
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Attention is sparse in vision transformers. We observe the final prediction in
2 vision transformers is only based on a subset of most informative tokens, which is
3 sufficient for accurate image recognition. Based on this observation, we propose a
4 dynamic token sparsification framework to prune redundant tokens progressively
5 and dynamically based on the input. Specifically, we devise a lightweight prediction
6 module to estimate the importance score of each token given the current features.
7 The module is added to different layers to prune redundant tokens hierarchically. To
8 optimize the prediction module in an end-to-end manner, we propose an attention
9 masking strategy to differentiably prune a token by blocking its interactions with
10 other tokens. Benefiting from the nature of self-attention, the unstructured sparse
11 tokens are still hardware friendly, which makes our framework easy to achieve
12 actual speed-up. By hierarchically pruning 66% of the input tokens, our method
13 greatly reduces 31% \sim 37% FLOPs and improves the throughput by over 40%
14 while the drop of accuracy is within 0.5% for various vision transformers. Equipped
15 with the dynamic token sparsification framework, DynamicViT models can achieve
16 very competitive complexity/accuracy trade-offs compared to state-of-the-art CNNs
17 and vision transformers on ImageNet.

18 **1 Introduction**

19 These years have witnessed the great progress in computer vision brought by the evolution of CNN-
20 type architectures [11, 17]. Some recent works start to replace CNN by using transformer for many
21 vision tasks, like object detection [27, 18] and classification [21]. Just like what has been done to the
22 CNN-type architectures in the past few years, it is also desirable to accelerate the transformer-like
23 models to make them more suitable for real-time applications.

24 One common practice for the acceleration of CNN-type networks is to prune the filters that are of less
25 importance. The way input is processed by the vision transformer and its variants, *i.e.* splitting the
26 input image into multiple independent patches, provides us another orthogonal way to introduce the
27 sparsity for the acceleration. That is, we can prune the tokens of less importance in the input instance,
28 given the fact that many tokens contribute very little to the final prediction. This is only possible for
29 the transformer-like models where the self-attention module can take the token sequence of variable
30 length as input, and the unstructured pruned input will not affect the self-attention module, while
31 dropping a certain part of the pixels can not really accelerate the convolution operation since the
32 unstructured neighborhood used by convolution would make it difficult to accelerate through parallel
33 computing. Since the hierarchical architecture of CNNs with structural downsampling has improved
34 model efficiency in various vision tasks, we hope to explore the *unstructured* and *data-dependent*
35 downsampling strategy for vision transformers to further leverage the advantages of self-attention
36 (our experiments also show unstructured sparsification can lead to better performance for vision

Figure 1: **Illustration of our main idea.** CNN models usually leverage the structural downsampling strategy to build hierarchical architectures as shown in (a). *unstructured* and *data-dependent* downsampling method in (b) can better exploit the sparsity in the input data. Thanks to the nature of the self-attention operation, the unstructured token set is also easy to accelerate through parallel computing. (c) visualizes the impact of each spatial location on the final prediction in the DeiT-S model [21] using the visualization method proposed in [3]. These results demonstrate the final prediction in vision transformers is only based on a subset of most informative tokens, which suggests a large proportion of tokens can be removed without hurting the performance.

37 transformers compared to structural downsampling). The basic idea of our method is illustrated in
 38 Figure 1.

39 In this work, we propose to employ a lightweight prediction module to determine which tokens to be
 40 pruned in a dynamic way, dubbed as DynamicViT. In particular, for each input instance, the prediction
 41 module produces a customized binary decision mask to decide which tokens are uninformative and
 42 need to be abandoned. This module is added to multiple layers of the vision transformer, such that
 43 the sparsification can be performed in a hierarchical way as we gradually increase the amount of
 44 pruned tokens after each prediction module. Once a token is pruned after a certain layer, it will not
 45 be ever used in the feed-forward procedure. The additional computational overhead introduced by
 46 this lightweight module is quite small, especially considering the computational overhead saved by
 47 eliminating the uninformative tokens.

