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Federated learning for competing risk analysis in healthcare
Anonymous Author(s)

ABSTRACT
Performing survival analysis on distributed healthcare data is an im-
portant research problem as the existing privacy laws and emerging
data-sharing regulations prohibit the sharing of sensitive patient
data acrossmultiple institutions. The distributed healthcare survival
data is typically heterogeneous, non-uniformly censored, and comes
from patients with multi-morbidities (competing events), which
may lead to biased and inaccurate risk predictions. To address these
challenges, we propose federated learning for survival analysis with
competing events. Specifically, (a) we propose a simple algorithm
to estimate consistent federated pseudo values for survival anal-
ysis with competing events and censoring; and (b) we introduce
a novel and flexible federated pseudo-value-based deep learning
framework named FedCRA, where we employ a transformer-based
model; named TransPseudo, to enable subject-specific prediction
of the marginal risk of an event while preserving the data privacy.
Extensive experiments on two real-world distributed CRA datasets
with non-IID and non-uniform censoring properties and on syn-
thetic data with different censoring settings demonstrate that our
FedCRA framework with the TransPseudo model performs better
than the federated learning framework with state-of-the-art CRA
models.

CCS CONCEPTS
• Mathematics of computing → Survival analysis; • Com-
puting methodologies → Distributed artificial intelligence; •
Security and privacy;
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1 INTRODUCTION
Multimorbidity, i.e., the presence of two or more chronic conditions
in a person, is a prevalent and urgent problem in healthcare [7, 16],
especially among older patients. In the United States, the prevalence
of more than 2 morbidities was 59.6%, whereas the percentage was
92% among individuals over 65 years during 2013-14 [11]. Multi-
morbid patients face the risk of adverse outcomes, such as mortality,
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Figure 1: Challenges of Federated CRA in SEER dataset
due to different clinically significant diseases like cancer or heart
disease. These outcomes, such as death from cancer or death from
heart disease, are considered competing events, and their risks are
referred to as competing risks [13, 19].

The standard survival analysis, also known as time-to-event anal-
ysis, ignores the competing risks or treats the competing events as
censoring in the marginal risk prediction of the event of interest,
leading to biased and inaccurate risk predictions. Recently, machine
learning models have been developed for competing risk analysis
[10, 13, 19, 25], which have shown promising improvement over
traditional statistical CRA models [6, 7] and achieved state-of-the-
art performance. However, a limited amount of survival data are
typically collected by a single medical center due to resource and
privacy constraints, which is insufficient to develop an efficient
machine learning-based survival model for accurate risk predic-
tions. The National Cancer Institute took a great initiative to collect
large-scale survival data of registered breast cancer patients from
the hospitals of several regions in the USA through the Surveil-
lance, Epidemiology, and End Results (SEER)1 program. However,
such initiatives are expensive and time-consuming, and far fewer.
On the other hand, while collaborations across multiple medical
centers to gather harmonized large-scale datasets is feasible, such
collaborations are hindered by the strict privacy laws and regula-
tions on user data sharing, such as Health Insurance Portability and
Accountability Act (HIPAA) and European Union’s General Data
Protection Regulation (GDPR). To overcome the data sharing limi-
tations from multiple institutions, Federated Learning (FL) [15] has
been proposed as a viable solution, where instead of sharing data,
models are shared and trained among multiple institutions. In this
paper, we study the problem of solving the competing risk analysis
problem under the federated learning settings (with the assumption
that data sharing is infeasible) and propose a federated competing
risk analysis (FedCRA) framework. We are inspired by the recent
success of federated survival analysis [2, 18, 21, 24] in achieving
performance close to the gold-standard centralized training.
1https://seer.cancer.gov/
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Even though CRA is a well-studied problem [10, 13, 19, 25], we
found no work on modeling competing risks in an FL setting, espe-
cially on some real-world challenges of FedCRA including non-IID
data, and non-uniform censoring. In this paper, we investigate the
following challenges in FedCRA and develop novel methods to pro-
vide potential solutions to the problems. Challenge 1: Data Het-
erogeneity: The dissimilarities in patient demographics, event dis-
tributions, and clinical histories among various collaborative med-
ical centers result in non-IID data. Challenge 2: Non-Uniform
Censoring (NUC): Censoring, i.e., partial information of subjects’
event status, is a key challenge in survival analysis that leads to
biased and inaccurate risk prediction [22]. This bias exacerbates
in FL due to the non-uniformity of censoring distributions across
clients, as shown in Figure 1 (Subplot: KM estimate of the survival
estimate). Moreover, the censoring rate also varies across different
medical centers, leading to heterogeneous data distributions and
sub-optimal performance of the local survival models.

