
Stutter-TTS: Synthetic Generation of Diverse
Stuttered Voice Profiles

Anonymous Author(s)
Affiliation
Address
email

Abstract

Stuttering is a speech disorder where the natural flow of speech is interrupted by1

blocks, repetitions or prolongations of syllables, words and phrases. The major-2

ity of existing automatic speech recognition (ASR) interfaces perform poorly on3

utterances with stutter, mainly due to lack of matched training data. Synthesis of4

stuttering voice profiles thus presents an opportunity to improve ASR for these5

speakers with stutter. We describe Stutter-TTS, an end-to-end neural text-to-speech6

model capable of synthesizing diverse types of stuttering utterances. We develop7

a simple, yet effective prosody-control strategy whereby additional tokens are8

introduced into source text during training to represent unique stuttering character-9

istics. By choosing the position of the stutter tokens, Stutter-TTS allows word-level10

control of where stuttering occurs in the synthesized utterance.11

1 Introduction12

According to the National Institute on Deafness and Other Communication Disorders, there are nearly13

three million Americans suffering from lifelong stuttering. Advances in deep learning facilitate the14

development of ASR systems and encourage the integration of voice assistant in various commercial15

electronics (Kepuska and Bohouta [1]). However, people who stutter by and large have not benefited16

from this convenience, as existing ASR systems have difficulties understanding atypical speech,17

resulting in poor performance when it comes to stuttering (Barrett et al. [2]).18

Driven by deep neural networks, recent research efforts have been dedicated to improved detection19

and recognition of disfluent speech (Bayerl et al. [3], Jouaiti and Dautenhahn [4]). Despite advances20

in modeling technology, one of the persisting bottlenecks is the lack of data representative of diverse21

stuttering patterns. The performance of stutter detection or recognition systems greatly depends on22

sufficient stuttered speech for model training (Barrett et al. [2]). For example, the most recently23

introduced SEP-28 dataset contains utterances with stutter comprising less than 24 hours (Lea et al.24

[5]).25

One possible solution to this scarcity of matched speech data would be synthetic speech generated by26

text-to-speech (TTS) systems, as has already been used for other ASR training scenarios (Zheng et al.27

[6]).As a necessary preliminary step towards this goal, we focus here on the design of a TTS model28

capable of generating realistic and natural speech with diverse forms of stutter.29

TTS technology has been widely utilized to produce artificial voices that closely emulate natural30

human conversation (Bilinski et al. [7]). In particular, end-to-end TTS synthesis has attracted wide31

attention due to the simplification in training and improved naturalness of synthetic utterances.32

Recent work has demonstrated the creation of multiple voices for context-aware conversational33

speech synthesis (Stanton et al. [8], Cong et al. [9]). Soleymanpour et al. [10] reported on synthesis34

of dysarthric speech based on a multi-speaker TTS framework. To the best of our knowledge,35

no literature has investigated how to leverage TTS for synthesizing different types of stuttering36

Submitted to NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research. Do not distribute.

voices. For people who stutter, the natural flow of speech is interrupted by various irregular acoustic37

patterns, such as sound repetition, syllable prolongation, and long pausing. Consequently, it remains38

challenging to extend current TTS approaches to the production of realistic stuttering with high39

naturalness and fine-grained prosody control.40

To address these limitations, we introduce Stutter-TTS, a novel TTS approach that achieves both41

naturalness and natural prosody in stuttered speech synthesis. We propose a novel prosody-control42

strategy for supervised learning by incorporating special tokens into the source text to represent43

different prosodic-phonetic characteristic of stutter, including phoneme repetition, dysrhythmic44

phonation, and blocks. By manipulating the input source text, Stutter-TTS can generate either fluent45

speech (without stutter) or specific types of stutter. We systematically produce 100 hours of diverse46

types of utterances containing stutter and quantify the generation performance by randomly sampling47

400 utterances for evaluation.48

2 Methods49

A multi-speaker transformer-based TTS network has been used previously to model stuttering speech50

(Vaswani et al. [11]). The architecture is essentially similar as Chen et al. [12] and Li et al. [13],51

consisting of a transformer backbone, featuring a phonetic encoder, and an acoustic auto-regressive52

decoder. A scaled dot product (Kamath et al. [14]) attention mechanism is used to align the acoustic53

and phonetic features.54

2.1 Stutter-TTS Architecture55

Several modules are added on top of the base transformer. To condition the decoder on speaker56

identity information, a global audio reference encoder is included as a lightweight replacement57

of a speaker embedding model. This module consists of a Gated Recurrent Unit (GRU) (Chung58

et al. [15]) network that receives a set of randomly drawn frames from a reference Mel-spectrogram,59

and aggregates them into a time-independent representation. The reference is set to be the target60