48 This prediction module can be optimized jointly in an end-to-end manner together with the vision
 49 transformer backbone. To this end, two specialized strategies are adopted. The first one is to adopt
 50 Gumbel-Softmax [14] to overcome the non-differentiable problem of sampling from a distribution so
 51 that it is possible to perform the end-to-end training. The second one is about how to apply this learned
 52 binary decision mask to prune the unnecessary tokens. Considering the number of zero elements
 53 in the binary decision mask is different for each instance, directly eliminating the uninformative
 54 tokens for each input instance during training will make parallel computing impossible. Moreover,
 55 this would also hinder the back-propagation for the prediction module, which needs to calculate the
 56 probability distribution of whether to keep the token even if it is finally eliminated. Besides, directly
 57 setting the abandoned tokens as zero vectors is also not a wise idea since zero vectors will still affect
 58 the calculation of the attention matrix. Therefore, we propose a strategy called attention masking
 59 where we drop the connection from abandoned tokens to all other tokens in the attention matrix based
 60 on the binary decision mask. By doing so, we can overcome the difficulties described above. We
 61 also modify the original training objective of the vision transformer by adding a term to constrain
 62 the proportion of pruned tokens after a certain layer. During the inference phase, we can directly
 63 abandon a fixed amount of tokens after certain layers for each input instance as we no longer need to
 64 consider whether the operation is differentiable, and this will greatly accelerate the inference.

65 We illustrate the effectiveness of our method on ImageNet using DeiT [21] and LV-ViT [15] as
 66 backbone. The experimental results demonstrate the competitive trade-off between speed and
 67 accuracy. In particular, by hierarchically pruning 66% of the input tokens, we can greatly reduce 31%

68 $\sim 37\%$ GFLOPs and improve the throughput by over 40% while the drop of accuracy is within 0.5%
69 for all different vision transformers. Our DynamicViT demonstrates the possibility of exploiting the
70 sparsity in space for the acceleration of transformer-like model. We expect our attempt to open a new
71 path for future work on the acceleration of transformer-like models.

72 2 Related Work

73 **Vision transformers.** Transformer model is first widely studied in NLP community [22]. It
74 proves the possibility to use self-attention to replace the recurrent neural networks and their variants.
75 DETR [2] is the first work to apply the transformer model to vision tasks. It formulates the object
76 detection task as a set prediction problem and follows the encoder-decoder design in the transformer
77 to generate a sequence of bounding boxes. ViT [7] is the first work to directly apply transformer
78 architecture on non-overlapping image patches for the image classification task, and the whole
79 framework contains no convolution operation. Compared to CNN-type models, ViT can achieve
80 better performance with large-scale pre-training. It is really preferred if the architecture can achieve
81 the state-of-the-art without any pre-training. DeiT [21] proposes many training techniques so that we
82 can train the convolution-free transformer only on ImageNet1K [6] and achieve better performance
83 than ViT. LV-ViT [15] further improves the performance by introducing a new training objective
84 called token labeling. Both ViT and its follow-ups split the input image into multiple independent
85 image patches and transform these image patches into tokens for further process. This makes it
86 feasible to incorporate the sparsity in space dimension for all these transformer-like models. That is
87 to say, our method can work for all different types of transformer variants.

88 **Model acceleration.** Model acceleration techniques are important for the deployment of deep
89 models on edge devices. There are many techniques can be used to accelerate the inference speed
90 of deep model, including quantization [8], pruning [12], low-rank factorization [25], knowledge
91 distillation [13] and so on. There are also many works aims at accelerating the inference speed of
92 transformer models. For example, TinyBERT [16] proposes a distillation method to accelerate the
93 inference of transformer. Star-Transformer [9] reduces quadratic space and time complexity to linear
94 by replacing the fully connected structure with a star-shaped topology. However, all these works
95 focus on NLP tasks, and few works explore the possibility of making use of the characteristic of
96 vision tasks to accelerate vision transformer. Furthermore, the difference between the characteristics
97 of Transformer and CNN also makes it possible to adopt another way for acceleration rather than the
98 methods used for CNN acceleration like filter pruning [12], which removes non-critical or redundant
99 neurons from a deep model. Our method aims at pruning the tokens of less importance instead of the
100 neurons by exploiting the sparsity of informative image patches.