Proposed Solutions: To address the challenges in federated
CRA, we propose first-of-its-kind federated pseudo-values-based
deep learning framework, FedCRA, to solve CRA in an FL manner.
We also propose a novel client-specific Transformer-based CRA
model, TransPseudo. FedCRA jointly trains TransPseudo models
in a federated framework to learn a global updated model without
sharing raw data, which is further used to predict the probability
of an event at or before time 𝑡 due to cause 𝑘 , i.e., cause-specific
cumulative incidence function (CIF), given the covariates for a
patient in a client.We introduce federated pseudo-values to efficiently
handle non-uniform censoring and account for the heterogeneity in
event time and censoring distribution. Our federated pseudo values
preserve patient data privacy since they are derived from aggre-
gated summary statistics (containing no identifying information)
instead of raw data.
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Figure 2: Benefit of participating in our FedCRA framework
(TransPseudo-Federated). Our federated pseudo value-based
TransPseudo model shows improvement in average C-Index
performance over the local DeepHit and local TranPseudo
models on distributed non-IID SEER datasets for all three
clients (WEST, CENTRAL, and EAST regions).

We show in figure 2 that all decentralized clients can improve
their prediction accuracy for CRA by participating in our FedCRA
framework, thus, improving patients’ outcomes. We also conduct
extensive experiments on multiple realistic federated settings with
real CRA data: SEER [19] and eICU [17] as well as on several syn-
thetic datasets with different censoring settings to demonstrate the
efficacy of our FedCRA framework to improve the model’s perfor-
mance preserving data privacy and to address data heterogeneity
and non-uniform censoring. We show that our proposed FedCRA

framework achieves close performance to the gold-standard cen-
tralized training on centrally aggregated data. Moreover, FedCRA
performs better than the FL framework with SOTA CRA models.

2 PROPOSED FEDCRA FRAMEWORK
The recent success of pseudo value-based deep neural networks in
standard survival analysis [20, 22], CRA [19] and federated survival
analysis (FSA) [21] has motivated us to develop a pseudo-value-
based deep learning model for solving CRA in a federated manner.
However, federated CRA is a more intricate problem due to the com-
plex interaction between covariates and competing events and the
real-world challenges in federated CRA, such as non-IID data and
non-uniform censoring. As a result, simple deep neural networks
need more learning capacity for obtaining accurate predictions and
satisfactory performance in federated CRA. On the other hand, the
transformer-based model has a strong learning capacity and has
achieved SOTA performance in a wide range of tasks [8, 25], which
motivates us to design transformer-based models for performing
complex CRA in an FL manner. Therefore, we propose an FL frame-
work for CRA; we call it FedCRA, where we first derive the pseudo
values in a federated fashion and use them as response variables
(ground truth) in our proposed client-specific Transformer-based
models, TransPseudo. Then we conduct federated training with
the TransPseudo models for learning the global model parameters.

