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Abstract

Attention is sparse in vision transformers. We observe the final prediction in1

vision transformers is only based on a subset of most informative tokens, which is2

sufficient for accurate image recognition. Based on this observation, we propose a3

dynamic token sparsification framework to prune redundant tokens progressively4

and dynamically based on the input. Specifically, we devise a lightweight prediction5

module to estimate the importance score of each token given the current features.6

The module is added to different layers to prune redundant tokens hierarchically. To7

optimize the prediction module in an end-to-end manner, we propose an attention8

masking strategy to differentiably prune a token by blocking its interactions with9

other tokens. Benefiting from the nature of self-attention, the unstructured sparse10

tokens are still hardware friendly, which makes our framework easy to achieve11

actual speed-up. By hierarchically pruning 66% of the input tokens, our method12

greatly reduces 31% ∼ 37% FLOPs and improves the throughput by over 40%13

while the drop of accuracy is within 0.5% for various vision transformers. Equipped14

with the dynamic token sparsification framework, DynamicViT models can achieve15

very competitive complexity/accuracy trade-offs compared to state-of-the-art CNNs16

and vision transformers on ImageNet.17

1 Introduction18

These years have witnessed the great progress in computer vision brought by the evolution of CNN-19

type architectures [11, 17]. Some recent works start to replace CNN by using transformer for many20

vision tasks, like object detection [27, 18] and classification [21]. Just like what has been done to the21

CNN-type architectures in the past few years, it is also desirable to accelerate the transformer-like22

models to make them more suitable for real-time applications.23

One common practice for the acceleration of CNN-type networks is to prune the filters that are of less24

importance. The way input is processed by the vision transformer and its variants, i.e. splitting the25

input image into multiple independent patches, provides us another orthogonal way to introduce the26

sparsity for the acceleration. That is, we can prune the tokens of less importance in the input instance,27

given the fact that many tokens contribute very little to the final prediction. This is only possible for28

the transformer-like models where the self-attention module can take the token sequence of variable29

length as input, and the unstructured pruned input will not affect the self-attention module, while30

dropping a certain part of the pixels can not really accelerate the convolution operation since the31

unstructured neighborhood used by convolution would make it difficult to accelerate through parallel32

computing. Since the hierarchical architecture of CNNs with structural downsampling has improved33

model efficiency in various vision tasks, we hope to explore the unstructured and data-dependent34

downsampling strategy for vision transformers to further leverage the advantages of self-attention35

(our experiments also show unstructured sparsification can lead to better performance for vision36
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Figure 1: Illustration of our main idea. CNN models usually leverage the structural downsam-
pling strategy to build hierarchical architectures as shown in (a). unstructured and data-dependent
downsampling method in (b) can better exploit the sparsity in the input data. Thanks to the nature
of the self-attention operation, the unstructured token set is also easy to accelerate through parallel
computing. (c) visualizes the impact of each spatial location on the final prediction in the DeiT-S
model [21] using the visualization method proposed in [3]. These results demonstrate the final
prediction in vision transformers is only based on a subset of most informative tokens, which suggests
a large proportion of tokens can be removed without hurting the performance.

transformers compared to structural downsampling). The basic idea of our method is illustrated in37

Figure 1.38

In this work, we propose to employ a lightweight prediction module to determine which tokens to be39

pruned in a dynamic way, dubbed as DynamicViT. In particular, for each input instance, the prediction40

module produces a customized binary decision mask to decide which tokens are uninformative and41

need to be abandoned. This module is added to multiple layers of the vision transformer, such that42

the sparsification can be performed in a hierarchical way as we gradually increase the amount of43

pruned tokens after each prediction module. Once a token is pruned after a certain layer, it will not44

be ever used in the feed-forward procedure. The additional computational overhead introduced by45

this lightweight module is quite small, especially considering the computational overhead saved by46

eliminating the uninformative tokens.47

This prediction module can be optimized jointly in an end-to-end manner together with the vision48

transformer backbone. To this end, two specialized strategies are adopted. The first one is to adopt49

