
Rank Diminishing in Deep Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

The rank of neural networks measures information flowing across layers. It is1

an instance of a key structural condition that applies across broad domains of2

machine learning. In particular, the assumption of low-rank feature representations3

led to algorithmic developments in many architectures. For neural networks,4

however, the intrinsic mechanism that yields low-rank structures remains vague and5

unclear. To fill this gap, we perform a rigorous study on the behavior of network6

rank, focusing particularly on the notion of rank deficiency. We theoretically7

establish a universal monotone decreasing property of network ranks from the8

basic rules of differential and algebraic composition, and uncover rank deficiency9

of network blocks and deep function coupling. By virtue of our numerical tools,10

we provide the first empirical analysis of the per-layer behavior of network ranks11

in realistic settings, i.e., ResNets, deep MLPs, and Transformers on ImageNet.12

These empirical results are in direct accord with our theory. Furthermore, we reveal13

a novel phenomenon of independence deficit caused by the rank deficiency of14

deep networks, where classification confidence of a given category can be linearly15

decided by the confidence of a handful of other categories. The theoretical results16

of this work, together with the empirical findings, may advance understanding of17

the inherent principles of deep neural networks.18

1 Introduction19

In mathematics, the rank of a smooth function measures the volume of independent information20

captured by the function [20]. Deep neural networks are highly smooth functions, thus the rank21

of a network has long been an essential concept in machine learning that underlies many tasks22

such as information compression [46, 54, 35, 52, 47], network pruning [31, 53, 5, 24, 9], data23

mining [6, 23, 10, 55, 17, 28], computer vision [57, 56, 30, 26, 28, 58], and natural language24

processing [8, 27, 7, 11]. Numerous methods are either designed to utilize the mathematical property25

of network ranks, or are derived from an assumption that low-rank structures are to be preferred.26

Yet a rigorous investigation to the behavior of rank of general networks, combining both theoretical27

and empirical arguments, is still absent in current research, weakening our confidence in the being able28

to predict performance. To the best of our knowledge, there are only a few previous works discussing29

the rank behavior of specific network architectures, like attention blocks [14] and BatchNorms [12, 4]30

in pure MLP structures. The empirical validation of those methods are also limited to shallow31

networks, specific architectures, or merely the final layers of deep networks, leaving the global32

behavior of general deep neural networks mysterious due to prohibitive space-time complexity for33

measuring them. Rigorous work on network rank that combines both strong theoretical and empirical34

evidence would have significant implications.35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

In this paper, we make several contributions towards this challenging goal. We find that the two36

essential ingredients of deep learning, the chain rule of differential operators and matrix multiplication,37

are enough to establish a universal principle—that network rank decreases monotonically in the depth38

of the network. Two factors further enhance the speed of decrease: a) the explicit rank deficiency39

of many frequently used network modules, and b) an intrinsic potential of spectrum centralization40

enforced by the nature of coupling of massive functions. To empirically validate our theory, we41

design numerical tools to efficiently and economically examine the rank behavior of deep neural42

networks. This is a non-trivial task, as rank is very sensitive to noise and perturbation, and computing43

ranks of large networks is computationally prohibitive in time and space. Finally, we uncover an44

interesting phenomenon of independence deficit in multi-class classification networks. We find that45

many classes do not have their own unique representations in the classification network, and some46

highly irrelevant classes can decide the outputs of others. This independence deficit can significantly47

diminish the performance of networks in generalized data domains where each class demands a48

unique representation. In conclusion, the results of this work, together with the numerical tools49

we invent, may advance understanding of intrinsic properties of deep neural networks, and provide50

foundations for a broad study of low-dimensional structures in machine learning.51

2 Preliminaries52

Settings We consider the general deep neural network with L layers. It is a smooth vector-valued53

function F : Rn → Rd, where Rn and Rd are the ambient space of inputs and outputs, respectively.54

Deep neural networks are coupling of multiple layers, thus we write F as:55

F = fL ◦ fL−1 ◦ · · · ◦ f1. (1)

For simplicity, we further write the k-th sub-network1 of F as56

Fk = fk ◦ · · · ◦ f1, (2)

and we use Fk = Fk(X) to denote the feature space of the k-th sub-network on the data domain X .57

We are more interested in the behavior of network rank in the feature spaces rather than scalar outputs58

(which trivially have rank 1). Thus for classification or regression networks that output a scalar value,59

we will consider F = FL as the transformation from the input space to the final feature space instead.60

Thus, we always have n≫ 1 and d≫ 1. For example, for ResNet-50 [18] architecture on ImageNet,61

we only consider the network slice from the inputs to the last feature layer of 2,048 units.62

Rank of Function The rank of a function f = (f1, ...,fd)
T : Rn → Rd refers to the rank of its63

Jacobi matrix Jf over its input domain X , which is defined as64

Rank(f) = Rank(Jf) = Rank ((∂fi(x)/∂xj)n×d) . (3)

The rank of a function represents the volume of information captured by it in the output [20]. That is65

why it is so important to investigate the behavior of neural networks and many practical applications.66

Theoretically, by the Rank Theorem and Sard’s Theorem of manifolds [20], we can know that rank of67

the function equals the intrinsic dimension of its output feature space, as captured by the following68

lemma.269

Lemma 1. Suppose that f : Rn → Rd is smooth almost everywhere. Let Rank(f) = r. If data70

domain X is a manifold embedded in Rn and ϕ : U → O is a smooth bijective parameterization from71

an open subset U ⊂ Rs to an open subset O ⊂ X , then we have dim(f(X)) = Rank(Jf◦ϕ) ≤ r.72

Thus, the rank of function f gives an upper bound for the intrinsic dimension dim(f(X)) of the73

output space.74

It is worth mentioning that the intrinsic dimension dim(f(X)) of the feature space is usually hard to75

measure, so the rank of the network gives an operational estimate of it.76

1In this paper, sub-network means network slice from the input to some intermediate feature layer; layer
network means an independent component of the network, without skip connections from the outside to it, like
bottleneck layer of ResNet-50.