Federated Pseudo Values for CIF: Due to censoring, i.e., in-
complete event status or ground truth, the direct application of
standard regression or classification techniques becomes infeasible.
Pseudo values can be considered the natural replacement for the
incompletely observed CIF [4], thus, can be used to efficiently han-
dle censoring [1, 19, 26]. The traditional Jackknife pseudo values,
computed on local client data, exhibit local consistency but suffer
from global inconsistency due to heterogeneity in the event and
censoring distributions of the clients. Computing pseudo values on
merged data in a central server from clients can address the prob-
lem; however, data privacy laws and regulations make it infeasible.
Moreover, the pseudo values, requiring leave-one-out computation
for each subject in a sample, become computationally expensive
and infeasible for federated CRA as the number of clients and sam-
ple size increases. To overcome these challenges, we introduce a
novel federated pseudo values derivation approach for federated
CRA, which uses the summary statistics from the clients instead of
raw data that do not disclose the patient identifying information
and, thus, preserve the data privacy. The leave-one-out computa-
tion required for pseudo values derivation is performed in parallel
on the clients, reducing computational complexity and enabling
scalability for FL. Furthermore, our federated pseudo values are di-
rectly derived from the estimate of global CIF, incorporating global
information on the time-to-event distribution to account for the
heterogeneity in client data. The federated pseudo values derivation
approach is described as follows.

First, each client transforms the inputs, i.e., event time and status,
into summary statistics, such as the number of subjects at risk at
time 𝑡0; (𝑅0𝑘 ), number of events (𝑑𝑘 ), number of subjects experi-
enced event 𝑟 ; (𝑑𝑟𝑘 ) and number of censored (𝑐𝑘 ) at a vector of
unique time points (𝜏𝑘 ) in the local data. Clients send the summary
statistics to the global server, where the server aggregates the sum-
mary statistics at the union of the vector of unique time points of

2
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clients, 𝜏 = ∪𝑘𝜏𝑘 , to form a global partial table. The global partial
table contains the total number of subjects at risk at time 𝑡0 ∈ 𝜏 ,
𝑅0 =

∑𝐾
𝑘=1 𝑅0𝑘 , the total number of events, 𝑑 =

∑𝐾
𝑘=1 𝑑𝑘 , the total

number of subjects who experienced event 𝑟 ; 𝑑𝑟 =
∑𝐾
𝑘=1 𝑑𝑟𝑘 and

the total number of censored, 𝑐 =
∑𝐾
𝑘=1 𝑐𝑘 at the vector of unique

time points 𝜏 . The server fills up the partial table by computing the
number of subjects at risk at subsequent time points (𝑡1, 𝑡2, ..) using
the formula: 𝑅𝑡 𝑗 = 𝑅𝑡 𝑗−1 −𝑅𝑡 𝑗−1 −𝑑𝑡 𝑗−1 −𝑐𝑡 𝑗−1 . Then, the server com-

pute the global survival function as 𝑆𝐺 (𝑡) =
∏
𝑡 𝑗 ∈𝜏≤𝑡 (1 −

𝑑𝑡 𝑗
𝑅𝑡 𝑗

)

and the global CIF as 𝐹𝐺𝑟 (𝑡) =
∑
𝑡 𝑗 ∈𝜏≤𝑡 𝑆𝐺 (𝑡)

𝑑𝑟𝑡 𝑗
𝑅𝑡 𝑗

. The global
server sends the global partial table and the global CIF to the
clients. Clients first create leave-one-out global partial tables by
omitting the 𝑖𝑡ℎ subjects from the risk set 𝑅(𝑡0) and from 𝑑,𝑑𝑟 , 𝑐

at which time point the event or censoring occurred (denoted as
𝑑−𝑖𝑘 , 𝑑−𝑖𝑘𝑟 , 𝑐−𝑖𝑘 ). Then clients fill the risk set at the subsequent
time points in the leave-one-out global partial table using the fol-
lowing formula: 𝑅−𝑖𝑘𝑡 𝑗

= 𝑅−𝑖𝑘𝑡 𝑗−1
− 𝑑−𝑖𝑘𝑡 𝑗−1

− 𝑐−𝑖𝑘𝑡 𝑗−1
, where 𝑡 𝑗 ∈ 𝜏 . Using

the complete table, clients compute the leave-one-out global CIF

as 𝐹−𝑖𝑘
𝐺𝑟

(𝑡) =
∑
𝑡 𝑗 ∈𝜏≤𝑡 𝑆

−𝑖𝑘
𝐺

(𝑡)
𝑑−𝑖𝑘
𝑟𝑡 𝑗

𝑅−𝑖𝑘
𝑡𝑗

. Finally, each client computes

the pseudo values for their subjects using the following equation:
𝐽𝑖𝑘𝑟 (𝑡) = 𝑛𝐹𝐺𝑟 (𝑡) − (𝑛−1)𝐹−𝑖𝑘