Gumbel-Softmax [14] to overcome the non-differentiable problem of sampling from a distribution so50

that it is possible to perform the end-to-end training. The second one is about how to apply this learned51

binary decision mask to prune the unnecessary tokens. Considering the number of zero elements52

in the binary decision mask is different for each instance, directly eliminating the uninformative53

tokens for each input instance during training will make parallel computing impossible. Moreover,54

this would also hinder the back-propagation for the prediction module, which needs to calculate the55

probability distribution of whether to keep the token even if it is finally eliminated. Besides, directly56

setting the abandoned tokens as zero vectors is also not a wise idea since zero vectors will still affect57

the calculation of the attention matrix. Therefore, we propose a strategy called attention masking58

where we drop the connection from abandoned tokens to all other tokens in the attention matrix based59

on the binary decision mask. By doing so, we can overcome the difficulties described above. We60

also modify the original training objective of the vision transformer by adding a term to constrain61

the proportion of pruned tokens after a certain layer. During the inference phase, we can directly62

abandon a fixed amount of tokens after certain layers for each input instance as we no longer need to63

consider whether the operation is differentiable, and this will greatly accelerate the inference.64

We illustrate the effectiveness of our method on ImageNet using DeiT [21] and LV-ViT [15] as65

backbone. The experimental results demonstrate the competitive trade-off between speed and66

accuracy. In particular, by hierarchically pruning 66% of the input tokens, we can greatly reduce 31%67
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∼ 37% GFLOPs and improve the throughput by over 40% while the drop of accuracy is within 0.5%68

for all different vision transformers. Our DynamicViT demonstrates the possibility of exploiting the69

sparsity in space for the acceleration of transformer-like model. We expect our attempt to open a new70

path for future work on the acceleration of transformer-like models.71

2 Related Work72

Vision transformers. Transformer model is first widely studied in NLP community [22]. It73

proves the possibility to use self-attention to replace the recurrent neural networks and their variants.74

DETR [2] is the first work to apply the transformer model to vision tasks. It formulates the object75

detection task as a set prediction problem and follows the encoder-decoder design in the transformer76

to generate a sequence of bounding boxes. ViT [7] is the first work to directly apply transformer77

architecture on non-overlapping image patches for the image classification task, and the whole78

framework contains no convolution operation. Compared to CNN-type models, ViT can achieve79

better performance with large-scale pre-training. It is really preferred if the architecture can achieve80

the state-of-the-art without any pre-training. DeiT [21] proposes many training techniques so that we81

can train the convolution-free transformer only on ImageNet1K [6] and achieve better performance82

than ViT. LV-ViT [15] further improves the performance by introducing a new training objective83

called token labeling. Both ViT and its follow-ups split the input image into multiple independent84

image patches and transform these image patches into tokens for further process. This makes it85

feasible to incorporate the sparsity in space dimension for all these transformer-like models. That is86

to say, our method can work for all different types of transformer variants.87

Model acceleration. Model acceleration techniques are important for the deployment of deep88

models on edge devices. There are many techniques can be used to accelerate the inference speed89

of deep model, including quantization [8], pruning [12], low-rank factorization [25], knowledge90

distillation [13] and so on. There are also many works aims at accelerating the inference speed of91

transformer models. For example, TinyBERT [16] proposes a distillation method to accelerate the92

inference of transformer. Star-Transformer [9] reduces quadratic space and time complexity to linear93

by replacing the fully connected structure with a star-shaped topology. However, all these works94

focus on NLP tasks, and few works explore the possibility of making use of the characteristic of95

vision tasks to accelerate vision transformer. Furthermore, the difference between the characteristics96

of Transformer and CNN also makes it possible to adopt another way for acceleration rather than the97

methods used for CNN acceleration like filter pruning [12], which removes non-critical or redundant98

neurons from a deep model. Our method aims at pruning the tokens of less importance instead of the99

neurons by exploiting the sparsity of informative image patches.100

3 Dynamic Vision Transformers101

3.1 Overview102

The overall framework of our DynamicViT is illustrated in Figure 2. Our DynamicViT consists of a103

normal vision transformer as the backbone and several prediction modules. The backbone network104

can be implemented as a wide range of vision transformer (e.g., ViT [7], DeiT [21], LV-ViT [15]).105

