), econometrics (Galichon (2016)) and other areas of
natural science (Schiebinger et al. (2019); Sun et al. (2020)) and applied mathematics (Santambrogio
(2015)). Similarly the unbalanced and partial optimal transport has been used for various problems
that arise in machine learning, including GAN training, image processing, outlier detection and
Positive Unlabelled (PU-) learning (Yang & Uhler (2018); Bonneel & Coeurjolly (2019); Chapel
et al. (2020); Mukherjee et al. (2021)).

The exact optimal transport cost and plan, including in the unbalanced case, can be computed in
O(n3 log n) time. For a fixed value of α ∈ [0, S], one can easily reduce the problem of computing an
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α-optimal partial transport cost to solving an unbalanced instance of the optimal transport problem in
O(n3 log n) time: Create a catchment node r in the support of µ with a additional mass of (S − α).
Let A′ = A ∪ {r} be the new support of µ. Note that the total mass of A′ is U + S − α. For every
b ∈ B, add an edge (r, b) with a cost of 0. To find the α-optimal partial transport, one can simply
solve the unbalanced optimal transport between A′ and B using an exact solver in O(n3 log n) time.

Several algorithms approximate the optimal transport cost in O(n2poly{1/δ, log n}) time. Cuturi
(2013) introduced the Sinkhorn algorithm to solve the entropic regularized optimal transport problem
and showed that it can be used to approximate the optimal transport cost within an additive factor of
δ in Õ(n2/δ2) time; see also Abid & Gower (2018); Altschuler et al. (2017); Dvurechensky et al.
(2018); Lin et al. (2019); Guo et al. (2020); Xie et al. (2022). Since then, there has been significant
research on the design of additive approximation algorithms and several algorithms achieve an
execution time of Õ(n2/δ) (Lahn et al. (2019); Jambulapati et al. (2019); Quanrud (2019)). The state-
of-the-art execution time for approximating the Optimal Transport is achieved by the combinatorial
algorithm by Lahn et al. (2019) (LMR-algorithm). Their algorithm is based on adapting a classical
graph theory algorithm Gabow & Tarjan (1989) and runs in O(n2/δ + n/δ2) time. In this paper, we
study the classical version of the optimal partial transport problem which we introduce next.

We are given µ and ν whose supports are the point sets A and B, respectively. Let G(A ∪B,A×B)
be a complete bipartite graph with A ∪ B as the vertex set and A × B as its set of edges. For
any a ∈ A (resp. b ∈ B), we associate a mass of µa (resp. νb) such that the U =

∑
a∈A µa and

S =
∑

b∈B νb ≤ U 1. We refer to each point a ∈ A (resp. b ∈ B) to be a demand (resp. supply)
point and assume µa (resp. νb) to be a positive rational number. For any pair of points a ∈ A and
b ∈ B, we are given a non-negative cost c(a, b) ∈ R≥0 bounded by 1. The cost of transporting a
supply of mass β from b to a is βc(a, b). A transport plan is a function σ : A×B → R≥0 that assigns
a non-negative value to each edge of G indicating the quantity of supply transported along the edge.
The transport plan σ is such that the total supplies transported into (resp. from) any demand (resp.
supply) node a ∈ A (resp. b ∈ B) is bounded by the demand µa(resp. supply νb) at a (resp. b), i.e.,∑

b∈B σ(a, b) = µa (resp.
∑

a∈A σ(a, b) = νb). For any α ∈ [0, S], we say that any transport plan
σ is an α-partial transport plan if it transports a mass of α from ν to µ, i.e.,

∑
(a,b)∈A×B σ(a, b) = α.

The cost of the partial transport plan denoted by w(σ) is given by
∑

(a,b)∈A×B σ(a, b)c(a, b). In the
α-optimal partial transport problem, we are interested in finding a minimum-cost α-partial transport
plan which we denote by σ∗

α. We define the OT-profile to be a function ω : [0, S]→ R≥0 that maps a
value α ∈ [0, S] to the cost of w(σ∗

α) as α goes from 0 to S. For discrete distributions, we show that
this function is convex and piecewise-linear. Let K denote the combinatorial complexity of ω. Since,
OT profile is a piecewise-linear convex function, its first derivative is a non-decreasing step-function.
We denote this step function as Dω where Dω(α) denotes the first derivative of the OT-profile at α.