𝐺𝑟
(𝑡); 𝑖 = 1, 2, .., 𝑛𝑘 , 𝑘 = 1, 2, .., 𝐾 . Here,

𝑛 is the total number of subjects of all clients, i.e., 𝑛 =
∑𝐾
𝑖=1 𝑛𝑘 and

𝑡 can be a pre-specified single time point or a vector of time points,
Υ (provided by the user). 𝐹𝐺𝑟 (𝑡) is the AJ estimate of the global CIF
for event 𝑟 at time 𝑡 and 𝐹−𝑖𝑘

𝐺𝑟
(𝑡) is the leave-one-out AJ estimate of

the global CIF, obtained by omitting 𝑖𝑡ℎ subject from client 𝑘 . For a
subject 𝑖 in client 𝑘 , pseudo values are calculated for all 𝑅 causes
at a vector of pre-specified time points, Υ. Our federated pseudo
values are directly derived from the consistent estimate of global
cumulative incidence function 𝐹𝐺𝑟 (𝑡) [5] and can be shown to be
consistent by following the lemma 2 in [9].

Federated Training: Our FedCRA framework employs our pro-
posed client-specific TransPseudo models that communicate with a
global server. During each communication round, the global server
sends the clients a global TransCRA model represented by𝑤𝑣 . The
local clients then update their local models by incorporating the
global model parameters and training their models using their re-
spective local data. The newly trained local models denoted as
Δ𝑤𝑣

𝑘
, are then sent back to the global server. Using a standard FL

algorithm, FedAvg [15], the global server aggregates the updates
from the local models to update the global model. Subsequently,
the updated global model is sent back to the local clients by the
global server. This process is repeated for a specified number of
communication rounds, denoted as 𝑉 . Once the 𝑉 rounds are com-
pleted, the globally updated model is utilized to make personalized
CIF predictions.

ProposedTransPseudoModel:Our TransPseudomodel adapts
the FT-Transformer (Feature Tokenizer + Transformer) architec-
ture [8] and uses covariates as input and predicts CIF via federated
pseudo values as response variables (ground truth). First, a Feature
Tokenizer transforms the inputs 𝑋 (both numerical and categori-
cal covariates) into embeddings 𝑇 ∈ 𝑅𝑃×𝑞 . The embeddings of all
covariates (both numeric and categorical) are stacked to create an

embedding matrix 𝑇 . Then, a transformer module first appends
the output token [OT] embedding to the embedding matrix 𝑇 . Af-
ter that a stack of 𝐿 Transformer layers 𝐹1, 𝐹2, ..., 𝐹𝐿 are applied
as: 𝑇𝑖 = 𝐹𝑖 (𝑇𝑖−1) where 𝑇0 = 𝑠𝑡𝑎𝑐𝑘 [[𝑂𝑇 ],𝑇 ]. TransPseudo model
predicts the CIF using the final representation of the output to-
ken [OT] as 𝐹 (𝜏) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑅𝑒𝐿𝑈 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑇 [𝑂𝑇 ]

𝐿
)))).

See the paper [8] for the details of the transformer module. We in-
troduce a pseudo-value-based binary cross-entropy (PBC) loss for
FedCRA with 𝑅 competing events. The loss 𝐿𝑃𝐵𝐶