Mel-spectrogram at training time, and the random sampling of frames is a mechanism to prevent61

the content of the target to be leaked to the decoder by destroying the time-dependent information62

while keeping an unbiased estimation of the frequency bins energy distributions. At inference time,63

a reference Mel-spectrogram of the desired speaker is used as input to the global audio reference64

encoder, as a prototype of the voice to use to synthesize the input sentence.65

A stuttering disorder is often characterized by unintentional repetitions, prolongations, or interruption66

of sounds. It is very difficult to predict which phonemes in an utterance will be affected by stutter67

(Dash et al. [16]). From the speech generation perspective, this leads to a situation where the text-to-68

speech mapping is more ambiguous than for regular speakers. Following this line of reasoning, a69

probabilistic embedding is added as input to the phonetic encoder. Instead of modeling a constant70

embedding for each phoneme, the parameters of a diagonal Gaussian are used. This feature allows the71

model to learn the pronunciation uncertainty at phoneme level. Additionally, a learnable parameter α72

is used to weight the sum of the positional encoding, together with a layer normalization (Ba et al.73

[17]), which as described in Chen et al. [12], assures that both phonetic and positional information74

are preserved.75

Auto-regressive decoders, especially when dealing with data that features local correlations as found76

in speech, often stall into a failure mode known as exposure bias (Arora et al. [18]): the decoder,77

instead of predicting the next step, copies its last input step. To prevent exposure bias, a prenet with a78

strong regularization is included before the decoder. This module is vital for the correct generalization79

of the model. It consists of a strong dropout (60%) that is kept active at inference time (Gal and80

Ghahramani [19]) followed by a strong bottleneck projection Chen et al. [12]. This regularization81

reduces the amount of information that is given to the decoder at each step, preventing it to stall into82

the exposure bias failure mode. Finally, after the decoder module, a postnet and a stop signal are83

included, similar to the Tacotron 2 architecture (Wang et al. [20]).84

To train the model, the L1-loss between the target and the predicted Mel spectrogram is minimized85

using stochastic gradient descent, similar to the original loss function of Tacotron 2 (Wang et al. [20]).86

An additional L1-loss is included to enforce that the decoder module produces an output signal in87

the same domain as its input (autoregression requirement). Equation 1 shows the full loss function,88

2

Input

embedding

Output projection
(feed forward)

Multi-Head
Attention (x8)

Add & Norm

Feed

Forward

Add & Norm

Masked
Multi-Head

Attention (x8)

Add & Norm

Multi-Head
Attention (x8)

Add & Norm

Feed

Forward

Add & Norm

3x 6x

Positional

Encoding

Positional

Encoding

Inputs
Outputs

(shifted right,

last of the stack)

Feed

Forward (x2)

STOP

Conv-1D

...
Conv-1D

Conv-1D

Output
spectrogram

Postnet

Intermediate
Spectrogram

(OPS=3)

Feed forward w/
bottleneck (x2)

Always Dropout

Prenet

α

LayerNorm

Global
Audio

Reference
Encoder

Shuffle time axis

Sample 60 frames
randomly

GRU

Get last state

Reference

Spectrogram

Phonetic
Encoder

Decoder

µ σ

Sample z

Figure 1: Diagram of Stutter-TTS architecture.

where m̂final is the mel-spectrogram after the postnet, m̂intermediate is the mel-spectrogram before89

the postnet and m is the target mel-spectrogram. The TTS model is train using teacher-forcing90

method (Williams and Zipser [21], Goodfellow et al. [22]). At inference time, the free-running mode91

is used, generating the samples one step at a time in an auto-regressive fashion. The auto-regressive92

loop contains the decoder and the prenet modules, but not the postnet module Wang et al. [20].93

J(m, m̂intermediate, m̂final) = ·||m̂intermediate −m||1 + ||m̂final −m||1 (1)

2.2 Stutter Token94

To replicate recurring prosodic-phonetic phenomena associated with stutter, we use a list of special95

tokens to denote different stuttering patterns and their location. Specifically, we insert stutter tokens96

immediately in front of the word where stuttering occurs in the corresponding audio. In this work, we97

mainly focus on three common stutter types as described in Table 1. During grapheme-to-phoneme98

(G2P) conversion, stutter tokens are treated as unique tokens that are directly concatenated to the99

3

phoneme set. The TTS model will hence learn embedding vectors associated with each of the stutter100

tokens.101

Table 1: The mapping rule from different types of stutter to corresponding tokens inserted in the
source sentence, along with their relative frequencies in the annotated training dataset

Stutter Type Stutter Token Percentage (%)

Phoneme repetition s_repetition 40.11
Dysrhythmic phonation s_phonation 21.40
Block s_block 15.59

