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Abstract

Graphs have been widely used in data mining and machine learning due to their1

unique representation of real-world objects and their interactions. As graphs are2

getting bigger and bigger nowadays, it is common to see their subgraphs separately3

collected and stored in multiple local systems. Therefore, it is natural to consider4

the subgraph federated learning setting, where those local systems, each holding a5

small subgraph that may be biased from the distribution of the whole graph, aim6

to collaboratively train a powerful and generalizable graph mining model without7

directly sharing their graph data. In this work, towards the novel yet realistic setting8

of subgraph federated learning, we propose two major techniques: (1) FedSage,9

which trains a GraphSage model based on FedAvg to integrate node features, link10

structures, and task labels on multiple local subgraphs; (2) FedSage+, which trains11

a missing neighbor generator along FedSage to deal with missing links across local12

subgraphs. Empirical results on four real-world graph datasets with synthesized13

subgraph federated learning settings demonstrate the effectiveness and efficiency14

of our proposed techniques. At the same time, consistent theoretical implications15

are made towards their generalization ability on the global graphs.16

1 Introduction17

Graph mining leverages links among connected nodes in graphs to conduct inference [1]. Recently,18

graph neural networks (GNNs) gain applause with impressing performance and generalizability in19

many graph mining tasks [2, 3, 4]. Similar to machine learning tasks in other domains, attaining a well-20

performed GNN model requires its training data to not only be sufficient, but also follow the similar21

distribution as general queries. While in reality, data owners often collect limited and biased graphs22

and cannot observe the global distribution. Therefore, with heterogeneous subgraphs separately23

stored in local data owners, accomplishing a globally applicable GNN requires collaboration.24

Federated learning (FL) [5, 6], targeting at training machine learning models with data distributed in25

multiple local systems to resolve the information-silo problem, has shown its advantage in enhancing26

the performance and generalizability of the collaboratively trained models without the need of sharing27

any actual data. For example, FL has been devised in computer vision (CV) and natural language28

processing (NLP) to allow the joint training of powerful and generalizable deep convolutional neural29

networks and language models on separately stored datasets of images and texts [7, 8, 9, 10, 11].30

Motivating Scenario. Taking the healthcare system as an example, as shown in Fig. 1, residents31

of a city may go to different hospitals due to various reasons. As a result, their healthcare data,32

such as demographics and living conditions, as well as patient interactions, such as co-staying in33

a sickroom and co-diagnosis of a disease, are stored only within the hospitals they visit. When34

any healthcare problem is to be studied in the whole city, e.g., the prediction of infections when a35

pandemic occurs, a single powerful graph mining model is needed to conduct effective inference over36

the whole underlying global patient network, which contains all subgraphs from different hospitals.37
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Figure 1: A toy example of the distributed subgraph storage system: In this example, there are
four hospitals and a medical administration center. The global graph records, for a certain period, the
city’s patients (nodes), their information (attributes), and interactions (links). Specifically, the left
part of the figure shows how the global graph is stored in each hospital, where the grey solid lines
are the links explicitly stored in each hospital, and the red dashed lines are the cross-hospital links
that may exist but are not stored in any hospital. The right part of the figure indicates our goal that
without sharing actual data, the system obtains a globally powerful graph mining model.

However, it is rather difficult to let all hospitals share their patient networks with each other to train38

the graph mining model, due to data privacy and conflicts of interests.39

There are two unique challenges in training a powerful and generalizable graph mining model over40

multiple distributed subgraphs without actual data sharing, which have never been explored so far.41

Challenge 1: How to jointly learn from multiple local subgraphs? In our considered scenario,42

the global graph is distributed into a set of small subgraphs with heterogeneous feature and structure43

distributions. Training a separate graph mining model on each of them may not capture the global44

data distribution and is also prone to overfitting. Moreover, it is unclear how multiple graph mining45

models can be integrated into a universally applicable one that can handle any queries from the46

underlying global graph.47

Solution 1: FedSage: Training GraphSage with FedAvg. To attain a powerful and generalizable48

graph mining model from small and biased subgraphs distributed in multiple local owners, we develop49

a framework of subgraph federated learning, specifically, with the vanilla mechanism of FedAvg [12].50