Next, we define the notion of a δ-approximate OT-profile. We say that a function ω : [0, S]→ R≥0

δ-approximates the OT-profile, if, for every α ∈ [0, S], ω(α) ≤ ω(α) ≤ ω(α) + Sδ. Recollect that,
when µ and ν are probability distributions, U = S = 1 and we get ω(α) ≤ ω(α) ≤ ω(α) + δ.
Therefore, ω(α) is an additive approximation of ω(α) and the function ω represents an additive
approximations of all optimal partial transports.

From a theoretical standpoint, there is limited understanding of the properties of an OT-profile and its
first derivative. In the seminal work by Figalli (2010), he considered the OT-profile of the optimal
partial transports for the case where the distributions are continuous and the ground distance c(u, v)
is ∥u− v∥2. To the best of our knowledge, we are not aware of any other work on OT-profile.

Our Contributions: In this paper, we present a new exact and an approximation algorithm to
compute the OT-profile. We also provide a novel framework to derive properties of the OT-profile
and its first derivative. Using this framework, we show how an OT-profile can be used to identify
points from the outlier class and the inlier class within the support of a distribution. All our results
apply for any arbitrary cost function c(·, ·).

• First, we present a simple primal-dual based combinatorial algorithm to compute the exact optimal
transport cost. Our algorithm is a generalization of the well-known Hungarian method for the

1We consider the generalized case for arbitrary and potentially unbalanced case. For the case where µ and ν
are probability distributions U = 1 and S = 1
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assignment problem. Interestingly, we show that this algorithm not only computes the OT-cost but
also traces the entire OT-profile (Lemma 2.1 and 3.1). Moreover, as the OT-profile is traced, certain
dual weights maintained by the algorithm capture the first derivative values (Lemma 3.4). By
tracking the evolution of these dual weights, we show that the first derivative Dω is a non-decreasing
step function (Lemma 3.4 and 3.2(b)) and therefore, ω is piecewise-linear convex function. Our
algorithm constructs ω and Dω in Õ(n2K) time; here K is the combinatorial complexity of ω, i.e.,
the number of line segments in ω.

• We further exploit these properties (Lemma 3.4 and 3.2) to show that the OT-profile can be used to
detect outliers. Recollect A and B are supports of the distributions µ and ν, respectively. Let A
consists of points from the ‘inlier’ class (with a total mass of U ) and B be a dataset that contains
both points B+ from the inlier class (with a total mass of α∗) and points B− from the outlier class
(with a total mass of S − α∗). Let w denote the minimum-cost required to transport mass from
B+ to A. We assume that outlier points in B− are separated from the inlier points of A as follows:
Assumption: For some small ε > 0 and a constant C > 1, every outlier point b ∈ B− is at a
distance at least Cw/ε from any inlier point in A. Under this assumption of the outlier points, we
show the following lemma
Lemma 1.1 (Outlier Lemma). (A) The (α∗ − ε)-optimal partial transport generated by our
algorithm will not transport any mass from the outlier points, and, (B) The first derivative values
Dω(α∗ − ε) ≤ w/ε and Dω(α∗ + ε) ≥ Cw/ε.

In other words, the first derivative function Dω will show a noticeable rise in an interval of width ε
around α∗. By detecting this rise, we can approximate the values α∗ and also mark the inliers and
outliers. The proof of Lemma 1.1 is presented in the Appendix (See Section 7.5).

• We prove that the current state-of-the-art algorithm (LMR-algorithm) to approximate the OT cost
can also generate a δ-approximation ω of the OT-profile. The combinatorial complexity of ω is only
⌈4/δ⌉. Thus, one can not only approximate the OT-cost but construct an approximate OT-profile in
O(n2/δ+n/δ2) time. However, ω is not a convex function, its first derivative may be very unstable
and therefore does not satisfy any approximate version of the Outlier Lemma (Lemma 1.1). Instead,
by drawing insights from our exact algorithm, we describe a non-decreasing step function Dω that
tracks the evolution of certain dual weights maintained by the LMR-algorithm (see Section 8.2.1).
We then show that Dω satisfies an approximate version of the Outlier Lemma (Lemma 8.3).