101 3 Dynamic Vision Transformers

102 3.1 Overview

103 The overall framework of our DynamicViT is illustrated in Figure 2. Our DynamicViT consists of a
104 normal vision transformer as the backbone and several prediction modules. The backbone network
105 can be implemented as a wide range of vision transformer (*e.g.*, ViT [7], DeiT [21], LV-ViT [15]).
106 The prediction modules are responsible for generating the probabilities of dropping/keeping the
107 tokens. The token sparsification is performed hierarchically through the whole network at certain
108 locations. For example, given a 12-layer transformer, we can conduct token sparsification before the
109 4th, 7th, and 9th blocks. During training, the prediction modules and the backbone network can be
110 optimized in an end-to-end manner thanks to our newly devised attention masking strategy. During
111 inference, we only need to select the most informative tokens according to a predefined pruning ratio
112 and the scores computed by the prediction modules.

113 3.2 Hierarchical Token Sparsification with Prediction Modules

114 An important characteristic of our DynamicViT is that the token sparsification is performed hierarchi-
115 cally, *i.e.*, we gradually drop the uninformative tokens as the computation proceeds. To achieve this,
116 we maintain a binary decision mask $\hat{\mathbf{D}} \in \{0, 1\}^N$ to indicate whether to drop or keep each token,

Figure 2: **The overall framework of the proposed approach.** The proposed prediction module is inserted between the transformer blocks to selectively prune less informative token conditioned on features produced by the previous layer. By doing so, less tokens are processed in the followed layers.

117 where $N = HW$ is the number of patch embeddings¹. We initialize all elements in the decision
 118 121 and update the mask progressively. The prediction modules take the current decision $\hat{\mathbf{D}}$
 119 and the tokens $\mathbf{x} \in \mathbb{R}^{N \times C}$ as input. We first project the tokens using an MLP:

$$\mathbf{z}^{\text{local}} = \text{MLP}(\mathbf{x}) \in \mathbb{R}^{N \times C'}, \quad (1)$$

120 where C' can be a smaller dimension and we use $C' = C/2$ in our implementation. Similarly, we
 121 can compute a global feature by:

$$\mathbf{z}^{\text{global}} = \text{Agg}(\text{MLP}(\mathbf{x}), D) \in \mathbb{R}^{C'}, \quad (2)$$

122 where Agg is the function which aggregate the information all the existing tokens and can be simply
 123 implemented as an average pooling:

$$\text{Agg}(\mathbf{u}, \hat{\mathbf{D}}) = \frac{\sum_{i=1}^N \hat{\mathbf{D}}_i \mathbf{u}_i}{\sum_{i=1}^N \hat{\mathbf{D}}_i}, \quad \mathbf{u} \in \mathbb{R}^{N \times C'}. \quad (3)$$

124 The local feature encodes the information of a certain token while the global feature contains the
 125 context of the whole image, thus both of them are informative. Therefore, we combine both the local
 126 and global features to obtain local-global embeddings and feed them to another MLP to predict the
 127 probabilities to drop/keep the tokens:

$$\mathbf{z}_i = [\mathbf{z}_i^{\text{local}}, \mathbf{z}_i^{\text{global}}], \quad 1 \leq i \leq N, \quad (4)$$

$$\pi = \text{Softmax}(\text{MLP}(\mathbf{z})) \in \mathbb{R}^{N \times 2}, \quad (5)$$

128 where $\pi_{i,0}$ denotes the probability of dropping the i -th token and $\pi_{i,1}$ is the probability of keeping it.
 129 We can then generate current decision \mathbf{D} by sampling from π and update $\hat{\mathbf{D}}$ by

$$\hat{\mathbf{D}} \leftarrow \hat{\mathbf{D}} \odot \mathbf{D}, \quad (6)$$

130 where \odot is the Hadamard product, indicating that once a token is dropped, it will never be used.

131 3.3 End-to-end Optimization with Attention Masking

132 Although our target is to perform token sparsification, we find it non-trivial to implement in practice
 133 during training. First, the sampling from π to get binary decision mask \mathbf{D} is non-differentiable,

¹We omit the class token for simplicity, while in practice we always keep the class token (*i.e.*, the decision for class token is always “1”).

134 which impedes the end-to-end training. To overcome this, we apply the Gumbel-Softmax tech-
 135 nique [14] to sample from the probabilities π :

$$\mathbf{D} = \text{Gumbel-Softmax}(\pi)_{*,1} \in \{0, 1\}^N, \quad (7)$$

136 where we use the index “1” because \mathbf{D} represents the mask of the *kept* tokens. The output of Gumbel-
 137 Softmax is a one-hot tensor, of which the expectation equals π exactly. Meanwhile, Gumbel-Softmax
 138 is differentiable thus makes it possible for end-to-end training.