The prediction modules are responsible for generating the probabilities of dropping/keeping the106

tokens. The token sparsification is performed hierarchically through the whole network at certain107

locations. For example, given a 12-layer transformer, we can conduct token sparsification before the108

4th, 7th, and 9th blocks. During training, the prediction modules and the backbone network can be109

optimized in an end-to-end manner thanks to our newly devised attention masking strategy. During110

inference, we only need to select the most informative tokens according to a predefined pruning ratio111

and the scores computed by the prediction modules.112

3.2 Hierarchical Token Sparsification with Prediction Modules113

An important characteristic of our DynamicViT is that the token sparsification is performed hierarchi-114

cally, i.e., we gradually drop the uninformative tokens as the computation proceeds. To achieve this,115

we maintain a binary decision mask D̂ ∈ {0, 1}N to indicate whether to drop or keep each token,116
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Figure 2: The overall framework of the proposed approach. The proposed prediction module is
inserted between the transformer blocks to selectively prune less informative token conditioned on
features produced by the previous layer. By doing so, less tokens are processed in the followed layers.

where N = HW is the number of patch embeddings1. We initialize all elements in the decision117

mask to 1 and update the mask progressively. The prediction modules take the current decision D̂118

and the tokens x ∈ RN×C as input. We first project the tokens using an MLP:119

zlocal = MLP(x) ∈ RN×C′
, (1)

where C ′ can be a smaller dimension and we use C ′ = C/2 in our implementation. Similarly, we120

can compute a global feature by:121

zglobal = Agg(MLP(x), D) ∈ RC′
, (2)

where Agg is the function which aggregate the information all the existing tokens and can be simply122

implemented as an average pooling:123

Agg(u, D̂) =

∑N
i=1 D̂iui∑N
i=1 D̂i

, u ∈ RN×C′
. (3)

The local feature encodes the information of a certain token while the global feature contains the124

context of the whole image, thus both of them are informative. Therefore, we combine both the local125

and global features to obtain local-global embeddings and feed them to another MLP to predict the126

probabilities to drop/keep the tokens:127

zi = [zlocali , zglobali ], 1 ≤ i ≤ N, (4)

π = Softmax(MLP(z)) ∈ RN×2, (5)

where πi,0 denotes the probability of dropping the i-th token and πi,1 is the probability of keeping it.128

We can then generate current decision D by sampling from π and update D̂ by129

D̂← D̂�D, (6)

where � is the Hadamard product, indicating that once a token is dropped, it will never be used.130

3.3 End-to-end Optimization with Attention Masking131

Although our target is to perform token sparsification, we find it non-trivial to implement in practice132

during training. First, the sampling from π to get binary decision mask D is is non-differentiable,133

1We omit the class token for simplicity, while in practice we always keep the class token (i.e., the decision
for class token is always “1”).
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which impedes the end-to-end training. To overcome this, we apply the Gumbel-Softmax tech-134

nique [14] to sample from the probabilities π:135

D = Gumbel-Softmax(π)∗,1 ∈ {0, 1}N , (7)

where we use the index “1” because D represents the mask of the kept tokens. The output of Gumbel-136