• We consider two applications where partial optimal transport has been successful and show how an
OT-profile can help in improving accuracy while reducing the need for data dependent parameters.
First, we conduct an outlier detection experiment that was proposed by Mukherjee et al. (2021).
In this, we are given two sets of MNIST images, one set is the inlier (digits 0-4) the other is the
mixture containing α∗-fraction of inliers (0-4) and (1 − α∗)-fraction outlier (5-9) data. We can
obtain α∗ by identifying a sharp rise in the first derivative function Dω. Then, we mark the free
vertices with respect to α∗-optimal partial transport as outliers. In contrast, the method proposed
in Mukherjee et al. (2021) depends on an additional data driven parameter that approximates the
average distance between inliers. We conduct a second set of experiments for PU-learning that
was proposed in Chapel et al. (2020). In this experiment, we are given a small set of positive
samples and an unlabelled dataset. We are required to use them and identify (a) the fraction α∗ of
positive samples in the unlabelled set (called the class prior), and, (b) classify all the samples in the
unlabelled dataset as positive or negative. Chapel et al. (2020) presented a optimal partial transport
based method that assumed the knowledge of class prior. In contrast, we use OT-profile to both
identify the class prior α∗ as well as generate a set of labels for the unlabelled data. In Figure 1,
we show the first derivative of the OT-profile for four real-world PU-Learning experiments (See
Section 5.2). In each case, one can observe a noticeable jump around the class prior. In both outlier
detection as well as PU-Learning experiments, the use of OT-profile leads to a better prediction
accuracy as well as a reduced dependence on additional data dependent parameters.

2 PRELIMINARIES

In this section, we present notations and definitions that are required to describe the exact algorithm.
Recollect µ and ν are the distribution of demand and supply, respectively. Consider any transport
plan σ transporting mass from ν to µ. We say that a vertex a ∈ A (resp. b ∈ B) is free with
respect σ if its demand (resp. supply) is not exhausted by σ, i.e., µa −

∑
b∈B σ(a, b) > 0 (resp.
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Figure 1: First derivative of the OT-profile for PU-learning Datasets (mushroom, shuttle, pageblocks,
and, usps). Notice a jump in the first derivative values near the true class prior α∗.

νb−
∑

a∈A σ(a, b) > 0). For free vertices, we refer to µa−
∑

b∈B σ(a, b) (resp. νb−
∑

a∈A σ(a, b))
as the deficit (resp. surplus) at a (resp. b). At any stage in our algorithm, we use AF (resp. BF ) to
denote the set of free demand nodes (resp. free supply nodes). Recollect that w(σ) is the cost of any
transport plan σ with respect to c(·, ·).
We say that a transport plan σ is dual feasible if, for every a ∈ A and b ∈ B, there are dual weights
y(a) and y(b) associated with a and b respectively such that

y(a) + y(b) ≤ c(a, b) if σ(a, b) < min{µa, νb} (1)
y(a) + y(b) ≥ c(a, b) if σ(a, b) > 0. (2)

These are the classical constraints corresponding to the dual formulation of the optimal transport
problem. Let ymax = maxv∈A∪B |y(v)|. In Lemma 2.1 (see Section 6 for a proof), we show that any
feasible transport plan σ transporting a mass of α that satisfies the following property is an α-optimal
partial transport plan:

(C) For every demand (resp. supply) node a (resp. b), the dual weight y(a) ≤ 0 (resp. y(b) ≥ 0)
and, if a is a free demand (resp. free supply) node, then y(a) = 0 (resp. y(b) = ymax).

To compute the OT-profile, therefore, we incrementally construct a transport plan while maintaining
(C) as an invariant. By doing so, we guarantee that every intermediate transport plan is also an optimal
partial transport plan. We can then use these intermediate transport plans to build the OT-profile.
Lemma 2.1. Let σ along with dual weights y(·) be a feasible partial transport plan that transports a
mass of α and satisfies (C). Then, σ is an α-optimal partial transport plan.

Next, we introduce residual graphs that are extensively used in the design of combinatorial minimum-
cost flow algorithms. We use −→uv to denote an edge directed from a vertex u to a vertex v. Given a
transport plan σ, one can build a residual graph Gσ as follows. The residual graph Gσ(A ∪B,

−→
E ) is

a directed graph with A ∪B as the vertex set. For every a ∈ A and b ∈ B,

• If min{µa, νb} > σ(a, b) ≥ 0, there is a forward edge
−→
ba to

−→
E and assign its residual

capacity to be min{µa, νb} − σ(a, b).

• If 0 < σ(a, b) ≤ min{µa, νb}, we add a backward edge
−→
ab to

−→
E with a residual capacity of

σ(a, b).