2Due to space limitation, all the related proofs are attached in the supplementary material.

2

3 Numerical Tools77

Validating the rank behavior of deep neural networks is a challenging task because it involves78

operations of high complexity on large-scale non-sparse matrices, which is infeasible both in time79

and space. Computing the full Jacobian representation of sub-networks of ResNet-50, for example,80

consumes over 150G GPU memory and several days at a single input point. In accuracy, this is81

even more challenging as rank is very sensitive to small perturbations. The digital accuracy of82

float32, 1.19e− 7 [38], cannot be trivially neglected in computing matrix ranks. Thus, in this section83

we establish some numerical tools for validating our subsequent arguments, and provide rigorous84

theoretical support for them.85

3.1 Numerical Rank: Stable Alternative to Rank86

The rank of large matrices is known to be unstable: it varies significantly under even small noise87

perturbations [40]. Matrices perturbed by even small Gaussian noises are almost surely of full rank,88

regardless of the true rank of the original matrix. Thus in practice we have to use an alternative: we89

count the number of singular values larger than some given threshold ϵ as the numerical rank of the90

matrix. LetW ∈ Rn×d be a given matrix. Its numerical rank with tolerance ϵ is91

Rankϵ(W) = #{i ∈ N+ : i ≤ min{n, d}, σi ≥ ϵ∥W ∥2}, (4)
where ∥W ∥2 is the ℓ2 norm (spectral norm) of matrix W , σi, i = 1, ...,min{n, d} are its singular92

values, and # is the counting measure for finite sets. We can prove that the numerical rank is stable93

under small perturbations. Based on Weyl inequalities [48], we have the following theorem.94

Theorem 1. For any given matrixW , almost every tolerance ϵ > 0, and any perturbation matrixD,95

there exists a positive constant δmax(ϵ) such that ∀δ ∈ [0, δmax(ϵ)), Rankϵ(W+δD) = Rankϵ(W).96

If W is a low-rank matrix without random perturbations, then there is a ϵmax such that for any97

ϵ < ϵmax, Rankϵ(W + δD) = Rankϵ(W) = Rank(W) for all δ ∈ [0, δmax(ϵ)).98

This property of the numerical rank metric makes it a suitable tool for investigating the rank behavior99

of neural networks. Possible small noises can be filtered out in Jacobian matrices of networks by100

using numerical rank. It is worth mentioning that random matrices no longer have full rank almost101

surely under the numerical rank. Instead their rank distribution can be inferred from the well-known102

Marcenko–Pastur distribution [33] of random matrices. So under numerical rank, low-rank matrices103

will be commonly seen. In this paper, we always use the numerical rank when measuring ranks.104

3.2 Partial Rank of the Jacobian: Estimating Lower Bound of Lost Rank in Deep Networks105

To enable the validation of trend of the network ranks, we propose to compute only the rank of106

sub-matrices of the Jacobian as an alternative. Those sub-matrices are also the Jacobian matrices107

with respect to a fixed small patch of inputs. Rigorously, given a function f and its Jacobian Jf , we108

denote partial rank of the Jacobian as the rank of a sub-matrix of the Jacobian that consists of the109

j1-th, j2-th,...,jK-th column of the original Jacobian110

PartialRank(Jf) = Rank(Sub(Jf , j1, ..., jK)) = Rank((∂fi/∂xjk)d×K), (5)
where 1 ≤ j1 < . . . < jK ≤ n. We can efficiently compute sub-matrix of the Jacobian by zero111

padding to small patches of input images. For any data point x ∈ Rn, let Sub(x, j1, ..., jK) =112

(xj1 , ...,xjK)T ∈ RK , and ψ pad Sub(x, j1, ..., jK) to the spatial size of x with zeros:113

ψ(Sub(x, j1, ..., jK)) = (0, .., 0,xj1 , 0, ...,xjK , 0, ..., 0)
T ∈ Rn with ψ(Sub(x, j1, ..., jK))jk =114

xjk , k = 1, ...,K. We then have Jf◦ψ = Sub(Jf , j1, ..., jK). As K can be very small compared115

with n, computing Jf◦ψ can be very cheap in time and space. The partial rank of Jacobian matrices116

of the network layers measures information captured among the spatial footprint j1, ..., jK of the117

original input. They inherit the order relation of the rank of full Jacobian matrices. Thus we can118

validate the rank diminishing of network Jacobian matrices through the partial rank.119

Lemma 2. For differentiable f1,f2, |Rank(f1)−Rank(f2◦f1)| ≥ |Rank(Sub(f1, j1, . . . , jK))−120

Rank(Sub(f2 ◦ f1, j1, . . . , jK))|,∀1 ≤ K ≤ n, 1 ≤ j1, . . . , jK ≤ n. Thus variance of partial121

ranks of adjacent sub-networks gives a lower bound on the variance of their ranks.122

3

3.3 Classification Dimension: Estimating Final Feature Dimension123

Measuring the intrinsic dimension of feature manifolds is known to be intractable. So we turn to124

an approximation procedure. For most classification networks, a linear regression over the final125

feature manifold decides the final network prediction and accuracy. So we can estimate the intrinsic126

dimension as the minimum number of principal components in the final feature space to preserve a127

high classification accuracy. Given network slice F : Rn → Rd from input X ⊂ Rn to final feature128

space F (X) ⊂ Rd, we independently sample N points from random variable F (x),x ∼ PX , where129