𝑘
(𝑡) for client 𝑘

at time 𝑡 is defined as, 𝐿𝑃𝐵𝐶
𝑘

(𝑡) = 1
𝑛𝑘∗𝑅

∑𝑅
𝑟=1

∑𝑛𝑘
𝑖=1 −

[
I(𝐽𝑖𝑘𝑟 (𝑡) >

0.5)𝑙𝑜𝑔𝐹 (𝑡 |𝑥𝑖𝑘𝑟 ) + (1 − I(𝐽𝑖𝑘𝑟 (𝑡) > 0.5))𝑙𝑜𝑔(1 − 𝐹 (𝑡 |𝑥𝑖𝑘𝑟 ))
] . where

𝐹 (𝑡 |𝑥𝑖𝑘𝑟 ) and 𝐽𝑖𝑘𝑟 (𝑡) respectively are the predicted CIF and the
pseudo values at time point 𝑡 for 𝑖𝑡ℎ individual in client 𝑘 . Note
that 𝑡 can be a prespecified single time point or a vector of time
points, Υ, where pseudo values are calculated based on the research
interest. If we calculate the loss for a vector of time points, then
the final loss is

∑
𝑡 𝐿

𝑃𝐵𝐶
𝑘

(𝑡).

3 EXPERIMENTS
We conduct extensive experiments to answer the following research
questions. Q1: What are the advantages of employing federated
pseudo values as opposed to traditional Jackknife pseudo values
in the FedCRA framework? Q2: How does our FedCRA perform
on real-world distributed CRA data with non-independent and
identically distributed (Non-IID) and Non-uniform censoring prop-
erties compared to the FL framework with the state-of-the-art CRA
approaches? Q3: How robust is the FedCRA framework under dif-
ferent types and amounts of censoring?

Synthetic datasets with different censoring mechanisms:
To replicate different censoring scenarios in FL, we generate 5
distributed synthetic CRA datasets with different censoring mecha-
nisms, such as (a) time censoring (TC), (b) interim censoring (IC), (c)
case censoring (CC) with 25%, 50%, and 75% censoring [21], consid-
ering 10 decentralized clients assumed each client to have different
covariate distributions (non-IID). To construct these datasets, we
generate 12 numerical covariates from a multivariate normal distri-
bution with mean𝑚𝑢 and variance 𝜎2. Additionally, we generate
two binary variables from a binomial distribution with probabil-
ity 𝑝 . Survival times are generated from exponential distribution
considering the linear and nonlinear interaction among covariates.

SEER Data: The Surveillance, Epidemiology, and End Results
(SEER) 2 program of the National Cancer Institute collected data
from breast cancer patients registered at multiple hospitals in the
United States to provide cancer statistics in the United States. The
dataset contains 6 competing events and 28366 patients, out of
which 23.2% patients died of cervical cancer (CC), 2.6% died due to
other cancers (OCN), 2.4% died of cardiovascular disease (CVD),
1.1% died due to chronic medical disease (CMD), 0.6% died of infec-
tious disease (ID), and 1.8% died due to other causes (OCS) [19]. To
replicate a realistic distributed CRA data scenario with non-uniform
censoring (NUC) for FL, we first partitioned the SEER data into 3
clients based on the regions of the hospitals: West, Central, and
East. Next, we chose a fixed number of subjects for all clients based
on the minimum number of censored and uncensored subjects in

2https://seer.cancer.gov/
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the clients. Then, we varied the censoring percentages chosen from
[0.2, 0.3, 0.4, 0.50, 0.55] for each client and adjusted the number
of uncensored subjects by subtracting the number of selected cen-
sored subjects from the total fixed number of subjects. This setup
enables us to evaluate FL models in a geographically distributed
data environment and under non-uniform censoring settings.

eICU Data: The eICU dataset is a widely used public clinical
dataset obtained from the eICU Collaborative Research Database
[17], where data are collected from patients admitted to the ICU
setting and gathered from multiple hospitals in the United States.
We extracted 17342 patients who were diagnosed with one or more
of the following four diseases: cancer (CN), liver disease (LV), im-
munosuppression (IM), and diabetes (DI). Death from each disease
is considered a competing event, and we only consider the death of
patients diagnosed with a single disease as an event. We imputed
the missing values using Multivariate Imputation by Chained Equa-
tions (MICE) [23] separately for each client. To simulate real-world
non-IID distributed CRA data, we partitioned the eICU dataset
into 4 clients based on the region of the hospital: (1) Midwest, (2)
Northeast, (3) South, and (4) West.