We would like to note that if σ(a, b) = 0 (resp. σ(a, b) = min{µa, νb}), then there is only a forward
(resp. backward) edge between a and b in

−→
E . In all other cases, both the forward edge

−→
ba and the

backward edge
−→
ab are in

−→
E . We set the cost of any edge between a and b regardless of their direction

to be c(a, b). Given a partial transport plan σ, any directed path in the residual network Gσ that starts
from a free supply vertex b ∈ BF and ends at a free demand vertex a ∈ AF is called an augmenting
path. Note that, since the graph is bipartite, edges on any path alternate between a forward edge
(directed from B to A) and a backward edge (directed from A to B). Any augmenting path P in
Gσ can be used to increase the total mass that is transported along σ. We describe this process of
augmenting σ along the path P next. For any augmenting path P from a free supply vertex b to a free
demand vertex a, let sb be the surplus at b and da be the deficit at a. We denote the bottleneck edge
capacity κ of an augmenting path P to be the smallest residual capacity among all edges of P . Let
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rP = min{κ, sb, da} be the bottleneck capacity of the path P . We can augment 0 < k ≤ rP units of
mass along an augmenting path P as follows. For every forward edge

−→
ba on the path P , we increase

the mass transported from b to a to σ(a, b)← σ(a, b) + k. For every backward edge
−→
ab on the path

P , we reduce the mass transported from b to a to σ(a, b)← σ(a, b)− k. We show that the updated σ
continues to be a valid and feasible plan that transports an additional mass of k (See Lemma 2.2).
Hence, we also refer to this operation as pushing a mass of k along P . Finally, we define the net-cost
of an augmenting path P as

Φ(P ) =
∑

−→uv∈P is forward

c(u, v)−
∑

−→uv∈P is backward

c(u, v).

By its definition, Φ(P ) is simply the change in the cost of the transport plan when we push one unit
of mass along P . Using this observation, we can show the following (see Section 6 for proof):

Lemma 2.2. For any transport plan σα that transports a mass of α, let P be an augmenting path in
the residual graph and let rP be its residual capacity. For any k ∈ [0, rP ], let σα+k be the transport
plan obtained after pushing k supplies along P . Then σα+k is a valid transport plan with a cost
w(σα+k) = w(σα) + kΦ(P ).

For any (a, b) ∈ A×B, the slack of any forward edge
−→
ba in the residual network is

s(a, b) = c(a, b)− y(a)− y(b). (3)

Any backward edge
−→
ab in the residual network has a slack of

s(a, b) = y(a) + y(b)− c(a, b). (4)

For a feasible transport plan, all slacks are non-negative. Furthermore, note that if both
−→
ab and

−→
ba are

present in the residual network, then the slack is 0. The next lemma, whose proof is in Section 6,
relates the net-cost of any augmenting path to the slack of its edges.

Lemma 2.3. Consider any augmenting path P with respect to a feasible transport plan σ. Suppose
P starts at a free supply vertex b ∈ BF and ends at a free demand vertex a ∈ AF . Then,

Φ(P ) = y(b)− y(a) +
∑
−→uv∈P

s(u, v). (5)

Next, we define any edge (a, b) in the residual graph Gσ as admissible if s(a, b) = 0. The admissible
graph Aσ is the subgraph of Gσ consisting of the admissible edges of the residual graph.

Lemma 2.4. Consider a feasible transport plan σ that satisfies (C) and let P be an augmenting path
consisting of admissible edges that starts at a surplus node b ∈ B and ends at a deficit node a ∈ A.
Then,

Φ(P ) = ymax. (6)

Finally, given a residual network Gσ , we define an augmented residual network, Gσ(V, E) as follows.
In addition to A ∪B, the vertex set V also contains two additional special vertices s and t. The edge
set E consists of two types of edges: (a) Every edge −→uv ∈

−→
E is also in E . The weight of this edge is

set to its slack s(u, v), and (b) For every free supply (resp. demand) node b ∈ BF (resp. a ∈ AF ), E
contains an edge

−→
sb (resp.

−→
at) of weight 0. From the definition of slack, it follows that the weight of

all edges in the augmented residual network in non-negative. The weight of any directed path in the
augmented residual network is simply the sum of the weights of its edges.

3 EXACT ALGORITHM

We begin by describing an algorithm to compute an optimal transport plan and establish a few of its
properties. Our algorithm is based on the primal-dual framework where it constructs a transport plan
while maintaining a feasible solution for the dual program for the optimal transport. Then, we show
how the intermediate computations in the execution of this algorithm describes the exact OT-profile.
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Initialization Step: The algorithm picks an initial transport plan σ where, for every edge (a, b) ∈
A× B, σ(a, b) = 0. Let α (initialized to 0) denote the mass transported by σ. The algorithm also
initializes the dual weights of every vertex v ∈ A ∪ B to 0, i.e., y(v) = 0. Note that σ and y(·)
together form a feasible transport plan.