PX is the distribution of validation set of data X . We then compute the covariance matrix Σ of those130

N samples, and eigenvectors q1, . . . , qd of Σ, sorted by their eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd.131

Let cls : Rd → Rc be the classification predictions based on the final feature representation F (x),132

Prok be projection operator in Euclidean space that projects to the linear subspace spanned by top-K133

eigenvectors q1, ..., qk, k ≤ d, Px,y be the joint distribution of sample x and its label y, and 1cond134

the indicator for condition cond. The classification dimension is then defined as135

ClsDim(F (X)) = mink{k : E(x,y)∼PX ,Y [1Cls(Prok(F (x)))==y] ≥ 1− ϵ}, (6)

which is the minimum dimensionality needed to reconstruct the classification accuracy of the whole136

model.137

4 Principle of Rank Diminishing138

We turn to the principle of rank diminishing. We first give a universal justification with minimum139

limitation on the network, so that we can safely apply this principle to many practical scenarios.140

The principle of rank diminishing describes the behavior of general neural networks with almost141

everywhere smooth components, which exhibits the monotone decrease of network ranks and intrinsic142

dimensionality of feature manifolds as follows.143

Theorem 2 (Principle of Rank Diminishing). Suppose each layer fi, i = 1, ..., L of network F is144

almost everywhere smooth, data domain X is a manifold, then both the rank of sub-networks and145

intrinsic dimension of feature manifolds decrease monotonically by depth:146

Rank(f1) ≥ Rank(f2 ◦ f1) ≥ ... ≥ Rank(fL−1 ◦ ... ◦ f1) ≥ Rank(FL), (7)
147

dim(X) ≥ dim(F1) ≥ dim(F2) ≥ ... ≥ dim(FL). (8)

Short Argument that the Principle Should Hold Universally. Theorem 2 is ultra intrinsic for148

deep neural networks. It comes directly from the chain rules of differential and basic rules of matrix149

multiplications. The basic rule of matrix multiplication tells that, for any two matricesA andB, we150

have Rank(AB) ≤ min{Rank(A),Rank(B)} [21]. Taking this into the chain rule of differential151

of JF = JfLJfL−1 ...Jf1 , we then have Rank(JFk
) = Rank(Jfk◦Fk−1

) = Rank(JfkJFk−1
) ≤152

Rank(JFk−1
), k = 2, ..., L, which is Eq. (7). Applying Lemma 1 to Eq. (7) then yields Eq. (8).153

Chance of Equal Signs Holding is Small. A hypothetical but not practical concern would be that,154

is it possible that most of the equal signs of Eqs. (7) and (8) hold, so that the rank of network remains155

no significant dropping throughout the network? This concern can be mitigated by empirical and156

theoretical arguments. In what follows we will find that, 1) in practice, the rank of sub-networks157

decreases significantly after applying subsequent layers as shown in Fig. 1, and 2) in theory, there are158

two strong impetuses in deep neural networks to enforce strict decreasing of ranks which we will159

discuss in Secs. 4.1 and 4.2.160

4.1 Structural Impetus of Strict Decreasing161

Numerous explicit structures of the network layers can lead to a strict decrease in network ranks.162

Specifically, the following theorem gives a condition for the strictly greater signs to hold in the163

principle of rank diminishing.164

4

Arch. Network Activ. #Param. Main Block #Layer Top-1 Acc.

ResNets ResNet-18 [18] ReLU [36] 11.7M Bottleneck 11 69.8%
ResNet-50 [18] ReLU [36] 25.6M Bottleneck 19 76.1%

MLP-like GluMixer-24 [41] SiLU [19] 25.0M Mixer-Block 24 78.1%
ResMLP-S24 [44] GELU [19] 30.0M Mixer-Block 24 79.4%

Transformer ViT-T [15] GELU [19] 5.7M ViT-Block 13 75.5%
Swin-T [32] GELU [19] 29.0M Swin-Block 18 81.3%

Table 1: Information of networks used in empirical validations. All pretrained on ImageNet.

GluMixer-24
ResMLP-S24

The 𝒊-th Layer of MLP-Mixers

P
ar

ti
al

 R
an

k

P
ar

ti
al

 R
an

k

P
ar

ti
al

 R
an

k

ResNet-18
ResNet-50

The 𝒊-th Layer of TransformersThe 𝒊-th Layer of ResNets

(a) Rank Histogram for ResNets (b) Rank Histogram for MLP-Mixers (c) Rank Histogram for Transformers

Swin-T
ViT-T

Jacobi
Feature

R
an

k/
D

im
en

si
on

The Number of FC layers

R
an

k/
D

im
en

si
on

The Number of FC layers

(d) Normal 𝒩 (0,0.02) Initialization (e) Kaiming Normal Initialization

R
an

k/
D

im
en

si
on

The Number of FC layers

(f) Xavier Normal Initialization

Jacobi
Feature

Jacobi
Feature

Figure 1: Partial rank of Jacobian matrices of CNN, MLP, and Transformer architecture networks for
different layers on ImageNet (top row); rank of Jacobian matrices and feature dimensions of linear
MLP network following conditions of Theorem 5 (bottom rule). All the models show a similar trend
of exponential decreasing of ranks as predicted by Theorems 4 and 5.