As illustrated in Figure 2, stutter labels are introduced into the input sentence to denote certain102

prosodic-phonetic structure. It is worthwhile pointing out that the proposed processing approach103

achieves word-level prosody control in terms of where stuttering happens in the synthetic utterances.104

This design allows fine-grained control of stuttering occurrences at synthesis time. In the inference105

stage, we can simply place the token for the desired stuttering pattern prior to the word where we106

want the model to render with stutter. Subsequently, the resulting synthetic audio will produce a107

stutter at the designated position in the source sentence.108

Figure 2: An illustration of how stuttered prosodies are included in the input transcript. Stutter token
is precisely inserted prior to the stuttered word in the utterance. Stutter token can be customized as
needed to represent different stutter types.

3 Experimental Results109

3.1 Dataset Description and Model Training110

The Stutter-TTS model is trained using a combination of two proprietary datasets, one containing111

close-talking microphone fluent speech (without stutter) and one with reference (golden) stuttering112

speech. The fluent speech dataset contains 10 professional speakers with 13,000 studio-recorded113

utterances per speaker (600 hours in total). The golden stuttering dataset contains 146 native English114

speakers who stutter with 125 utterances per speaker (40 hours in total). Utterances in both datasets115

are 6 to 12 seconds long.116

We process all audio at 16 kHz and generate 80-dimensional Mel spectrograms. The length of a frame117

is 50 ms with an overlap of 12.5 ms. We employ the Universal Neural vocoder to synthesize audio118

samples using output spectrogram from Stutter-TTS (Lorenzo-Trueba et al. [23]).119

3.2 Evaluation of Synthetic Stuttered Speech120

To evaluate the synthesis of utterances with stutter, we compare the Mel spectrogram generated121

from Stutter-TTS with the associated recording, collected from speakers with stutter. We modify122

the original transcription by inserting the stutter tokens where the speaker stuttered, with the aim123

to reproduce the stutter pattern of the original recording. As shown in Figure 3, our model is able124

to mimic repetition patterns as highlighted in the red rectangle. More importantly, we observe that125

when eliminating the stutter token from the source text, the resulting synthetic utterance contains no126

stuttering, thus preserving the ability to produce fluent utterances with high naturalness.127

In this experiment, we sample 20 reference recordings for each of 10 speakers, and paired with128

10,000 sentences for each of the speaker. We randomly insert one stutter token into input sentences129

with equal probability on location over all words. We systematically synthesize 100 hours of speech130

containing three stutter types. To measure generation performance with stutter, we randomly sample131

4

Figure 3: Comparison of Mel spectrograms of ground truth versus synthetic stuttered speech.

400 utterances containing phoneme repetition, dysrhythmic phonation, block and non-stutter. We132

evaluate the existence of specific stutter types in a subjective manner, by playing synthesized audio133

recordings to identify whether the desired stuttering characteristics occur.134

Evaluation results are detailed in Table 2. It is vital to perform model training using a combination135

of both fluent and stuttering speech. Moreover, we experiment with a range of sampling weights to136

optimize the model’s performance producing both fluent and stuttering utterances. It is beneficial to137

increase the proportion of stuttering samples as it leads to improved generation of diverse stuttering138

patterns. However, oversampling stuttering data hurts model performance on fluent speech (dropping139

from 0.733 to 0.575). We would attribute the variation in synthesis accuracy to the biased distribution140

of stutter types in the training dataset.141

Table 2: F1 scores corresponding to diverse stutter types with variations on ratio of fluent speech
versus stuttered speech.

Ratios(%) Phoneme
Repetition

Dysrhythmic
Phonation Block Non-Stutter

95:5 0.692 0.503 0.720 0.647
90:10 0.786 0.633 0.837 0.733
85:15 0.773 0.615 0.853 0.575

4 Conclusion142

We present a novel Stutter-TTS system that can produce voice profiles that can generate stutter in a143

highly controlled manner. We incorporate a list of special tokens to denote characteristics of stuttering144

patterns in the source text. For training Stutter-TTS, it is critical to fine-tune the sampling ratio145

between fluent and stuttering speech. Stutter-TTS achieves faithful synthesis of artificial utterances146

with stutter types including phoneme repetition, dysrhythmic phonation, and blocks. In addition,147

systematic speech synthesis demonstrates the ability to create new voices with specified stuttering148

structure. In future work, we will explore the potential of Stutter-TTS to improve the recognition of149

stuttered speech via generation of matched ASR training data.150

5

References151

[1] Veton Kepuska and Gamal Bohouta. Next-generation of virtual personal assistants (microsoft152

cortana, apple siri, amazon alexa and google home). In 2018 IEEE 8th annual computing and153

communication workshop and conference (CCWC), pages 99–103. IEEE, 2018.154

[2] Liam Barrett, Junchao Hu, and Peter Howell. Systematic review of machine learning ap-155

proaches for detecting developmental stuttering. IEEE/ACM Transactions on Audio, Speech,156

and Language Processing, 2022.157

[3] Sebastian P Bayerl, Dominik Wagner, Elmar Nöth, and Korbinian Riedhammer. Detecting158

dysfluencies in stuttering therapy using wav2vec 2.0. arXiv preprint arXiv:2204.03417, 2022.159