Softmax is a one-hot tensor, of which the expectation equals π exactly. Meanwhile, Gumbel-Softmax137

is differentiable thus makes it possible for end-to-end training.138

The second obstacle comes when we try to prune the tokens during training. The decision mask D̂ is139

usually unstructured and the masks for different samples contain various numbers of 1’s. Therefore,140

simply discarding the tokens where D̂i = 0 would result in a non-uniform number of tokens for141

samples within a batch, which makes it hard to parallelize the computation. Thus, we must keep the142

number of tokens unchanged, while cut down the interactions between the pruned tokens and other143

tokens. We also find that merely zero-out the tokens to be dropped using the binary mask D̂ is not144

feasible, because in the calculation of self-attention matrix [22]145

A = Softmax

(
QKT

√
C

)
(8)

the zeroed tokens will still influence other tokens through the Softmax operation. To this end, we146

devise a strategy called attention masking which can totally eliminate the effects of the dropped147

tokens. Specifically, we compute the attention matrix by:148

P = QKT /
√
C ∈ RN×N , (9)

Gij =

{
1, i = j,

D̂j , i 6= j.
1 ≤ i, j ≤ N, (10)

Ãij =
exp(Pij)Gij∑N

k=1 exp(Pik)Gik

, 1 ≤ i, j ≤ N. (11)

By Equation (10) we construct a graph where Gij = 1 means the j-th token will contribute to the149

update of the i-th token. Note that we explicitly add a self-loop to each token to improve numerically150

stability. It is also easy to show the self-loop does not influence the results: if D̂j = 0, the j-th151

token will not contribute to any tokens other than itself. Equation (11) computes the masked attention152

matrix Ã, which is equivalent to the attention matrix calculated by considering only the kept tokens153

but has a constant shape N ×N during training.154

3.4 Training and Inference155

We now describe the training objectives of our DynamicViT. The training of DynamicViT includes156

training the prediction modules such that they can produce favorable decisions and fine-tuning the157

backbone to make it adapt to token sparsification. Assuming we are dealing with a minibatch of B158

samples, we adopt the standard cross-entropy loss:159

Lcls = CrossEntropy(y, ȳ), (12)

where y is the prediction of the DynamicViT (after softmax) and ȳ is the ground truth.160

To minimize the influence on performance caused by our token sparsification, we use the original161

backbone network as a teacher model and hope the behavior of our DynamicViT as close to the162

teacher model as possible. Specifically, we consider this constraint from two aspects. First, we make163

the finally remaining tokens of the DynamicViT close to the ones of the teacher model, which can be164

viewed as a kind of self-distillation:165

Ldistill =
1∑B

b=1

∑N
i=1 D̂

b,S
i

B∑
b=1

N∑
i=1

D̂b,S
i (ti − t′i)

2, (13)

where ti and t′i denotes the i-th token after the last block of the DynamicViT and the teacher model,166

respectively. D̂b,s is the decision mask for the b-th sample at the s-th sparsification stage. Second,167

we minimize the difference of the predictions between our DynamicViT and its teacher via the KL168

divergence:169

LKL = KL (y‖y′) , (14)
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Table 1: Main results on ImageNet. We apply our method on three representative vision transform-
ers: DeiT-S, LV-ViT-S and LV-ViT-M. DeiT-S [21] is a widely used vision transformer with the
simple architecture. LV-ViT-S and LV-ViT-M [15] are the state-of-the-art vision transformers. We
report the top-1 classification accuracy, theoretical complexity in FLOPs and throughput for different
ratio ρ. The throughput is measured on a single NVIDIA RTX 3090 GPU with batch size fixed to 32.