Theorem 3. 3 Roughly speaking, if almost everywhere on the input feature manifold, there is a165

direction such that moving along this direction keeps the output invariant, then the intrinsic dimension166

of the output feature manifold will be strictly lower than that of the input. The maximum number of167

independent such directions gives a lower bound on the number of lost intrinsic dimensions.168

By this theorem, one can immediately find that most frequently used layer designs have high169

risk in inducing strict decreasing of network ranks. Normalization layers like LayerNorm [2],170

InstanceNorm [45], and BatchNorm [25] may lose dimensions modestly, as the output feature171

remains invariant along the normalized direction at each point. Linear layers like convolutions, linear172

transformations (e.g. dense layers), and attentions, can lose rank considerably according to the rank173

of their weight matrices. They constitute the explicit structural impetus to decrease network ranks174

and intrinsic dimensions of feature manifolds.175

4.2 Implicit Impetus of Strict Decreasing176

Apart from the structural impetus we propose in Sec. 4.1, there is a more intrinsic strength to pull177

down network ranks, which we call the implicit impetus. Deep neural networks repeatedly apply178

layer networks from a fixed function pool (ReLU, MLP, CNN, attention, ResNet block, etc.) to179

the input data and intermediate features to get outputs. Such paradigm accords with the cocycle180

dynamic systems studied by Lyapunov et al. [42, 50], where the Furstenberg–Kesten theorem [16]181

and multiplicative ergodic theorem [39] prove that logarithms of singular values divided by evolution182

3The rigorous version is given in the supplementary material.

5

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
) ResNet-18

ResNet-50

Percentage of principal components (%)

(a) Subspace Accuracy of ResNets

Percentage of principal components (%)

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
) GluMixer-24

ResMLP-S24

(b) Subspace Accuracy of MLP-Mixers

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Percentage of principal components (%)

(c) Subspace Accuracy of Transformers

Swin-T
ViT-T

Figure 2: Classification Accuracy (top-1) of using subspaces spanned by top-k% eigenvectors
(principal components) of the final feature manifolds. For all networks a small percentage (see Tab. 2)
of eigenvectors are enough to reproduce the classification accuracy of the whole network, indicating
a low intrinsic dimension of final feature manifolds. Note that the x-axes are non-linear.

Networks ResNet-18 ResNet-50 GluMixer-24 ResMLP-S24 Swin-T ViT-T

ClsDim 149 131 199 196 344 109

Ambient Dim. 512 2048 384 384 768 192
Table 2: Classification dimensions (with respect to 95% classification performance of the ambient
feature space Rd) and ambient dimensions of the final feature manifolds of different networks. All
networks have low intrinsic dimensions for final features.

time of such chaos system converge to stable constants when time goes to infinity. While products of183

long chains of matrices are the simplest form of cocycle dynamic systems [29], we can get an intrinsic184

impetus of rank collapse tendency of Jacobian matrices independent of network architectures.185

Theorem 4 (Spectrum Centralization of Function Coupling). Let the network be F = fL ◦ · · · ◦ f1,186

and all the ambient dimensions of feature manifolds be the same as the ambient dimension of inputs,187

i.e., fk : Rn → Rn, k = 1, . . . , L. Suppose the Jacobian matrix of each layer fi independently188

follows some distribution µ, and Eµ[max{log ∥J±1
fk ∥2, 0}] < ∞. Let σk denotes the k-th largest189

singular value of JF . Then there is an integer r < n and positive constants µr, . . . , µn that only190

depend on µ such that we have for µ-almost everywhere,191

σk
∥JF ∥2

∼ exp(−Lµk) → 0, k = r, . . . , n, as L→ ∞. (9)

That means for any tolerance ϵ > 0, Rankϵ(F) drops below r + 1 with an exponential speed as192

L→ ∞.193

If further assuming Gaussian distributions of Jacobian matrices, we can prove r = 1 and give a more194

accurate estimation of the constant µr, ..., µn. As a consequence, we can find that rank of networks195

collapses to 1 almost surely, which is formalized in the following theorem.196

Theorem 5. Let the network be F = fL ◦ ... ◦ f1, and all the ambient dimensions of feature197

manifolds be the same as the ambient dimension of inputs, i.e., fk : Rn → Rn, k = 1, ..., L. Suppose198

that Jf i independently follows the standard Gaussian distribution. Let σk denotes the k-th largest199

singular value of JF . Then almost surely200

lim
L→∞

(
σk

∥JF ∥2

) 1
L

= exp
1

2

(
ψ(
n− k + 1

2
)− ψ(

n

2
)

)
< 1, k = 2, . . . , n, (10)

where ψ = Γ/Γ′ and Γ is the Gamma function. That means for a large L and any tolerance ϵ,201

Rankϵ(F) drops to 1 exponentially with speed nCL, where C < 1 is a positive constant that only202

depends on n.203

Connection with Gradient Explosion Bengio et. al. [3, 37] discuss the gradient explosion issue of204

deep neural networks, where the largest singular value of the Jacobian matrix tends to infinity when205

the layer gets deeper. This problem could be viewed as a special case of Theorem 5 that investigates206

the behavior of all singular values of deep neural networks. The behavior of network ranks in fact207

manipulates the well-known gradient explosion issue. Rigorously, we have the following conclusion.208

6

4730

4780

4830

4880

4930

4980

5030

5080

Normal
𝒩𝒩 (0,0.02)

Kaiming
Normal

Xavier
Uniform

Before Conv After Conv
Before FC After FC

D
im

en
si

on

Different Parameter Initialization Methods

6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200

Normal
𝒩𝒩 (0,0.02)

Kaiming
Normal

Xavier
Uniform

Before Conv After Conv
Before FC After FC

R
an

k

Different Parameter Initialization Methods
(a) Dimension Histogram (b) Rank Histogram

7755

7775

7795

7815

7835

7855

7875

IN LN GN

Before After

D
im

en
si

on

Different Normalization Layers

7800

7900

8000

8100

8200

8300

IN LN GN

Before After

R
an

k

Different Normalization Layers
(c) Dimension Histogram (d) Rank Histogram

Figure 3: PCA dimension of feature spaces and rank of Jacobian matrix for commonly seen network
components under standard Gaussian inputs and randomized weights. Convolution and FC layers tend
to lose rank considerably; normalization layers, like InstanceNorm (IN) [45], LayerNorm (LN) [2],
and GroupNorm (GN) [51], lose rank modestly. But none can preserve rank.