139 The second obstacle comes when we try to prune the tokens during training. The decision mask $\hat{\mathbf{D}}$ is
 140 usually unstructured and the masks for different samples contain various numbers of 1’s. Therefore,
 141 simply discarding the tokens where $\hat{\mathbf{D}}_i = 0$ would result in a non-uniform number of tokens for
 142 samples within a batch, which makes it hard to parallelize the computation. Thus, we must keep the
 143 number of tokens unchanged, while cut down the interactions between the pruned tokens and other
 144 tokens. We also find that merely zero-out the tokens to be dropped using the binary mask $\hat{\mathbf{D}}$ is not
 145 feasible, because in the calculation of self-attention matrix [22]

$$\mathbf{A} = \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{C}} \right) \quad (8)$$

146 the zeroed tokens will still influence other tokens through the Softmax operation. To this end, we
 147 devise a strategy called attention masking which can totally eliminate the effects of the dropped
 148 tokens. Specifically, we compute the attention matrix by:

$$\mathbf{P} = \mathbf{Q}\mathbf{K}^T / \sqrt{C} \in \mathbb{R}^{N \times N}, \quad (9)$$

$$\mathbf{G}_{ij} = \begin{cases} 1, & i = j, \\ \hat{\mathbf{D}}_j, & i \neq j. \end{cases} \quad 1 \leq i, j \leq N, \quad (10)$$

$$\tilde{\mathbf{A}}_{ij} = \frac{\exp(\mathbf{P}_{ij})\mathbf{G}_{ij}}{\sum_{k=1}^N \exp(\mathbf{P}_{ik})\mathbf{G}_{ik}}, \quad 1 \leq i, j \leq N. \quad (11)$$

149 By Equation (10) we construct a graph where $\mathbf{G}_{ij} = 1$ means the j -th token will contribute to the
 150 update of the i -th token. Note that we explicitly add a self-loop to each token to improve numerically
 151 stability. It is also easy to show the self-loop does not influence the results: if $\hat{\mathbf{D}}_j = 0$, the j -th
 152 token will not contribute to any tokens other than itself. Equation (11) computes the masked attention
 153 matrix $\tilde{\mathbf{A}}$, which is equivalent to the attention matrix calculated by considering only the kept tokens
 154 but has a constant shape $N \times N$ during training.

155 3.4 Training and Inference

156 We now describe the training objectives of our DynamicViT. The training of DynamicViT includes
 157 training the prediction modules such that they can produce favorable decisions and fine-tuning the
 158 backbone to make it adapt to token sparsification. Assuming we are dealing with a minibatch of B
 159 samples, we adopt the standard cross-entropy loss:

$$\mathcal{L}_{\text{cls}} = \text{CrossEntropy}(\mathbf{y}, \bar{\mathbf{y}}), \quad (12)$$

160 where \mathbf{y} is the prediction of the DynamicViT (after softmax) and $\bar{\mathbf{y}}$ is the ground truth.

161 To minimize the influence on performance caused by our token sparsification, we use the original
 162 backbone network as a teacher model and hope the behavior of our DynamicViT as close to the
 163 teacher model as possible. Specifically, we consider this constraint from two aspects. First, we make
 164 the finally remaining tokens of the DynamicViT close to the ones of the teacher model, which can be
 165 viewed as a kind of self-distillation:

$$\mathcal{L}_{\text{distill}} = \frac{1}{\sum_{b=1}^B \sum_{i=1}^N \hat{\mathbf{D}}_i^{b,S}} \sum_{b=1}^B \sum_{i=1}^N \hat{\mathbf{D}}_i^{b,S} (\mathbf{t}_i - \mathbf{t}'_i)^2, \quad (13)$$

166 where \mathbf{t}_i and \mathbf{t}'_i denotes the i -th token after the last block of the DynamicViT and the teacher model,
 167 respectively. $\hat{\mathbf{D}}_i^{b,S}$ is the decision mask for the b -th sample at the s -th sparsification stage. Second,
 168 we minimize the difference of the predictions between our DynamicViT and its teacher via the KL
 169 divergence:

$$\mathcal{L}_{\text{KL}} = \text{KL}(\mathbf{y} \| \mathbf{y}'), \quad (14)$$

Table 1: **Main results on ImageNet.** We apply our method on three representative vision transformers: DeiT-S, LV-ViT-S and LV-ViT-M. DeiT-S [21] is a widely used vision transformer with the simple architecture. LV-ViT-S and LV-ViT-M [15] are the state-of-the-art vision transformers. We report the top-1 classification accuracy, theoretical complexity in FLOPs and throughput for different ratio ρ . The throughput is measured on a single NVIDIA RTX 3090 GPU with batch size fixed to 32.