Our algorithm executes in phases. Within each phase there are two steps.

First step (Hungarian Search): Execute Dijkstra’s shortest-path algorithm on the augmented
residual network Gσ with s as the source and t as the sink2. This algorithm computes the minimum
weight path (or shortest path) from s to every vertex in the graph. For any vertex v ∈ A ∪B, let ℓv
denote the weight of the shortest path from s to t in Gσ, and thus, ℓt is the weight of the shortest
path from s to t. The algorithm then uses these shortest path weights to update the dual weights of
vertices. For any vertex v ∈ A ∪B, if ℓv ≥ ℓt, the dual weight of v remains unchanged. Otherwise,
if ℓv < ℓt, we update the dual weight as follows: (U1): If v ∈ A, we set y(v) ← y(v) − ℓt + ℓv,
(U2): Otherwise, if v ∈ B, we set y(v)← y(v) + ℓt − ℓv .

Second step: Let A be a graph obtained by adding an additional vertex s to the admissible graph,
and, for every free supply vertex b ∈ BF adding an edge (s, b) directed from s to b. Starting from s,
we execute a Depth First Search (DFS) in A to find a path to a free demand vertex. Let P ′ be a path
returned by DFS that starts at s and ends at a free demand vertex a ∈ AF . Let P be the path that
remains after we remove the vertex s from P ′. Note that P is a directed path in the residual graph
starting at a free supply node and ending at a free demand node, i.e., P is an augmenting path. Let
rP > 0 be the bottleneck capacity of P . We update σ by augmenting a mass of rP along the path P .
After augmentation, we update α← α+ rP .

The algorithm iteratively executes phases until σ becomes a maximum transport plan (i.e., α = S).
This completes the description of the algorithm.

The dual updates at the end of the first step of each phase guarantee that the transport plan σ along
with the updated dual weights remains feasible and there is at least one augmenting path in the
admissible graph (See Lemma 7.1 and 7.2 in Appendix for a proof). The second step computes an
augmenting path P in the admissible graph and increments the mass transported by augmenting the
transport plan along P . Using this and the fact that the demands and supplies are rational numbers,
we show, in Section 7.1 that the algorithm terminates in finite number of phases with a maximum
transport plan. Furthermore, we show that our algorithm maintains (C) as an invariant.

Lemma 3.1. The algorithm terminates after executing a finite number of phases. Furthermore, (C)
holds for the duration of the algorithm’s execution.

Before we describe the construction of the OT-profile, we introduce a few notations. Suppose the
algorithm described above executes for q phases. Let {σ0, σ1, . . . , σq} be the partial transport plan
maintained by the algorithm where σ0 is the initial empty transport plan and σi is the transport plan at
the end of phase i. Let {α0 = 0, α1, . . . , αq = S} be such that αi is the mass transported by σi. For
any v ∈ A∪B, let yi(v) denote the dual weight of v after phase i and let yimax = maxv∈A∪B |yi(v)|.
For 1 ≤ i ≤ q, let Pi denote the augmenting path computed in phase i and ri denote its bottleneck
capacity. The following lemma, whose proof is in Section 7.2, will be useful in describing the
construction of OT-profile and its first derivative.

Lemma 3.2. For every 1 ≤ i ≤ q, we have: (a) w(σi) =
∑i

j=1 rjy
j
max, and, (b) yimax = yi−1

max + ℓt.

Generating the OT-profile ω and the first derivative Dω: To generate the OT-profile ω, we
set pi to be a point (αi,

∑i
j=1 rjy

j
max) and set ω to be the piecewise-linear function given by the

sequence of points ⟨p0, p1, . . . , pq⟩ where each consecutive pair in the sequence is connected by a
line segment. We set the first derivative function Dω as follows: For α = 0, Dω(α) = y1max. For
any α ∈ (αi−1, αi], we set Dω(α) = yimax.

Correctness of the OT Profile: Next, we discuss why ω returned by the algorithm is indeed the
OT-profile. Observe that, from Lemma 2.1 and Lemma 3.1, σi is an αi-optimal partial transport and
from Lemma 3.2(a), ω(αi) = w(σi) =

∑i
j=1 rjy

j
max. Therefore, p0, p1, . . . , pq are points on the

OT-profile ω.