Corollary 1. Under the condition of Theorem 5, then almost surely gradient explosion happens at an209

exponential speed, i.e., log ∥JF ∥2 = log σ1 ∼ L
2 (log 2 + ψ(n/2)) → ∞ when L is large.210

4.3 Validations211

Setup In this section, we validate our theory in three types of architectures of benchmark deep212

neural networks, CNNs, MLPs, and Transformers, in the ImageNet [13] data domain. Information of213

those networks is listed in Tab. 1. For validating the tendency of network rank of Jacobian matrices,214

we use the numerical rank of sub-matrices of Jacobian on the central 16×16×3 image patch of input215

images. We report the results of other choices of patches in the Appendix. When measuring rank, we216

set ϵ = eps×N , where eps is the digital accuracy of float32 (i.e., 1.19e− 7) and N is the number217

of singular values of the matrix to measure. This threshold represents the minimum digital accuracy218

of numerical rank we can capture in data stored as float32. All the experiments are conducted on the219

validation set of ImageNet and NVIDIA A100-SXM-80G GPUs.220

Diminishing of Rank of Jacobi As is discussed in Sec. 3.2 and Lemma 2, partial rank of Jacobian221

is a powerful weapon for us to detect the behavior of huge Jacobian matrices, which are infeasible222

to compute in practice. The decent value of partial ranks of adjacent sub-networks provides lower223

bound to the decent value of full ranks of them. Fig. 1 (a,b,c) report the partial rank of Jacobian224

matrices of three types of architectures, where we can find consistent diminishing of partial ranks in225

each layer. This indicates a larger rank losing in the full rank of Jacobian matrices.226

Intrinsic Dimension of the Final Feature Manifold To get a further estimation of how many227

dimensions remain in the final feature representation, we measure the classification dimension228

in Fig. 2 and Tab. 2. We report the classification accuracy produced by projecting final feature229

representations to its top k% eigenvectors in Fig. 2. We choose a threshold of ϵ such that this230

procedure can reproduce 95% of the original accuracy of the network. The corresponding ClsDim is231

reported in Tab. 2. As discussed in Sec. 3.3, this gives an estimation of the intrinsic dimension of the232

final feature manifold. We can find a universal low-rank structure for all types of networks.233

Implicit Impetus Theorem 5 gives an exponential speed of rank decent by layers. We find that234

it corresponds well with practice. We investigate this exponential law in a toy network of MLP-50,235

which is composed of 50 dense layers, each with 1,000 hidden units. The MLP-50 network takes236

Gaussian noise vectors of R1000 as inputs, and returns a prediction of 1,000 categories. As all the237

feature manifolds are linear subspaces in this case, their intrinsic dimensions can be directly measured238

by the numerical rank of their covariance matrices. We report the full rank of Jacobian matrices239

and intrinsic dimensions of feature manifolds under three different randomly chosen weights in240

Fig. 1 (d,e,f). Due to the digital accuracy of float32, we stop calculation in each setting when the241

absolute values of elements of the matrices are lower than 1.19e− 7. We can find beautiful curves242

of exponential laws in all cases for both rank of Jacobian and intrinsic dimensions of features. By243

comparison, we can further find that the rank of benchmark deep neural networks on ImageNet bears244

7

𝑖1: ‘broccoli’
𝝀𝑖1 = 0.510

𝑖: ‘𝐡𝐚𝐦𝐬𝐭𝐞𝐫’
𝑨𝒄𝒄. = 𝟒𝟖.𝟓%

𝑖2: ‘guinea pig’
𝝀𝑖2 = 0.423

𝑖3: ‘mousetrap’
𝝀𝑖3 = 0.261

𝑖4: ‘weasel’
𝝀𝑖4 = 0.206

𝑖5: ‘Angora rabbit’
𝝀𝑖5 = 0.182

(b) ResNet-50

𝑖1: ‘triumphal arch’
𝝀𝑖1 = −0.923

𝑖: ‘𝐣𝐮𝐧𝐜𝐨’
𝑨𝒄𝒄. = 𝟕𝟔.𝟏%

(c) GluMixer-24 (d) Swin-T

𝑖: ‘𝐄𝐠𝐫𝐞𝐭𝐭𝐚 𝐚𝐥𝐛𝐮𝐬’
𝑨𝒄𝒄. = 𝟕𝟎.𝟎%

𝑖1: ‘crane’
𝝀𝑖1 = 0.764 𝑖2: ‘Egretta caerulea’

𝝀𝑖2 = 0.324

𝑖3: ‘spoonbill’
𝝀𝑖3 = 0.199

(a) Independence deficit: Classification confidence of some categories are lineally decided by a few other categories with fixed coefficients.

𝑖𝑘

𝑖1

𝑖2

…

‘broccoli’ × 𝝀𝑖1

‘guinea pig’ × 𝝀𝑖2

‘Angora rabbit’ × 𝝀𝑖𝑘

Pretrained Classification Network Logits

Is ‘hamster’?

…

Inputs

Original Acc. on ‘hamster’ = 48.6% Original Acc. on ‘junco’ = 76.1% Original Acc. on ‘Egretta albus’ = 70.0%

𝐴𝑐𝑐. = 99% 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑐𝑐. !