As for the graph mining model, we resort to GraphSage [3], due to its advantages of inductiveness51

and scalability. We term this framework as FedSage.52

Challenge 2: How to deal with missing links across local subgraphs? Unlike distributed systems53

in other domains such CV and NLP, whose data samples of images and texts are isolated and54

independent, data samples in graphs are connected and correlated. Most importantly, in a subgraph55

federated learning system, data samples in each subgraph can potentially have connections to those56

in other subgraphs, which carries important information of node neighborhoods and serves as bridges57

among the data owners, but they are never directly captured by any data owner.58

Solution 2: FedSage+: Generating missing neighbors along FedSage. To deal with cross-59

subgraph missing links, we propose a novel FedSage+ model on top of FedSage, by adding a60

missing neighbor generator into the FL framework. Specifically, for each data owner, instead of61

training the GraphSage model on the entire subgraph, we first impair the subgraph by randomly62

holding-out some nodes and their links; then we jointly train a neighbor generator based on the63

held-out neighbors to mend the graph and train the GraphSage classifier on the mended graph. This64

neighbor generator trained on a local subgraph thus can generate potential missing links in the testing65

phase, and training it in our subgraph FL setting allows local owner to generate missing neighbors66

across subgraphs.67

We conduct experiments on four real-world datasets with different numbers of data owners to better68

simulate the application scenarios. According to our results, both of our models outperform locally69

trained classifiers in all scenarios. Compared to FedSage, FedSage+ further promotes the performance70

of the outcome classifier. Further in-depth model analysis shows the convergence and generalization71

ability of our frameworks, which is corroborated by our theoretical analysis in the end.72
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2 Related works73

Graph mining. Graph mining emerges its significance in analyzing the informative graph data, which74

range from social networks to gene interaction networks [1]. One of the most frequently applied tasks75

on graph data is node classification. Recently, graph neural networks (GNNs), e.g., GraphSage [3]76

and graph convolutional networks (GCN) [4] , improve the state-of-the-art in node classification with77

their sophisticated designs. However, as GNNs leverage the homophily of nodes in both feature and78

structure to conduct the inference, GNNs are vulnerable to the perturbation on graphs [13, 14, 15].79

Robust GNNs, aiming at reducing the degeneration in GNNs caused by graph perturbation, are80

gaining attention these days. Current robust GNNs focus on the sensitivity towards modifications on81

node features [16, 17] or adding/removing edges on the graph [18]. However, neither of these two82

types recapitulates the neighbors missing problem, which affects both the features distribution and83

the graph structures.84

Moreover, to obtain a node classifier with generalizability, the development of domain adaptive GNN85

sheds light on adapting a GNN model trained on the source domain to the target domain by leveraging86

underlying structural consistency [19, 20]. In our considered distributed system, however, each data87

owner has heterogeneous subgraphs due to unpredictable missing cross-subgraph links, which bring88

diverse local structures. The violation for the domain adaptive GNN assumptions on cross-domain89

structural consistency denies its usage in the distributed subgraph system.90

Federated learning. FL is proposed for cross-institutional collaborative learning without sharing raw91

data [5, 6, 12]. FedAvg [12] is an efficient and well-studied FL method, similar to most FL methods,92

is originally proposed for traditional machine learning problems [6] to allow collaborative training on93

silo data through local updating and global aggregation. In the distributed subgraph system, to obtain94

a globally applicable model without sharing local graph data, we borrow the idea of FL to jointly95

train a GNN.96

Federated graph learning. Recent researchers have made some progress in federated graph learning.97

There are existing FL frameworks designed for the graph data learning task [21, 22]. [21] designs a98

graph level FL scheme with graph datasets dispersed over multiple data owners, which is inappli-99

cable to our distributed subgraph system construction. While [22] proposes an FL method for the100

recommendation problem with each data owner learning on a subgraph of the whole recommendation101

user-item graph. However, [22] considers a different distributed scenario with assumeing subgraphs102

have overlapped items (nodes), and the user-item interactions (edges) are distributed but completely103

stored in the system, while our distributed subgraph system fails in recording the cross-subgraph104

edges.105

In this work, we consider the commonly existing, yet not been studied scenario, i.e., distributed106

subgraph system with missing cross-subgraph edges. Under this scenario, we focus on obtaining a107

globally applicable node classifier through FL on subgraphs.108

3 FedSage109

In this section, we first illustrate the construction of the distributed subgraph system derived from110

real-world application scenarios. Based on this system, we then formulate our novel subgraph FL111

framework and a vanilla solution called FedSage.112

3.1 Subgraphs Distributed in Local Systems113

Notation. We denote a global graph as G = {V,E}, where V is the node set and E is the edge set.114