2Recollect that s and t are special vertices added in the augmented residual network.
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Lemma 3.3. For any 0 < i ≤ q and any intermediate value α ∈ (αi−1, αi), an α-optimal partial
transport plan can be obtained by augmenting σi−1 by a mass of (α− αi−1) along the augmenting
path Pi. The resulting transport plan has a cost of

∑i−1
j=1 rjy

j
max + (α− αi−1)y

i
max.

From Lemma 3.3 (proof in Section 7.3), the point pα = (α,
∑i−1

j−1 rjy
j
max+(α−αi−1)y

i
max) will be

on the OT-profile. The set of points pα as α goes from αi−1 to αi will be the line segment connecting
pi−1 = (αi−1,

∑i−1
j=1 rjy

j
max) and pi = (αi,

∑i
j=1 rjy

j
max). Note that the slope of this line segment

is precisely yimax. Therefore, we can conclude the following:
Lemma 3.4. For any α ∈ (αi−1, αi], Dω(α) = yimax.

From Lemma 3.2(b), ⟨y1max, . . . , y
q
max⟩ is a non-decreasing sequence, ω is a non-decreasing piecewise-

linear convex function.

Efficiency analysis: Each phase of our algorithm requires executing a single Dijkstra’s shortest-path
algorithm which takes O(n2) time. Therefore, the total time taken by the algorithm is O(qn2).
Note that the OT-profile generated by our algorithm also has q points, i.e., ω = ⟨p0, p1, p2, . . . , pq⟩.
However, if a subsequence ⟨pi, pi+1, . . . , pj⟩ are all collinear, one can remove the points that lie
between pi and pj to obtain a sparser representation of ω. Thus, the number of phases may be higher
than the complexity K of ω.

Suppose, for every value of α ∈ [0, S], we assume that the optimal partial transport is unique. In this
case, we show (in the proof of Lemma 3.5 presented in Section 7.4) that ⟨y0max, . . . y

q
max⟩ is a strictly

increasing sequence and therefore no three points on the OT-profile generated by our algorithm are
collinear, implying q = K.
Lemma 3.5. Given two distributions µ and ν with a support set of A and B, suppose the demand
(resp. supply) at any point of A (resp. B) is a rational number. Also, suppose, for every value of
α ∈ [0, S], the optimal partial transport is unique, then the algorithm described above executes in
O(n2K) time where K is the complexity of the OT-profile.

In order to avoid collinear points, one can modify the second step of the algorithm as follows. In
the second step of any phase i, instead of computing a single augmenting path in the admissible
graph, we can compute a maximum flow by using a Õ(n2) time algorithm Chen et al. (2022). By
doing so, we can guarantee that at the end of the phase i, there are no more augmenting paths in the
admissible graph. Thus, Step 1 of phase i+ 1 will adjust the dual weights and create an augmenting
path in the admissible graph. Therefore, ℓt as computed in Step 1 of phase i+ 1 is positive and from
Lemma 3.2(b), we have yi+1

max > yimax. yimax and yi+1
max are slopes of line segments (pi−1, pi) and

(pi, pi+1) respectively. Therefore, we conclude that no three points pi−1, pi, and pi+1 are collinear
points in the OT-profile and so the number of phase q is exactly equal to the complexity K of the
OT-profile.
Theorem 3.6. Given two distributions µ and ν with a support set of A and B, suppose the demand
(resp. supply) at any point of A (resp. B) is a rational number. Then, the OT-profile of µ and ν can
be computed in Õ(n2K) time.

The proof of the outlier lemma (Lemma 1.1) is presented in the Appendix (See Section 7.5).

4 APPROXIMATION ALGORITHM

Next, we show how a single execution of the LMR-algorithm (that has an execution time of O(n2/δ+
n/δ2) can be used to compute a δ-approximate OT-profile with a combinatorial complexity of O(1/δ).
The LMR-algorithm is split into three parts. In the first part, the algorithm will scale-and-round the
demands and supplies to integers. In the second part, the algorithm finds an approximate transport plan
using a primal-dual method that is similar in style to the exact algorithm described in Section 3. Like
in the exact case, the intermediate computations of this part can be used to compute an approximate
OT-profile. Finally, in the third part, the transport plan is mapped back to the original demands and
supplies.