Figure 4: Independence deficit. Classification confidence of some ImageNet categories are lineally
decided by a few other categories with fixed coefficients in the whole data domain. We illustrate this
phenomenon in (a). Here we present some results from ResNet-50, GluMixer-24, and Swin-T. In the
(b,c,d) we illustrate the categories of i1, ..., ik (in the surrounding) to linearly decide category i (in
the center) and their corresponding weights λi1 , ..., λik . The classification accuracy on the validation
set of using Eq. (12), instead of the true logits, to predict the label is reported in blue (if tested on
positive samples only, the accuracy rates are 98%, 90%, 82% for cases in (b,c,d) correspondingly).
For comparison, the original accuracy for the corresponding categories are reported in green. We
can find that 1) a few other categories can decide the confidence of the target category i; 2) some
very irrelevant categories contribute the largest weights. For example in (c), the logits of class ‘junco’
is the negative of ‘triumphal arch’. Both of them indicate a rather drastic competition of different
categories for independent representations in final features due to the tight rank budgets.

a striking resemblance to the exponential law of our toy setting, which confirms the proposed implicit245

impetus in those models.246

Structural Impetus We validate the structural impetus in Fig. 3. To give an estimation for general247

cases, here we use Gaussian noises with the size of 128×8×8 as inputs, and randomize weights of the248

network components to be validated. We plug those components into a simple fully-connected (FC)249

layer of 8,192 hidden units. As the structure is simple, we directly measure the intrinsic dimension of250

feature spaces and the full rank of Jacobian matrices before and after the features pass the network251

components to be measured. The dimension is determined by the number of PCA eigenvalues [22, 49]252

larger than 1.19e − 7 × N × σmax, where N is the number of PCA eigenvalues, and σmax is the253

largest PCA eigenvalue. The batch size is set to 5,000. We find convolution (the kernel size is 3× 3)254

and FC layers (the weight size is 8,192) tend to lose rank considerably, while different normalization255

layers also lose rank modestly. But none of them can preserve rank invariant.256

Possible Remission Approaches to Rank Diminishing There are quite some techniques, at least257

in theory, can remiss the network rank diminishing. Typical examples are skip connection [14] and258

BatchNorm [12], which we will discuss in the Appendix due to page limitation.259

5 Independence Deficit of Final Feature Manifolds260

In this section, we provide a further perspective to study the low-rank structure of the final feature261

manifold, which induces an interesting finding of independence deficit in deep neural networks. We262

8

have already known that the final feature representations of deep neural networks admit a very low263

intrinsic dimension. Thus there are only a few independent representations to decide the classification264

scores for all the 1,000 categories of ImageNet. It is then curious whether we can predict the outputs265

of the network for some categories based on the outputs for a few other categories, as illustrated in266

Fig. 4 (a). And if we can, will those categories be strongly connected to each other? A surprising fact267

is that, we can find many counter examples of irrelevant categories dominating the network outputs268

for given categories regarding various network architectures. This interesting phenomenon indicates269

a rather drastic competing in the final feature layer for the tight rank budgets of all categories, which270

yields non-realistic dependencies of different categories.271

To find the dependencies of categories in final features, we can solve the following Lasso problem [43],272

λ∗ = argmin
λi=−1

Ex[∥λTWF (x)∥22] + η∥λ∥1, (11)

where F (x) ∈ R1000 is the slice of network from inputs to the final feature representation, x is the273

sample from ImageNet X , andW is the final dense layer. The solution λ∗ will be a sparse vector,274

with k non-zero elements λi1 ≥ λi2 ≥ ... ≥ λik , k ≪ 1000. We can then get275

logits(x, i) ≈ λi1 logits(x, i1) + ...+ λik logits(x, ik), i /∈ {i1, ..., ik}, k ≪ 1000,∀x ∈ X , (12)
where logits(x, ij), j = 1, . . . , k is the logits of network for category ij , i.e., logits(x, ij) =276

WijF (x). It is easy to see that outputs for category i is linearly decided by outputs for i1, ..., ik and277

is dominated by outputs for i1.278

In Fig. 4 we demonstrate the solutions of Eq. (12) for three different categories in ImageNet with279

η = 20, and network architectures ResNet-50, GluMixer-24, and Swin-T. The results are surprising.280

It shows that many categories of the network predictions are in fact ‘redundant’, as they are purely281

decided by the predictions of the other categories with simple linear coefficients. In this case, the282

entanglement of different categories cannot be avoided, thus the network may perform poorly under283

domain shift. An even more surprising finding is that, some very irrelevant categories hold the largest284

weights when deciding the predictions of the redundant categories. This means that the networks285

just neglect the unique representations of those categories in training and yield over-fitting when286

predicting them.287

6 Related Work288

Previous studies of rank deficiency in deep neural networks follow two parallel clues. One is the289

study of rank behavior in specific neural network architectures. [14] studies deep networks consisting290

of pure self-attention networks, and proves that they converge exponentially to a rank-1 matrix291

under the assumption of globally bounded weight matrices. [12] studies the effect of BatchNorm on292

MLPs and shows that BatchNorm can prevent drastic diminishing of network ranks in some small293

networks and datasets. Both of those works avoid directly validating the behavior of network ranks in294

intermediate layers due to the lacking of efficient numerical tools. An independent clue is the study295

of implicit self-regularization, which finds that weight matrices tend to lose ranks after training. [34]296

studies this phenomenon in infinitely-wide, over-parametric neural networks with tools from random297

matrix theory. [1] studies this phenomenon in deep matrix decomposition. Those works focus on the298

theoretical behavior of network ranks induced by the training process instead of network depth.299