Experimental Setup: To evaluate the performance of the mod-
els, we consider three training setups: (1) Gold standard centralized
training: models are trained on combined training data shared from
clients to the server, (2) Local training: clients’ own data are used
to train their models locally, and (3) Federated training: clients
communicate with a global server by sharing their models instead
of raw training data to update a global model.

Evaluation Criteria: In both centralized and federated settings,
we use the combined test data from clients to evaluate the models.
We also use the client’s local test data to evaluate the locally trained
models as well as federated trained local models (training of updated
global model by FL on local client data). We use the time-dependent
concordance index (C-Index) [3] as our evaluation metric and use
pycox [12] package to compute them.

Implementation Details: Each client’s data is randomly split
into 80% training and 20% test data. We use 10% or 20% of the train-
ing data as validation sets. We ran the experiment 5 times with
different random initialization or a different set of censoring per-
centages (for SEER) and reported the average performance with cor-
responding standard deviation. We train our proposed TransPseudo
models using the Adam optimizer [14] with an early stopping cri-
terion based on the best validation loss. We use a learning rate
scheduler and select the batch size from [512, 1024]. For a central-
ized setting, the models are trained up to 500 epochs with a patience
of 10. For the federated settings, we perform a hyperparameter tun-
ing to select the best learning rate, the number of local epochs, and
total communication rounds. Based on the hyper-parameter tuning,
we choose the learning rate, the number of local epochs, and total
communication rounds 0.0001, 20, and 20, respectively. To obtain
the prediction of CIF, we use Sigmoid activation function in the
final output layer. We set 10𝑡ℎ to 99𝑡ℎ percentile of the time horizon
with an interval of 10 for SEER and Synthetic datasets and [10, 20,
40, 80, 160, 320, 740] for eICU dataset, as the pre-specified time
points for calculating pseudo values and evaluating the models.

Models Comparison:We compare our proposed FL framework
FedCRA with our proposed client-specific models, TransPseudo,

to FL framework with three state-of-the-art CRA models: i) Sta-
tistical model, Cause-specific Cox proportional hazard model (CS-
CoxPH) [6] ii) Deep-learning-based model, DeepHit [13], and iii)
Transformer-based model, SurvTRACE [25].

4 RESULTS AND DISCUSSION
Jackknife pseudo values vs. federated pseudo values: To show
the effectiveness of employing our proposed federated pseudo val-
ues in our FedCRA framework as opposed to the traditional jack-
knife pseudo values, we evaluate and compare the performance of
federated trained and locally trained TransPseudo models using
both pseudo values on the combined test set and the local test sets
of distributed SEER and eICU datasets. Table 1 demonstrates that
the TransPseudo model with our proposed federated pseudo values
shows up to 9% improvement over the traditional Jackknife pseudo
values in terms of C-Index.
Table 1: Comparing federated and Jackknife pseudo values
using TransPseudo model

Dataset

Combined test data local test data

Federated Training local Training Federated Training

Jackknife Fed. Pseudo Jackknife Fed. Pseudo Jackknife Fed. Pseudo

SEER 0.72 (0.032) 0.83 (0.019) 0.80 (0.011) 0.86 (0.007) 0.80 (0.018) 0.91 (0.017)

eICU 0.74 (0.006) 0.83 (0.008) 0.75 (0.035) 0.83 (0.016) 0.79 (0.019) 0.87 (0.017)

Comparing model performance on real-world distributed
CRA datasets: Table 2 shows that our TransPseudo model outper-
forms CS-CoxPH, DeepHit, and SurvTRACE by 10.2%, 5.5%, and
5.8% in the centralized setting, 8.0%, 3.5%, and 4.1% in local training,
and 11.8%, 3.5% 8.5% in federated setting evaluated on the local test
set of SEER data, respectively. DeepHit and TransPseudo perform
similarly in the federated setting evaluated on the combined test set
of SEER data. However, TransPseudo outperforms CS-CoxPH and
SurvTRACE by 4.7% and 2.3%. Our TransPseudo model, compared
to CS-CoxPH, DeepHit, and SurvTRACE, respectively, obtains 9.8%,
20.8%, and 6.5% better C-Index in the centralized setting, 15.5%,
16.5%, and 11.8% in local training, 5.5%, 14% and 6.5% in federated
setting evaluated on the combined test set of eICU data and 12.3%,
8.7% and 12% in federated setting evaluated on the local test set of
eICU data. Our findings highlight the effectiveness of TransPseudo
in improving the local performance of the models and suggest the
potential of FL for CRA.