The second part of the LMR-algorithm maintains a partial transport plan σ (initialized to 0) and
dual weights y(·) (initialized to 0) that satisfy a relaxed set of feasibility conditions. This part of the
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algorithm executes in phases and terminates when σ becomes a maximum transport plan. Within
each phase there are two steps. Similar to the exact algorithm, in the first step, the algorithm conducts
a Hungarian Search and adjusts the dual weights so that there is at least one augmenting path of
admissible edges. In the second step, the algorithm computes many augmenting paths and updates σ
by augmenting it along all paths computed. At the end of the second step, we guarantee that there
is no augmenting path of admissible edges. Lahn et al. (2019) bounded the number of phases to
q = O(1/δ) and the total execution time of the algorithm by O(n2/δ + n/δ2). Let σ0 be the initial
transport plan and σi be the partial transport plan maintained after phase i. Let α0 = 0 and αi be the
mass transported by σi and let yimax be the largest dual weight at the end of phase i. To approximate
the OT-profile, we simply add, for each 0 ≤ i ≤ q the points pi = (αi, w(σi)). The approximate
OT-profile ω is given by the piece-wise linear function ⟨p0, p1, . . . , pq⟩ where every consecutive pair
of points in this sequence is connected by a line segment. Unlike in the exact case, ω is not necessarily
convex and its first derivative can be unstable. Nonetheless, we are able to define a step function Dω
that satisfies an approximate version of the outlier lemma: Dω(0) = 0 and for every α ∈ (αi, αi+1],
Dω(α) = yimax. Details of the LMR-algorithm, the approximate version of the OT-profile as well as
the approximate outlier lemma are presented in the Appendix (see 8, 8.2.1).

5 EXPERIMENTS

Experimental Setup: We conduct experiments for outlier detection as well as PU-Learning experi-
ments on synthetic and real world dataset. Our algorithm is implemented in Java and experiments
were conducted using Python, and are executed on a machine with 2.1 GHz Intel® Xeon® E5-2683v4
processor with 64 GB of RAM.

5.1 OUTLIER DETECTION

In this section, we test the effectiveness of our outlier detection lemma on a real-world dataset.
Additional experiments on synthetic datasets are presented in the Appendix 9.4. Our lemma helps
identify the inlier mass α∗ based on an observable increase in the first derivative function around α∗.

Experiment with Real Data-set: In this experiment, we follow the setup of Mukherjee et al. (2021).
Denote µ as the set of clean data containing n MNIST digits LeCun (1998) from 0 to 4, and ν as
a mixed set contaminated by digits from 5 to 9. We set ε as the mixing ratio of outlier data in the
whole dataset, i.e., (1− ε)n digits in ν are between 0 and 4 and remaining εn fraction are outliers
that are between 5 and 9. We utilize the L1 distance (Manhattan distance) as the metric of MNIST
digits. We execute two sets of experiments, one with n = 1k and another with n = 10k images. For
each set, we consider ε = 0.2, 0.25 and 0.3. Our algorithm computes the OT-profile ω and its first
derivative Dω. Then, it uses the kneedle method (with a default sensitivity of 1) to catch a sudden
rise in the first derivative Dω. Thus, from the outlier lemma, we are able to estimate the value of
ε with ε̂ (we refer to this as the check point). We then label the images as inliers (resp. outliers) if
they are matched (resp. free) with respect to the (1 − ε̂)-optimal partial transport. See Appendix
9.2 for details regarding the application of the kneedle method. We repeat the experiments 30 times
and report the average and standard deviation of the accuracy. We also conduct the same set of
experiments for the robust optimal transport algorithm of Mukherjee et al. (2021). The results are
presented in Table 1.

Table 1: Outlier Detection Accuracy(left) and Check Point Detected(right) for MNIST

Method(n) ε = 0.3 ε = 0.25 ε = 0.2

ROBOT(1k) 0.73 0.77 0.81
OT-Profile(1k) 0.81 0.82 0.85
ROBOT(10k) 0.77 0.80 0.839
OT-Profile(10k) 0.88 0.89 0.90

Method(n) ε = 0.3 ε = 0.25 ε = 0.2

ROBOT(1k) 0.728 0.744 0.792
ROBOT(10k) 0.754 0.770 0.796

Our outlier detection method consistently achieves a slightly better accuracy (between 4%− 10%).
Table 1 shows the check point that is automatically detected by our algorithm. Observe that the check
point detected by our algorithm is very close to value of ε (the actual outlier ratio). Note that the
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method of Mukherjee et al. (2021) relies on a hyper-parameter that is obtained by sampling µ. Our
method on the other hand, does not rely on any data driven hyperparameters. In the supplemental
material, we show a visual sample of the miss-classified MNIST images for ROBOT and OT-profile
approaches. We also provide number of errors made on a sample of n = 2000 by ROBOT and
OT-Profile for each digit.