7 Conclusion300

This paper studies the rank behavior of deep neural networks. In contrast to previous work, we301

focus on directly validating rank behavior with deep neural networks of diverse benchmarks and302

various settings for real scenarios. We first formalize the analysis and measurement of network ranks.303

Then under the proposed numerical tools and theoretical analysis, we demonstrate the universal rank304

diminishing of deep neural networks from both empirical and theoretical perspectives. We further305

support the rank-deficient structure of networks by revealing the independence deficit phenomenon,306

where network predictions for a category can be linearly decided by a few other, even irrelevant307

categories. The results of this work may advance understanding of the behavior of fundamental308

network architectures and provide intuition for a wide range of work pertaining to network ranks.309

9

References310

[1] S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regularization in deep matrix factorization. Adv. Neural311

Inform. Process. Syst., 32, 2019.312

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.313

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult.314

IEEE Trans. Neural Netw., 5(2):157–166, 1994.315

[4] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger. Understanding batch normalization. Adv.316

Neural Inform. Process. Syst., 31, 2018.317

[5] C. Blakeney, Y. Yan, and Z. Zong. Is pruning compression?: Investigating pruning via network layer318

similarity. In IEEE Winter Conf. Appl. Comput. Vis., pages 914–922, 2020.319

[6] X. Cai, C. Ding, F. Nie, and H. Huang. On the equivalent of low-rank linear regressions and linear320

discriminant analysis based regressions. In Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,321

pages 1124–1132, 2013.322

[7] B. Chen, T. Dao, E. Winsor, Z. Song, A. Rudra, and C. Ré. Scatterbrain: Unifying sparse and low-rank323

attention. Adv. Neural Inform. Process. Syst., 34, 2021.324

[8] P. Chen, S. Si, Y. Li, C. Chelba, and C.-J. Hsieh. Groupreduce: Block-wise low-rank approximation for325

neural language model shrinking. Adv. Neural Inform. Process. Syst., 31, 2018.326

[9] P. Chen, H.-F. Yu, I. Dhillon, and C.-J. Hsieh. Drone: Data-aware low-rank compression for large NLP327

models. Adv. Neural Inform. Process. Syst., 34:29321–29334, 2021.328

[10] Y. Cheng, L. Yin, and Y. Yu. Lorslim: Low rank sparse linear methods for top-n recommendations. In329

IEEE Int. Conf. on Data Min., pages 90–99. IEEE, 2014.330

[11] J. Chiu, Y. Deng, and A. Rush. Low-rank constraints for fast inference in structured models. Adv. Neural331

Inform. Process. Syst., 34, 2021.332

[12] H. Daneshmand, J. Kohler, F. Bach, T. Hofmann, and A. Lucchi. Batch normalization provably avoids333

ranks collapse for randomly initialised deep networks. Adv. Neural Inform. Process. Syst., 33:18387–18398,334

2020.335

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image336

database. In IEEE Conf. Comput. Vis. Pattern Recog., pages 248–255. Ieee, 2009.337

[14] Y. Dong, J.-B. Cordonnier, and A. Loukas. Attention is not all you need: Pure attention loses rank doubly338

exponentially with depth. In Int. Conf. Mach. Learn., pages 2793–2803. PMLR, 2021.339

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,340

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image341

recognition at scale. In Int. Conf. Learn. Represent., 2020.342

[16] H. Furstenberg and H. Kesten. Products of random matrices. Ann. Math. Stat., 31(2):457–469, 1960.343

[17] D. Goldfarb and Z. Qin. Robust low-rank tensor recovery: Models and algorithms. SIAM J. Matrix Anal.344

Appl., 35(1):225–253, 2014.345

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conf. Comput.346

Vis. Pattern Recog., pages 770–778, 2016.347

[19] D. Hendrycks and K. Gimpel. Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415,348

2016.349

[20] M. W. Hirsch. Differential topology, volume 33. Springer Science & Business Media, 2012.350

[21] K. Hoffman. Linear algebra. Englewood Cliffs, NJ, Prentice-Hall, 1971.351

[22] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.352

[23] C.-J. Hsieh, K.-Y. Chiang, and I. S. Dhillon. Low rank modeling of signed networks. In Proc. ACM353

SIGKDD Int. Conf. Knowl. Discov. Data Min., pages 507–515, 2012.354

[24] Y.-C. Hsu, T. Hua, S. Chang, Q. Lou, Y. Shen, and H. Jin. Language model compression with weighted355

low-rank factorization. In Int. Conf. Learn. Represent., 2021.356

10

[25] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal357

covariate shift. In Int. Conf. Mach. Learn., pages 448–456. PMLR, 2015.358

[26] L. Jing, L. Yang, J. Yu, and M. K. Ng. Semi-supervised low-rank mapping learning for multi-label359

classification. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1483–1491, 2015.360

[27] R. Karimi Mahabadi, J. Henderson, and S. Ruder. Compacter: Efficient low-rank hypercomplex adapter361

layers. Adv. Neural Inform. Process. Syst., 34, 2021.362

[28] M. Kheirandishfard, F. Zohrizadeh, and F. Kamangar. Deep low-rank subspace clustering. In IEEE Conf.363

Comput. Vis. Pattern Recog. Worksh., pages 864–865, 2020.364

[29] J. F. C. Kingman. Subadditive ergodic theory. Ann. Probab., pages 883–899, 1973.365

[30] S. Kong and C. Fowlkes. Low-rank bilinear pooling for fine-grained classification. In IEEE Conf. Comput.366

Vis. Pattern Recog., pages 365–374, 2017.367

[31] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao. Hrank: Filter pruning using high-rank368

feature map. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1529–1538, 2020.369