Base Model Metrics Keeping Ratio ρ at each stage

1.0 0.9 0.8 0.7

DeiT-S [21]
ImageNet Acc. (%) 79.8 79.8 (-0.0) 79.6 (-0.2) 79.3 (-0.5)
GFLOPs 4.6 4.0 (-14%) 3.4 (-27%) 2.9 (-37%)
Throughput (im/s) 1337.7 1524.8 (+14%) 1774.6 (+33%) 2062.1 (+54%)

LV-ViT-S [15]
ImageNet Acc. (%) 83.3 83.3 (-0.0) 83.2 (-0.1) 83.0 (-0.3)
GFLOPs 6.6 5.8 (-12%) 5.1 (-22%) 4.6 (-31%)
Throughput (im/s) 993.3 1108.3 (+12%) 1255.6 (+26%) 1417.6 (+43%)

LV-ViT-M [15]
ImageNet Acc. (%) 84.0 83.9 (-0.1) 83.9 (-0.1) 83.8 (-0.2)
GFLOPs 12.7 11.1 (-13%) 9.6 (-24%) 8.5 (-33%)
Throughput (im/s) 589.5 688.5 (+17%) 791.2 (+34%) 888.2 (+50%)

where y′ is the prediction of the teacher model.170

Finally, we want to constrain the ratio of the kept tokens to a predefined value. Given a set of target171

ratios for S stages ρ = [ρ(1), . . . , ρ(S)], we utilize an MSE loss to supervise the prediction module:172

Lratio =
1

BS

B∑
b=1

S∑
s=1

(
ρ(s) − 1

N

N∑
i=1

D̂b,s
i

)2

. (15)

The full training objective is a combination of the above objectives:173

L = Lcls + λKLLKL + λdistillLdistill + λratioLratio, (16)

where we set λKL = 0.5, λdistill = 0.5, λratio = 2 in all our experiments.174

During inference, given the target ratio ρ, we can directly discard the less informative tokens via the175

probabilities produced by the prediction modules such that only exact ms = bρsNc tokens are kept176

at the s-th stage. Formally, for the s-th stage, let177

Is = argsort(π∗,1) (17)

be the indices sorted by the keeping probabilities π∗,1, we can then keep the tokens of which the178

indices lie in Is1:ms while discarding the others. In this way, our DynamicViT prunes less informative179

tokens dynamically at runtime, thus can reduce the computational costs during inference.180

4 Experimental Results181

In this section, we will demonstrate the superiority of the proposed DynamicViT through extensive182

experiments. In all of our experiments, we fix the number of sparsification stages S = 3 and apply183

the target keeping ratio ρ as a geometric sequence [ρ, ρ2, ρ3] where ρ ranges from (0, 1). During184

training DynamicViT models, we follow most of the training techniques used in DeiT [21]. We185

use the pre-trained vision transformer models to initialize the backbone models and jointly train the186

whole model for 30 epochs. We set the learning rate of the prediction module to batch size
1024 × 0.001 and187

use 0.01× smaller learning rate for the backbone model. We fix the weights of the backbone models188

in the first 5 epochs. All of our models are trained on a single machine with 8 GPUs. Other training189

setups and details can be found in the supplementary material.190

4.1 Main results191

One of the most advantages of the DynamicViT is that it can be applied to a wide range of vision192

transformer architectures to reduce the computational complexity with minor loss of performance. In193

Table 1, we summarize the main results on ImageNet [6] where we evaluate our DynamicViT used194
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Table 2: Comparisons with the state-of-the-arts on ImageNet. We compare our DynamicViT
models with state-of-the-art image classifciation models with comparable FLOPs and number of
parameters. We use the DynamicViT with LV-ViT [15] as the base model and use the “/ρ” to indicate
the keeping ratio. We also include the results of LV-ViT models as references.