5.2 PU LEARNING

In this section, we apply OT-profile in the context of PU Learning Bekker & Davis (2020). The goal
of PU learning is similar to binary classification problem where labelled positive examples (let nP

denote the number of positive examples) make up the training set where as the test set consists of
positive and negative examples that are unlabelled (let nU denote the number of unlabelled examples).
In case of multiple classes, similar approach is followed where the target classes are considered as
positive (y = 1) and all the others are considered as negative (y = −1). Following the previous work
set up, we applied our approach under the SCAR assumption (selected completely at random) on six
datasets from UCI repository, which are: Mushrooms, Shuttle, Pageblocks, USPS, Connect-4 and
Spambase and test SAR (selected at random) assumption with colored MNIST. From each dataset,
we randomly choose equal number of samples, nP = nU = 800 for the positive set as well as the
unlabelled set. Experiments are run 10 times, and the mean accuracy and running times is reported.

Recently, Chapel et al. (2020) demonstrated that specific optimal partial transport formulations
(namely Partial Wasserstein (p-W) and Partial Gromov-Wasserstein (p-GW)) can be used for learning
positive unlabelled data. In Chapel et al. (2020), it is assumed that the true proportion of positives
in the unlabelled dataset (denoted by π = p(y = 1)), called class prior is known in advance for
different datasets. π is used to sample the test (unlabelled) set as per the marginal p(x) = πp(x|y =
1) + (1− π)p(x|y = −1). Both these methods need the knowledge of π.

On the other hand, we describe an approach that uses the OT-profile ω and the first derivative Dω
to solve the PU-learning task without the knowledge of class prior. We refer to this approach as
OTP-wo-prior. Since the unlabelled data can have samples from multiple classes, there can be several
noticable rise in the first derivative Dω. In such a case, we pick the earliest jump to estimate the class
prior. Let π̂ be the class prior estimate returned by our algorithm. We then mark all free points with
respect to π̂-optimal partial transport as negative and all other points are positive. We describe our
method to detect a jump in Dω in the Appendix 9.3. We also describe a method assuming the class
prior π is known. If π is known, we simply mark the free points with respect to the π-partial transport
plan as negative and the remaining points as positive. We refer to this approach as OTP-w-prior.

We observed that OTP-wo-prior is both computationally efficient as well as achieves comparable or
better accuracy (see Table 2, standard deviation reported in Appendix 8) than the methods p-W and
p-GW proposed by Chapel et al. (2020). Moreover, unlike previous methods, our method works does
not need the knowledge of class prior which arguably is a significant limitation of the work by Chapel
et al. (2020). Under SCAR assumption, except for usps and spambase, both OTP-w-prior(italic) and
OTP-wo-prior(bold) outperform p-W and p-GW. And detected priors are close to the real value within
0.2% for mushrooms, shuttle, and pageblocks. Under SAR, OTP-w-prior yields the best accuracy,
and OTP-wo-prior has similar result with p-W and P-GW.

Table 2: PU learning accuracy rates(left) and execution time(right) in seconds

dataset π p-W p-GW OTP-w-
prior

OTP-
wo-prior

π̂

mushrooms 0.518 96.1 95.2 99.8 99.7 0.517
shuttle 0.786 96.3 95.5 97.9 97.7 0.785
pageblocks 0.898 92.4 90.6 93.1 93.1 0.925
usps 0.167 98.6 95.7 97.3 92.5 0.092
connect-4 0.658 61.0 55.4 74.7 67.3 0.860
spambase 0.394 79.8 71.1 73.4 65.9 0.301
mnist 0.1 99.1 98.4 99.3 98.1 0.081
colored mnist 0.1 91.6 97.5 99.3 97.6 0.076

p-W p-GW OTP-
w-
prior

OTP-
wo-
prior

1.2 83.9 0.6 0.5
1.0 82.3 0.5 0.4
1.4 92.1 0.3 0.3
2.1 80.2 8.1 7.5
2.2 82.0 1.9 1.8
1.2 80.3 0.8 0.7
1.8 82.3 3.1 2.6
1.9 81.8 3.2 2.9
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