[32] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision370

transformer using shifted windows. In IEEE Conf. Comput. Vis. Pattern Recog., pages 10012–10022, 2021.371

[33] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues for some sets of random matrices. Math.372

USSR Sb., 1(4):457, 1967.373

[34] C. H. Martin and M. W. Mahoney. Implicit self-regularization in deep neural networks: Evidence from374

random matrix theory and implications for learning. J. Mach. Learn. Res., 22(165):1–73, 2021.375

[35] J. Mu, R. Xiong, X. Fan, D. Liu, F. Wu, and W. Gao. Graph-based non-convex low-rank regularization for376

image compression artifact reduction. IEEE Trans. Image Process., 29:5374–5385, 2020.377

[36] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Int. Conf. Mach.378

Learn., pages 807–814. PMLR, 2010.379

[37] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In Int. Conf.380

Mach. Learn., pages 1310–1318. PMLR, 2013.381

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,382

L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inform.383

Process. Syst., 32, 2019.384

[39] Y. B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv., 32(4):55,385

1977.386

[40] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics, volume 37. Springer Science & Business387

Media, 2010.388

[41] N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.389

[42] R. Temam. Infinite-dimensional dynamical systems in mechanics and physics, volume 68. Springer Science390

& Business Media, 2012.391

[43] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol.,392

58(1):267–288, 1996.393

[44] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave, G. Izacard, A. Joulin, G. Synnaeve,394

J. Verbeek, et al. Resmlp: Feedforward networks for image classification with data-efficient training. arXiv395

preprint arXiv:2105.03404, 2021.396

[45] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing ingredient for fast397

stylization. arXiv preprint arXiv:1607.08022, 2016.398

[46] T. Vogels, S. P. Karimireddy, and M. Jaggi. Practical low-rank communication compression in decentralized399

deep learning. Adv. Neural Inform. Process. Syst., 33:14171–14181, 2020.400

[47] H. Wang and N. Ahuja. Rank-r approximation of tensors using image-as-matrix representation. In IEEE401

Conf. Comput. Vis. Pattern Recog., volume 2, pages 346–353. IEEE, 2005.402

11

[48] H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen.403

Math. Ann., 71:441–479, 1912.404

[49] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemom. Intell. Lab. Syst, 2(1-3):405

37–52, 1987.406

[50] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time407

series. Physica D, 16(3):285–317, 1985.408

[51] Y. Wu and K. He. Group normalization. In Eur. Conf. Comput. Vis., pages 3–19, 2018.409

[52] J. Ye. Generalized low rank approximations of matrices. Mach. Learn., 61(1):167–191, 2005.410

[53] X. Yu, T. Liu, X. Wang, and D. Tao. On compressing deep models by low rank and sparse decomposition.411

In IEEE Conf. Comput. Vis. Pattern Recog., pages 7370–7379, 2017.412

[54] Z. Zha, X. Yuan, B. Wen, J. Zhou, J. Zhang, and C. Zhu. From rank estimation to rank approximation:413

Rank residual constraint for image restoration. IEEE Trans. Image Process., 29:3254–3269, 2019.414

[55] M. Zhan, S. Cao, B. Qian, S. Chang, and J. Wei. Low-rank sparse feature selection for patient similarity415

learning. In IEEE Int. Conf. on Data Min., pages 1335–1340. IEEE, 2016.416

[56] T. Zhang, B. Ghanem, S. Liu, C. Xu, and N. Ahuja. Low-rank sparse coding for image classification. In417

Int. Conf. Comput. Vis., pages 281–288, 2013.418

[57] Y. Zhang, Z. Jiang, and L. S. Davis. Learning structured low-rank representations for image classification.419

In IEEE Conf. Comput. Vis. Pattern Recog., pages 676–683, 2013.420

[58] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. J. Comput. Graph. Stat., 15(2):421

265–286, 2006.422

Checklist423

1. For all authors...424

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s425

contributions and scope? [Yes]426

(b) Did you describe the limitations of your work? [No]427

(c) Did you discuss any potential negative societal impacts of your work? [N/A]428

(d) Have you read the ethics review guidelines and ensured that your paper conforms to429

them? [Yes]430

2. If you are including theoretical results...431

(a) Did you state the full set of assumptions of all theoretical results? [Yes]432

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs are included in433

the appendix.434

3. If you ran experiments...435

(a) Did you include the code, data, and instructions needed to reproduce the main436

experimental results (either in the supplemental material or as a URL)? [No]437

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they438

were chosen)? [Yes]439

(c) Did you report error bars (e.g., with respect to the random seed after running440

experiments multiple times)? [Yes]441

(d) Did you include the total amount of compute and the type of resources used (e.g., type442

of GPUs, internal cluster, or cloud provider)? [Yes]443

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...444

(a) If your work uses existing assets, did you cite the creators? [Yes]445

(b) Did you mention the license of the assets? [No]446

(c) Did you include any new assets either in the supplemental material or as a URL? [No]447

12

(d) Did you discuss whether and how consent was obtained from people whose data you’re448

using/curating? [N/A]449

(e) Did you discuss whether the data you are using/curating contains personally identifiable450

information or offensive content? [N/A]451

5. If you used crowdsourcing or conducted research with human subjects...452

(a) Did you include the full text of instructions given to participants and screenshots, if453

applicable? [N/A]454

(b) Did you describe any potential participant risks, with links to Institutional Review455

Board (IRB) approvals, if applicable? [N/A]456

(c) Did you include the estimated hourly wage paid to participants and the total amount457

spent on participant compensation? [N/A]458

13