In the FL system, we denote the central server S, and M data owners in this distributed subgraph115

system. Gi = {Vi, Ei} is the subgraph owned by client Di, for i ∈ [M ].116

Problem setup. For the whole system, we assume V = V1 ∪ · · · ∪ VM . For simplicity, we also117

assume no overlapping nodes shared across data owners, namely Vi ∩ Vj = ∅ for ∀i, j ∈ [M ]. Note118

that the central server S only maintains as a graph mining model with no actual graph data stored.119

Any data owner Di cannot directly retrieve u ∈ Vj from another data owner Dj . Therefore, for an120

edge ev,u ∈ E, where v ∈ Vi and u ∈ Vj , ev,u /∈ Ei ∪ Ej , that is, ev,u might exist in reality but is121

not stored anywhere in the whole system.122
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For the global graph G = {V,E}, every node v ∈ V has its features x ∈ X and one label y ∈ Y123

for a same downstream task, e.g., node classification. For i ∈ [M ], data owner Di possessing the124

node set Vi has access to the features and label of each node v ∈ Vi. In a typical GNN, predicting125

a node’s label requires not only the queried node’s features, but also its spatial information on the126

graph it belongs to. For a node from graph g with features x, we denote the query made to a node127

classifier as qg,x(·) and the query follows the distribution Qg,x. Thus, a query for node v on G with128

its ground-truth label y is qG,X (v) and (qG,X (v), y) ∼ (QG,X ,Y).129

With subgraphs distributed in the system constructed above, we formulate our goal as follows.130

Goal. The system exploits a FL frameworkHC to collaboratively learn on the isolated subgraphs in131

all data owners to obtain a global node classifier C optimized for queries following the distribution of132

queries on the global graph G as133

(qG,X (v), C (qG,X (v)|HC ({Gi,Xi,Yi|i ∈ [M ]}))) ∼ (QG,X ,Y) , (1)

where qG,X (v) is the node classification query generated for node v in G.134

3.2 Collaborative Learning on Isolated Subgraphs135

To fulfill the system’s goal illustrated above, we leverage the simple and efficient FedAvg framework136

[12] asHC and fix the node classifier C as a GraphSage model, whose inductiveness and scalability137

concert its training on subgraphs with heterogeneous query distributions and generalization to the138

global graph. We term this vanilla model as FedSage.139

A globally shared K-layer GraphSage classifier C models the K-hop neighborhood for a queried140

node v ∈ V on graph G to conduct prediction with inner parameters θc. Taking G = Gi as an141

example, for v ∈ Vi with features as h0
v , at each layer k ∈ [K], C computes v’s representation hkv as142

hkv = σ
(
θk ·

(
hk−1
v ||Agg

({
hk−1
u ,∀u ∈ NGi

(v)
})))

, (2)

where NGi
(v) is the set of v’s neighbors on graph Gi, || is the concatenation operation, Agg(·) is the143

aggregator (e.g., mean pooling) and σ is the activation function (e.g., ReLU).144

With C outputting the inference label ỹv = Softmax(hKv ) for v ∈ Vi, the supervised loss function145

l(θ|·) is defined as follows146

Lc = l(θ|qGi,Xi
(v)) = CE(ỹv, yv) = − [yv log ỹv + (1− yv) log (1− ỹv)] , (3)

where CE(·) is the cross entropy function, θ = {θk}Kk=1 is the set of learnable parameters, qGi,Xi(v)147

contains v’s K-hop neighborhood information on Gi, and yv is the ground-true label of node v.148

In FedSage, the distributed subgraph system obtains a shared global node classifier C parameterized149

by θc through ec epochs of training. During each epoch t, every Di first locally computes θ(i)
c ←150

θc − η∇`(θc|{(qGi,Xi
(v), yv)|v ∈ V t

i }), where V t
i ⊆ Vi, yv is the true label of v, and η is the151

learning rate; then the central server S collects the latest {θ(i)
c |i ∈ [M ]}; next, through averaging over152

{θ(i)
c |i ∈ [M ]}, S sets θc as the averaged value; finally, S broadcasts θc to data owners and finishes153

one round of training C. After ec epochs, the distributed subgraph system retrieves C as the globally154

useful classifier, which is not limited to or biased towards the queries in any specific data owner.155

Unlike FL on Euclidean data, nodes in subgraphs distributed in multiple data owners can potentially156

interact with each other in reality, but the cross-subgraph links cannot be captured by any data owner.157

Still, ignorance of such missing links makes the neighborhoods of nodes in each subgraph incomplete,158

which prevents the global classifier C from capturing the true global query distribution.159

4 FedSage+160

In this section, we propose a novel framework of FedSage+, i.e., subgraph FL with missing neighbor161

generation. We first design a missing neighbor generator (NeighGen) and its training schema via162

graph mending. Then, we describe the jointly training of NeighGen and GraphSage to better achieve163

the goal in Eq. (1). Without loss of generality, in the following demonstration, we take NeighGeni,164

i.e., the missing neighbor generator of Di, as an example, where i ∈ [M ].165
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Figure 2: Joint training of missing neighbor generation and node classification.