Base Model	Metrics	Keeping Ratio ρ at each stage			
		1.0	0.9	0.8	0.7
DeiT-S [21]	ImageNet Acc. (%)	79.8	79.8 <small>(-0.0)</small>	79.6 <small>(-0.2)</small>	79.3 <small>(-0.5)</small>
	GFLOPs	4.6	4.0 <small>(-14%)</small>	3.4 <small>(-27%)</small>	2.9 <small>(-37%)</small>
	Throughput (im/s)	1337.7	1524.8 <small>(+14%)</small>	1774.6 <small>(+33%)</small>	2062.1 <small>(+54%)</small>
LV-ViT-S [15]	ImageNet Acc. (%)	83.3	83.3 <small>(-0.0)</small>	83.2 <small>(-0.1)</small>	83.0 <small>(-0.3)</small>
	GFLOPs	6.6	5.8 <small>(-12%)</small>	5.1 <small>(-22%)</small>	4.6 <small>(-31%)</small>
	Throughput (im/s)	993.3	1108.3 <small>(+12%)</small>	1255.6 <small>(+26%)</small>	1417.6 <small>(+43%)</small>
LV-ViT-M [15]	ImageNet Acc. (%)	84.0	83.9 <small>(-0.1)</small>	83.9 <small>(-0.1)</small>	83.8 <small>(-0.2)</small>
	GFLOPs	12.7	11.1 <small>(-13%)</small>	9.6 <small>(-24%)</small>	8.5 <small>(-33%)</small>
	Throughput (im/s)	589.5	688.5 <small>(+17%)</small>	791.2 <small>(+34%)</small>	888.2 <small>(+50%)</small>

170 where \mathbf{y}' is the prediction of the teacher model.

171 Finally, we want to constrain the ratio of the kept tokens to a predefined value. Given a set of target
172 ratios for S stages $\rho = [\rho^{(1)}, \dots, \rho^{(S)}]$, we utilize an MSE loss to supervise the prediction module:

$$\mathcal{L}_{\text{ratio}} = \frac{1}{BS} \sum_{b=1}^B \sum_{s=1}^S \left(\rho^{(s)} - \frac{1}{N} \sum_{i=1}^N \hat{\mathbf{D}}_i^{b,s} \right)^2. \quad (15)$$

173 The full training objective is a combination of the above objectives:

$$\mathcal{L} = \mathcal{L}_{\text{cls}} + \lambda_{\text{KL}} \mathcal{L}_{\text{KL}} + \lambda_{\text{distill}} \mathcal{L}_{\text{distill}} + \lambda_{\text{ratio}} \mathcal{L}_{\text{ratio}}, \quad (16)$$

174 where we set $\lambda_{\text{KL}} = 0.5$, $\lambda_{\text{distill}} = 0.5$, $\lambda_{\text{ratio}} = 2$ in all our experiments.

175 During inference, given the target ratio ρ , we can directly discard the less informative tokens via the
176 probabilities produced by the prediction modules such that only exact $m^s = \lfloor \rho^s N \rfloor$ tokens are kept
177 at the s -th stage. Formally, for the s -th stage, let

$$\mathcal{I}^s = \text{argsort}(\pi_{*,1}) \quad (17)$$

178 be the indices sorted by the keeping probabilities $\pi_{*,1}$, we can then keep the tokens of which the
179 indices lie in $\mathcal{I}_{1:m^s}^s$ while discarding the others. In this way, our DynamicViT prunes less informative
180 tokens dynamically at runtime, thus can reduce the computational costs during inference.