Model Params (M) GFLOPs Resolution Top-1 Acc (%)

DeiT-S [21] 22.1 4.6 224 79.8
PVT-Small [23] 24.5 3.8 224 79.8
CoaT Mini [24] 10.0 6.8 224 80.8
CrossViT-S [4] 26.7 5.6 224 81.0
PVT-Medium [23] 44.2 6.7 224 81.2
Swin-T [18] 29.0 4.5 766 81.3
T2T-ViT-14 [26] 22.0 5.2 224 81.5
CPVT-Small-GAP [5] 23.0 4.6 817 81.5
CoaT-Lite Small [24] 20.0 4.0 224 81.9

LV-ViT-S [15] 26.2 6.6 224 83.3
DynamicViT-LV-S/0.5 26.9 3.7 224 82.0
DynamicViT-LV-S/0.7 26.9 4.6 224 83.0

RegNetY-8G [19] 39.0 8.0 224 81.7
T2T-ViT-19 [26] 39.2 8.9 224 81.9
Swin-S [18] 50.0 8.7 224 83.0
EfficientNet-B5 [20] 30.0 9.9 456 83.6
NFNet-F0 [1] 72.0 12.4 256 83.6

DynamicViT-LV-M/0.7 57.1 8.5 224 83.8

ViT-Base/16 [7] 86.6 17.6 224 77.9
DeiT-Base/16 [21] 86.6 17.6 224 81.8
CrossViT-B [4] 104.7 21.2 224 82.2
T2T-ViT-24 [26] 64.1 14.1 224 82.3
TNT-B [10] 66.0 14.1 224 82.8
RegNetY-16G [19] 84.0 16.0 224 82.9
Swin-B [18] 88.0 15.4 224 83.3

LV-ViT-M [15] 55.8 12.7 224 84.0
DynamicViT-LV-M/0.8 57.1 9.6 224 83.9

three base models (DeiT-S [21], LV-ViT-S [15] and LV-ViT-M [15]). We report the top-1 accuracy,195

FLOPs, and the throughput under different keeping ratios ρ. Note that our token sparsification196

is performed hierarchically in three stages, there are only bNρ3c tokens left after the last stage.197

The throughput is measured on a single NVIDIA RTX 3090 GPU with batch size fixed to 32.198

We demonstrate that our DynamicViT can reduce the computational costs by 31% ∼ 37% and199

accelerate the inference at runtime by 43% ∼ 54%, with the neglectable influence of performance200

(−0.2% ∼ −0.5%).201

4.2 Comparisons with the-state-of-the-arts202

In Table 2, we compare the DynamicViT with the state-of-the-art models in image classification,203

including convolutional networks and transformer-like architectures. We use the DynamicViT with204

LV-ViT [15] as the base model and use the “/ρ” to indicate the keeping ratio. We observe that205

our DynamicViT exhibits favorable complexity/accuracy trade-offs at all three complexity levels.206

Notably, we find our DynamicViT-LV-M/0.7 beats the EfficientNet-B5 [20] and NFNet-F0 [1], which207

are two of the current state-of-the-arts CNN architectures. This can also be shown clearer in Figure 3,208

where we plot the FLOPS-accuracy curve of DynamicViT series (where we use DyViT for short),209

along with other state-of-the-art models. We can also observe that DynamicViT can achieve better210

trade-offs than LV-ViT series, which strongly demonstrates the effectiveness of our method.211
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Figure 3: Model complexity (FLOPs) and top-1 ac-
curacy trade-offs on ImageNet. We compare Dynam-
icViT with the state-of-the-art image classification
models. Our models achieve better trade-offs com-
pared to the various vision transformers as well as
carefully desigend CNN models.

Figure 4: Comparison of our dynamic token sparsi-
fication method with model width scaling. We train
our DynamicViT based on DeiT models with embed-
ding dimension varying from 192 to 384 and key ratio
ρ = 0.7. We see dynamic token sparsification is more
efficient than commonly used model width scaling.