[4] Melanie Jouaiti and Kerstin Dautenhahn. Dysfluency classification in stuttered speech using160

deep learning for real-time applications. In ICASSP 2022-2022 IEEE International Conference161

on Acoustics, Speech and Signal Processing (ICASSP), pages 6482–6486. IEEE, 2022.162

[5] Colin Lea, Vikramjit Mitra, Aparna Joshi, Sachin Kajarekar, and Jeffrey P Bigham. Sep-28k: A163

dataset for stuttering event detection from podcasts with people who stutter. In ICASSP 2021-164

2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),165

pages 6798–6802. IEEE, 2021.166

[6] Xianrui Zheng, Yulan Liu, Deniz Gunceler, and Daniel Willett. Using synthetic audio to improve167

the recognition of out-of-vocabulary words in end-to-end asr systems. In ICASSP 2021-2021168

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages169

5674–5678. IEEE, 2021.170

[7] Piotr Bilinski, Thomas Merritt, Abdelhamid Ezzerg, Kamil Pokora, Sebastian Cygert, Kayoko171

Yanagisawa, Roberto Barra-Chicote, and Daniel Korzekwa. Creating new voices using normal-172

izing flows.173

[8] Daisy Stanton, Matt Shannon, Soroosh Mariooryad, RJ Skerry-Ryan, Eric Battenberg, Tom174

Bagby, and David Kao. Speaker generation. In ICASSP 2022-2022 IEEE International175

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7897–7901. IEEE,176

2022.177

[9] Jian Cong, Shan Yang, Na Hu, Guangzhi Li, Lei Xie, and Dan Su. Controllable context-aware178

conversational speech synthesis. arXiv preprint arXiv:2106.10828, 2021.179

[10] Mohammad Soleymanpour, Michael T Johnson, Rahim Soleymanpour, and Jeffrey Berry.180

Synthesizing dysarthric speech using multi-talker tts for dysarthric speech recognition. arXiv181

preprint arXiv:2201.11571, 2022.182

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,183

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information184

processing systems, 30, 2017.185

[12] Mingjian Chen, Xu Tan, Yi Ren, Jin Xu, Hao Sun, Sheng Zhao, Tao Qin, and Tie-Yan Liu.186

Multispeech: Multi-speaker text to speech with transformer. arXiv preprint arXiv:2006.04664,187

2020.188

[13] Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming Liu. Neural speech synthesis189

with transformer network. In Proceedings of the AAAI Conference on Artificial Intelligence,190

volume 33, pages 6706–6713, 2019.191

[14] Uday Kamath, John Liu, and James Whitaker. Deep learning for NLP and speech recognition,192

volume 84. Springer, 2019.193

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation194

of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,195

2014.196

6

[16] Ankit Dash, Nikhil Subramani, Tejas Manjunath, Vishruti Yaragarala, and Shikha Tripathi.197

Speech recognition and correction of a stuttered speech. In 2018 International Conference on198

Advances in Computing, Communications and Informatics (ICACCI), pages 1757–1760. IEEE,199

2018.200

[17] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint201

arXiv:1607.06450, 2016.202

[18] Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why exposure203

bias matters: An imitation learning perspective of error accumulation in language generation.204

arXiv preprint arXiv:2204.01171, 2022.205

[19] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model206

uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.207

PMLR, 2016.208

[20] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,209

Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end210

speech synthesis. arXiv preprint arXiv:1703.10135, 2017.211

[21] Ronald J Williams and David Zipser. A learning algorithm for continually running fully212

recurrent neural networks. Neural computation, 1(2):270–280, 1989.213

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.214

[23] Jaime Lorenzo-Trueba, Thomas Drugman, Javier Latorre, Thomas Merritt, Bartosz Putrycz,215

Roberto Barra-Chicote, Alexis Moinet, and Vatsal Aggarwal. Towards achieving robust universal216

neural vocoding. arXiv preprint arXiv:1811.06292, 2018.217

7

	Introduction
	Methods
	Stutter-TTS Architecture
	Stutter Token

	Experimental Results
	Dataset Description and Model Training
	Evaluation of Synthetic Stuttered Speech

	Conclusion