181 4 Experimental Results

182 In this section, we will demonstrate the superiority of the proposed DynamicViT through extensive
183 experiments. In all of our experiments, we fix the number of sparsification stages $S = 3$ and apply
184 the target keeping ratio ρ as a geometric sequence $[\rho, \rho^2, \rho^3]$ where ρ ranges from $(0, 1)$. During
185 training DynamicViT models, we follow most of the training techniques used in DeiT [21]. We
186 use the pre-trained vision transformer models to initialize the backbone models and jointly train the
187 whole model for 30 epochs. We set the learning rate of the prediction module to $\frac{\text{batch size}}{1024} \times 0.001$ and
188 use $0.01 \times$ smaller learning rate for the backbone model. We fix the weights of the backbone models
189 in the first 5 epochs. All of our models are trained on a single machine with 8 GPUs. Other training
190 setups and details can be found in the supplementary material.

191 4.1 Main results

192 One of the most advantages of the DynamicViT is that it can be applied to a wide range of vision
193 transformer architectures to reduce the computational complexity with minor loss of performance. In
194 Table 1, we summarize the main results on ImageNet [6] where we evaluate our DynamicViT used

Table 2: **Comparisons with the state-of-the-arts on ImageNet.** We compare our DynamicViT models with state-of-the-art image classification models with comparable FLOPs and number of parameters. We use the DynamicViT with LV-ViT [15] as the base model and use the “ $/\rho$ ” to indicate the keeping ratio. We also include the results of LV-ViT models as references.

Model	Params (M)	GFLOPs	Resolution	Top-1 Acc (%)
DeiT-S [21]	22.1	4.6	224	79.8
PVT-Small [23]	24.5	3.8	224	79.8
CoaT Mini [24]	10.0	6.8	224	80.8
CrossViT-S [4]	26.7	5.6	224	81.0
PVT-Medium [23]	44.2	6.7	224	81.2
Swin-T [18]	29.0	4.5	766	81.3
T2T-ViT-14 [26]	22.0	5.2	224	81.5
CPVT-Small-GAP [5]	23.0	4.6	817	81.5
CoaT-Lite Small [24]	20.0	4.0	224	81.9
LV-ViT-S [15]	26.2	6.6	224	83.3
DynamicViT-LV-S/0.5	26.9	3.7	224	82.0
DynamicViT-LV-S/0.7	26.9	4.6	224	83.0
RegNetY-8G [19]	39.0	8.0	224	81.7
T2T-ViT-19 [26]	39.2	8.9	224	81.9
Swin-S [18]	50.0	8.7	224	83.0
EfficientNet-B5 [20]	30.0	9.9	456	83.6
NFNet-F0 [1]	72.0	12.4	256	83.6
DynamicViT-LV-M/0.7	57.1	8.5	224	83.8
ViT-Base/16 [7]	86.6	17.6	224	77.9
DeiT-Base/16 [21]	86.6	17.6	224	81.8
CrossViT-B [4]	104.7	21.2	224	82.2
T2T-ViT-24 [26]	64.1	14.1	224	82.3
TNT-B [10]	66.0	14.1	224	82.8
RegNetY-16G [19]	84.0	16.0	224	82.9
Swin-B [18]	88.0	15.4	224	83.3
LV-ViT-M [15]	55.8	12.7	224	84.0
DynamicViT-LV-M/0.8	57.1	9.6	224	83.9

195 three base models (DeiT-S [21], LV-ViT-S [15] and LV-ViT-M [15]). We report the top-1 accuracy,
196 FLOPs, and the throughput under different keeping ratios ρ . Note that our token sparsification
197 is performed hierarchically in three stages, there are only $\lfloor N\rho^3 \rfloor$ tokens left after the last stage.
198 The throughput is measured on a single NVIDIA RTX 3090 GPU with batch size fixed to 32.
199 We demonstrate that our DynamicViT can reduce the computational costs by 31% \sim 37% and
200 accelerate the inference at runtime by 43% \sim 54%, with the neglectable influence of performance
201 ($-0.2\% \sim -0.5\%$).

202 4.2 Comparisons with the-state-of-the-arts

203 In Table 2, we compare the DynamicViT with the state-of-the-art models in image classification,
204 including convolutional networks and transformer-like architectures. We use the DynamicViT with
205 LV-ViT [15] as the base model and use the “ $/\rho$ ” to indicate the keeping ratio. We observe that
206 our DynamicViT exhibits favorable complexity/accuracy trade-offs at all three complexity levels.
207 Notably, we find our DynamicViT-LV-M/0.7 beats the EfficientNet-B5 [20] and NFNet-F0 [1], which
208 are two of the current state-of-the-arts CNN architectures. This can also be shown clearer in Figure 3,
209 where we plot the FLOPS-accuracy curve of DynamicViT series (where we use DyViT for short),
210 along with other state-of-the-art models. We can also observe that DynamicViT can achieve better
211 trade-offs than LV-ViT series, which strongly demonstrates the effectiveness of our method.