Comparing model performance on various censoring set-
tings: Table 3 demonstrates that our TransPseudo model achieves
9.3% and 5.6% overall improvement over the DeepHit and Surv-
TRACE models, respectively, in the centralized setting evaluated on
the combined test set of synthetic datasets with different censoring
mechanisms, such as time censoring (TC), Interim Censoring (IC)
and Case Censoring (CC). In the federated settings, our TransCRA
model outperforms DeepHit by 5.8% and shows similar performance
as the SurvTRACE model. The results support the effectiveness of
using federated pseudo values in the TransPseudo model to handle
different types of censoring.

Limitations:While our TransPseudo provides accurate predic-
tions, they require more computational time and resources for train-
ing than the simple DNN and statistical models, such as DeepHit and
CS-CoxPH. The model is unsuitable for datasets with many features,
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Table 2: C-Index comparison of the models on the SEER and eICU datasets

Setup
↓Model
Event→

SEER eICU
CC OCN CVD CMD ID OCS CN LV IM DI

Centralized
(Combined
Test Data)

CS-CoxPH 0.79 (0.015) 0.78 (0.010) 0.80 (0.007) 0.84 (0.023) 0.68 (0.207) 0.77 (0.026) 0.80 (0.001) 0.71 (0.117) 0.72 (0.008) 0.80 (0.000)
DeepHit 0.88 (0.010) 0.85 (0.018) 0.82 (0.018) 0.76 (0.046) 0.81 (0.107) 0.82 (0.022) 0.71 (0.022) 0.65 (0.071) 0.56 (0.058) 0.67 (0.026)

SurvTRACE 0.84 (0.028) 0.83 (0.025) 0.83 (0.026) 0.79 (0.051) 0.83 (0.080) 0.80 (0.067) 0.77 (0.015) 0.82 (0.035) 0.76 (0.021) 0.81 (0.006)
TransPseudo 0.87 (0.006) 0.88 (0.027) 0.88 (0.018) 0.89 (0.065) 0.89 (0.064) 0.86 (0.010) 0.82 (0.018) 0.89 (0.028) 0.82 (0.034) 0.89 (0.014)

Federated
(Combined
Test Data)

CS-CoxPH 0.79 (0.013) 0.79 (0.007) 0.80 (0.009) 0.84 (0.022) 0.75 (0.027) 0.76 (0.031) 0.79 (0.001) 0.80 (0.004) 0.70 (0.007) 0.80 (0.000)
DeepHit 0.83 (0.008) 0.83 (0.030) 0.86 (0.014) 0.84 (0.049) 0.87 (0.038) 0.82 (0.028) 0.71 (0.024) 0.68 (0.022) 0.59 (0.021) 0.77 (0.019)

SurvTRACE 0.82 (0.007) 0.81 (0.025) 0.82 (0.017) 0.78 (0.078) 0.84 (0.058) 0.80 (0.051) 0.75 (0.009) 0.80 (0.034) 0.72 (0.043) 0.78 (0.008)
TransPseudo 0.80 (0.007) 0.82 (0.041) 0.83 (0.013) 0.87 (0.034) 0.86 (0.073) 0.83 (0.021) 0.81 (0.021) 0.87 (0.027) 0.83 (0.012) 0.80 (0.014)

Local
Training
(Local

Test Data)

CS-CoxPH 0.79 (0.033) 0.79 (0.047) 0.81 (0.040) 0.84 (0.042) 0.68 (0.119) 0.78 (0.056) 0.69 (0.012) 0.63 (0.035) 0.61 (0.051) 0.80 (0.017)
DeepHit 0.87 (0.007) 0.82 (0.028) 0.83 (0.017) 0.78 (0.076) 0.83 (0.065) 0.83 (0.033) 0.67 (0.039) 0.67 (0.049) 0.56 (0.063) 0.79 (0.007)