4.3 Analysis212

DynamicViT for model scaling. The success of EfficientNet [20] shows that we can obtain a213

model with better complexity/accuracy tradeoffs by scaling the model along different dimensions.214

While in vision transformers, the most commonly used method to scale the model is to change the215

number of channels, our DynamicViT provides another powerful tool to perform token sparsification.216

We analysis this nice property of DynamicViT in Figure 4. First, we train several DeiT [21] models217

with the embedding dimension varying from 192 (DeiT-Ti) to 384 (DeiT-S). Second, we train our218

DynamicViT based on those models with the keeping ratio ρ = 0.7. We find that after performing219

token sparsification, the complexity of the model is reduced to be similar to its variant with a smaller220

embedding dimension. Specifically, we observe that by applying our DynamicViT to DeiT-256, we221

obtain a model that has a comparable computational complexity to DeiT-Ti, but enjoys around 4.3%222

higher ImageNet top-1 accuracy.223

Visualizations. To further investigate the behavior of DynamicViT, we visualize the sparsification224

procedure in Figure 5. We show the original input image and the sparsification results after the three225

stages, where the masks represent the corresponding tokens are discarded. We find that through the226

hierarchically token sparsification, our DynamicViT can gradually drop the uninformative tokens and227

finally focus on the objects in the images. This phenomenon also suggests that the DynamicViT leads228

to better interpretability, i.e., it can locate the important parts in the image which contribute most to229

the classification step-by-step.230

Besides the sample-wise visualization we have shown above, we are also interested in the statistical231

characteristics of the sparsification decisions, i.e., what kind of general patterns does the DynamicViT232

learn from the dataset? We then use the DynamicViT to generate the decisions for all the images in233

the ImageNet validation set and compute the keep probability of each token in all three stages, as234

shown in Figure 6. We average pool the probability maps into 7× 7 such that they can be visualized235

more easily. Unsurprisingly, we find the tokens in the middle of the image tend to be kept, which is236

reasonable because in most images the objects are located in the center. We can also find that the237

later stage generally has lower probabilities to be kept, mainly because that the keeping ratio at the s238

stage is ρs, which decreases exponentially as s increases.239

Comparisons of different sparsification strategy. As illustrated in Figure 2, the dynamic token240

sparsification is unstructured. To discuss whether the dynamic sparsification is better than other241

strategies, we perform ablation experiments and the results are shown in Table 3. For the structural242

downsampling, we perform an average pooling with kernel size 2 × 2 after the sixth block of243
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Figure 5: Visualization of the progressively sparsified tokens. We show the original input image
and the sparsification results after the three stages, where the masks represent the corresponding
tokens are discarded. We see our method can gradually focus on the most representative regions in
the image. This phenomenon suggests that the DynamicViT has better interpretability.

Table 3: Comparisons among the
DeiT-S, structural downsampling and
static/dynamic token sparsification.

Model Acc (%) GFLOPs

DeiT-S [21] 79.8 4.6

Structural 78.2(-1.6) 2.9(-37%)
Static 73.4(-6.4) 2.9(-37%)

Dynamic 79.3(-0.5) 2.9(-37%)

stage 1

keep
probability

stage 3stage 2

Figure 6: The keep probabilities of the tokens at each stage.

the baseline DeiT-S [21] model, which has similar FLOPs to our DynamicViT. The static token244

sparsification means that the sparsification decisions are not conditioned on the input tokens. We find245

through the experiments that although the three strategies have similar computational complexities,246

the dynamic token sparsification achieves the best accuracy.247

5 Conclusion248

In this work, we open a new path to accelerate vision transformer by exploiting the sparsity of249

informative patches in the input image. For each input instance, our DynamicViT model prunes the250

tokens of less importance in a dynamic way according to the customized binary decision mask output251

from the lightweight prediction module, which fuses the local and global information containing in252

the tokens. The prediction module is added to multiple layers such that the token pruning is performed253

in a hierarchical way. Gumbel-Softmax and attention masking techniques are also incorporated for254

the end-to-end training of the transformer model together with the prediction module. During the255

inference phase, our approach can greatly improves the efficiency by gradually abandoning 66% of256

the input tokens, while the drop of accuracy is less than 0.5% for different transformer backbone. In257

this paper, we focus on the image classification task. Extending our method to other scenarios like258

video classification and dense prediction tasks can be interesting directions.259
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