Figure 3: Model complexity (FLOPs) and top-1 accuracy trade-offs on ImageNet. We compare DynamicViT with the state-of-the-art image classification models. Our models achieve better trade-offs compared to the various vision transformers as well as carefully designed CNN models.

Figure 4: Comparison of our dynamic token sparsification method with model width scaling. We train our DynamicViT based on DeiT models with embedding dimension varying from 192 to 384 and key ratio $\rho = 0.7$. We see dynamic token sparsification is more efficient than commonly used model width scaling.

212 4.3 Analysis

213 **DynamicViT for model scaling.** The success of EfficientNet [20] shows that we can obtain a
 214 model with better complexity/accuracy tradeoffs by scaling the model along different dimensions.
 215 While in vision transformers, the most commonly used method to scale the model is to change the
 216 number of channels, our DynamicViT provides another powerful tool to perform token sparsification.
 217 We analyze this nice property of DynamicViT in Figure 4. First, we train several DeiT [21] models
 218 with the embedding dimension varying from 192 (DeiT-Ti) to 384 (DeiT-S). Second, we train our
 219 DynamicViT based on those models with the keeping ratio $\rho = 0.7$. We find that after performing
 220 token sparsification, the complexity of the model is reduced to be similar to its variant with a smaller
 221 embedding dimension. Specifically, we observe that by applying our DynamicViT to DeiT-256, we
 222 obtain a model that has a comparable computational complexity to DeiT-Ti, but enjoys around 4.3%
 223 higher ImageNet top-1 accuracy.

224 **Visualizations.** To further investigate the behavior of DynamicViT, we visualize the sparsification
 225 procedure in Figure 5. We show the original input image and the sparsification results after the three
 226 stages, where the masks represent the corresponding tokens are discarded. We find that through the
 227 hierarchically token sparsification, our DynamicViT can gradually drop the uninformative tokens and
 228 finally focus on the objects in the images. This phenomenon also suggests that the DynamicViT leads
 229 to better interpretability, *i.e.*, it can locate the important parts in the image which contribute most to
 230 the classification step-by-step.

231 Besides the sample-wise visualization we have shown above, we are also interested in the statistical
 232 characteristics of the sparsification decisions, *i.e.*, what kind of general patterns does the DynamicViT
 233 learn from the dataset? We then use the DynamicViT to generate the decisions for all the images in
 234 the ImageNet validation set and compute the keep probability of each token in all three stages, as
 235 shown in Figure 6. We average pool the probability maps into 7×7 such that they can be visualized
 236 more easily. Unsurprisingly, we find the tokens in the middle of the image tend to be kept, which is
 237 reasonable because in most images the objects are located in the center. We can also find that the
 238 later stage generally has lower probabilities to be kept, mainly because that the keeping ratio at the s
 239 stage is ρ^s , which decreases exponentially as s increases.

240 **Comparisons of different sparsification strategy.** As illustrated in Figure 2, the dynamic token
 241 sparsification is unstructured. To discuss whether the dynamic sparsification is better than other
 242 strategies, we perform ablation experiments and the results are shown in Table 3. For the structural
 243 downsampling, we perform an average pooling with kernel size 2×2 after the sixth block of

Figure 5: **Visualization of the progressively sparsified tokens.** We show the original input image and the sparsification results after the three stages, where the masks represent the corresponding tokens are discarded. We see our method can gradually focus on the most representative regions in the image. This phenomenon suggests that the DynamicViT has better interpretability.

Table 3: Comparisons among the DeiT-S, structural downsampling and static/dynamic token sparsification.

Model	Acc (%)	GFLOPs
DeiT-S [21]	79.8	4.6
Structural	78.2(-1.6)	2.9(-37%)
Static	73.4(-6.4)	2.9(-37%)
Dynamic	79.3(-0.5)	2.9(-37%)

Figure 6: The keep probabilities of the tokens at each stage.

244 the baseline DeiT-S [21] model, which has similar FLOPs to our DynamicViT. The static token
 245 sparsification means that the sparsification decisions are not conditioned on the input tokens. We find
 246 through the experiments that although the three strategies have similar computational complexities,
 247 the dynamic token sparsification achieves the best accuracy.