SurvTRACE 0.84 (0.028) 0.83 (0.025) 0.83 (0.026) 0.79 (0.051) 0.83 (0.080) 0.80 (0.067) 0.70 (0.030) 0.67 (0.009) 0.71 (0.037) 0.80 (0.010)
TransPseudo 0.88 (0.004) 0.87 (0.017) 0.86 (0.019) 0.91 (0.020) 0.84 (0.021) 0.81 (0.025) 0.86 (0.029) 0.78 (0.061) 0.82 (0.014) 0.89 (0.010)

Local
Federated
(Local

Test Data)

CS-CoxPH 0.79 (0.028) 0.79 (0.040) 0.80 (0.042) 0.84 (0.037) 0.74 (0.105) 0.77 (0.052) 0.76 (0.000) 0.73 (0.005) 0.68 (0.007) 0.82 (0.001)
DeepHit 0.88 (0.009) 0.85 (0.022) 0.88 (0.020) 0.86 (0.056) 0.90 (0.040) 0.86 (0.027) 0.83 (0.012) 0.79 (0.021) 0.71 (0.052) 0.80 (0.017)

SurvTRACE 0.87 (0.002) 0.82 (0.035) 0.81 (0.026) 0.79 (0.048) 0.83 (0.091) 0.81 (0.049) 0.76 (0.059) 0.69 (0.031) 0.76 (0.042) 0.79 (0.006)
TransPseudo 0.87 (0.014) 0.91 (0.021) 0.91 (0.018) 0.95 (0.022) 0.91 (0.061) 0.89 (0.020) 0.89 (0.007) 0.82 (0.036) 0.88 (0.029) 0.89 (0.002)

Table 3: Model comparison on different censoring settings

Setup Model TC IC CC25 CC50 CC75

C
en

tr
al
iz
ed DeepHit 0.68 (0.009) 0.68 (0.012) 0.65 (0.004) 0.67 (0.007) 0.72 (0.007)

SurvTRACE 0.72 (0.014) 0.69 (0.015) 0.67 (0.006) 0.67 (0.009) 0.67 (0.008)

TransPseudo 0.79 (0.005) 0.79 (0.005) 0.75 (0.009) 0.80 (0.004) 0.82 (0.008)

Fe
de
ra
te
d DeepHit 0.66 (0.007) 0.66 (0.006) 0.65 (0.006) 0.65 (0.009) 0.65 (0.002)

SurvTRACE 0.70 (0.004) 0.68 (0.005) 0.67 (0.009) 0.68 (0.007) 0.71 (0.009)

TransPseudo 0.72 (0.008) 0.71 (0.009) 0.68 (0.006) 0.71 (0.011) 0.76 (0.007)

especially in the cross-device FL, where resource constraint is an im-
portant issue. The computational burden of our model comes from
the quadratic complexity of the vanilla Multi-Head Self-Attention
(MHSA) with respect to the number of features. Gorishniy et al. [8]
suggest efficiently approximating the MHSA or distilling the Trans-
former models with feature tokenizer into simpler architectures for
better inference. Our federated pseudo values address data hetero-
geneity in terms of non-IID time-to-event/censoring distributions.
However, feature distributions are still different, i.e., non-IID across
the clients, which requires a specialized FL algorithm.
5 CONCLUSION
Competing risk analysis (CRA) is an important problem ignored in
the existing federated survival analysis. In this paper, we proposed a
first-of-its-kind pseudo-value-based federated framework for CRA,
FedCRA, to estimate the subject-specific CIF in the presence of
competing events and censoring. We also proposed a transformer-
based model- TransPseudo for CRA. We introduce a federated
pseudo values derivation approach that allows us to analyze the
CRA data in a federated framework preserving privacy. We conduct
experiments on real and synthetic distributed CRA data with non-
IID, non-uniform censoring properties and show that our FedCRA
framework is better than FL framework with SOTA CRA models.
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