248 5 Conclusion

249 In this work, we open a new path to accelerate vision transformer by exploiting the sparsity of
 250 informative patches in the input image. For each input instance, our DynamicViT model prunes the
 251 tokens of less importance in a dynamic way according to the customized binary decision mask output
 252 from the lightweight prediction module, which fuses the local and global information containing in
 253 the tokens. The prediction module is added to multiple layers such that the token pruning is performed
 254 in a hierarchical way. Gumbel-Softmax and attention masking techniques are also incorporated for
 255 the end-to-end training of the transformer model together with the prediction module. During the
 256 inference phase, our approach can greatly improves the efficiency by gradually abandoning 66% of
 257 the input tokens, while the drop of accuracy is less than 0.5% for different transformer backbone. In
 258 this paper, we focus on the image classification task. Extending our method to other scenarios like
 259 video classification and dense prediction tasks can be interesting directions.

260 **References**

261 [1] Andrew Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-
262 scale image recognition without normalization. *arXiv preprint arXiv:2102.06171*, 2021. 7

263 [2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
264 Sergey Zagoruyko. End-to-end object detection with transformers. In *ECCV*, pages 213–229,
265 2020. 3

266 [3] Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
267 *arXiv preprint arXiv:2012.09838*, 2020. 2

268 [4] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vision
269 transformer for image classification. *arXiv preprint arXiv:2103.14899*, 2021. 7

270 [5] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xiaolin Wei, Huaxia Xia, and
271 Chunhua Shen. Conditional positional encodings for vision transformers. *arXiv preprint
arXiv:2102.10882*, 2021. 7

273 [6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
274 hierarchical image database. In *CVPR*, pages 248–255, 2009. 3, 6

275 [7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
276 Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
277 Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
278 recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020. 3, 7

279 [8] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
280 networks using vector quantization. *arXiv preprint arXiv:1412.6115*, 2014. 3

281 [9] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang.
282 Star-transformer. *arXiv preprint arXiv:1902.09113*, 2019. 3

283 [10] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
284 transformer. *arXiv preprint arXiv:2103.00112*, 2021. 7

285 [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
286 recognition. In *CVPR*, pages 770–778, 2016. 1

287 [12] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
288 networks. In *ICCV*, pages 1389–1397, 2017. 3

289 [13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
290 *arXiv preprint arXiv:1503.02531*, 2015. 3

291 [14] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
292 In *ICLR*, 2017. 2, 5

293 [15] Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Xiaojie Jin, Anran Wang, and Jiashi Feng.
294 Token labeling: Training a 85.5% top-1 accuracy vision transformer with 56m parameters on
295 imagenet. *arXiv preprint arXiv:2104.10858*, 2021. 2, 3, 6, 7

296 [16] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
297 Qun Liu. Tinybert: Distilling bert for natural language understanding. *arXiv preprint
arXiv:1909.10351*, 2019. 3

299 [17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
300 convolutional neural networks. *NeurIPS*, 25:1097–1105, 2012. 1

301 [18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
302 Guo. Swin transformer: Hierarchical vision transformer using shifted windows. *arXiv preprint
arXiv:2103.14030*, 2021. 1, 7

304 [19] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
305 network design spaces. In *CVPR*, pages 10428–10436, 2020. 7

306 [20] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
307 networks. In *ICML*, pages 6105–6114. PMLR, 2019. 7, 8

308 [21] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
309 Hervé Jégou. Training data-efficient image transformers & distillation through attention. *arXiv*
310 *preprint arXiv:2012.12877*, 2020. 1, 2, 3, 6, 7, 8, 9

311 [22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
312 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *arXiv preprint arXiv:1706.03762*,
313 2017. 3, 5

314 [23] Wenhui Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
315 Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction
316 without convolutions. *arXiv preprint arXiv:2102.12122*, 2021. 7

317 [24] Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-scale conv-attentional image
318 transformers. *arXiv preprint arXiv:2104.06399*, 2021. 7

319 [25] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by
320 low rank and sparse decomposition. In *CVPR*, pages 7370–7379, 2017. 3

321 [26] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay,
322 Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
323 on imagenet. *arXiv preprint arXiv:2101.11986*, 2021. 7

324 [27] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
325 Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*,
326 2020. 1