4.1 Missing Neighbor Generator (NeighGen)166

Graph mending simulation. For our system, we assume that each data owner has missing links167

only to a particular set of nodes that belong to other data owners. The assumption is realistic yet168

non-trivial for it both seizing the quiddity of the distributed subgraph system, and allowing us to169

locally simulate the missing neighbor situation through a graph impairing and mending process.170

Specifically, in each local graph Gi, we randomly hold out h% of its nodes V h
i ⊂ Vi and all links171

involving them Eh
i = {euv|u ∈ V h

i or v ∈ V h
i } ⊂ Ei, to form a subgraph, denoted as Ḡi, with the172

impaired set of nodes V̄i = Vi \ V h
i , and edges Ēi = Ei \Eh

i . Then we simulate a graph mending173

process to train a missing neighbor generator (NeighGen) on the impaired graph Ḡi = {V̄i, Ēi}174

based on the ground-truth missing nodes V h
i and links Eh

i .175

Neural architecture of NeighGen. As shown in Fig. 2, NeighGen consists of two modules, i.e.,176

an encoder E and a generator G. We describe their designs in details in the following.177

E : A GNN model, i.e., a K-layer GraphSage encoder, with parameters θe. For node v ∈ V̄i on the178

input impaired graph Ḡi, E computes node embeddings z = hK according to Eq. (2) by substituting179

θ, G with θe and Ḡi.180

G: A generative model recovering missing neighbors for the input graph based on the node embedding181

z. G contains dGen and fGen, where dGen is a linear regression model parameterized by θd that182

predicts the number of missing neighbors ñi, and fGen is a feature generator parameterized by θf183

that generates a set of ñi feature vectors X̃i. Both dGen and fGen are constructed as fully connected184

neural networks (FNNs), while fGen is further equipped with a Gaussian noise generator N(0, 1) and185

a random samplerR that make it variational and able to generate a set of diverse neighbor features186

from a single node. Thus, we have187

ñi = σ(θd · zi), and X̃i = σ
(
θf · R(zi +N(0, 1), ñi)

)
. (4)

Accordingly, the training of NeighGen boils down to jointly training dGen and fGen with188

Ln = λdLd + λfLf = λd
1

|V̄ |
∑
v∈V̄

LS
1 (ñv − nv) + λf

1

|V̄ |
∑
v∈V̄

∑
p∈[ñv ]

min
q∈[nv]

(||x̃pv − xqv||22), (5)

where LS
1 is the smooth L1 distance [23], nv and Xv are retrieved based on the hidden nodes V h.189

To obtain a mended graph G′i from Gi, a data owner Di performs two steps, which are also shown in190

Fig. 2: 1) Training NeighGen on the impaired graph Ḡi w.r.t. the ground-truth hidden neighbors V h
i ,191

2) Referring to the relation between Ḡi and Gi, further mending the original graph Gi into G′i by192

running the learned NeighGen on Gi. On the local graph Gi alone, this process can be understood as193

a data augmentation. However, the actual goal is to train NeighGen through federated learning and194

allows it to generate the cross-subgraph missing neighbors (links), which will become clear later.195

4.2 Local Joint Training of GraphSage and NeighGen196

While NeighGen is designed to recover missing neighbors, the final goal of our system is to train a197

node classifier. Therefore, we design the joint training of GraphSage and NeighGen, which leverages198

neighbors generated by NeighGen to assist the node classification by GraphSage. We term the199

integration of GraphSage and NeighGen on the local graphs LocSage+.200

After NeighGen mends the graph Gi into G′i, the GraphSage classifier C is applied on G′i, accroding201

to Eq. (2) (with Gi replaced by G′i). Thus, the joint training of NeighGen and GraphSage is done202

5



through optimizing the following loss function203

L = Ln + λcLc = λdLd + λfLf + λcLc, (6)
where Ld and Lf are defined in Eq. (5) and Lc is defined in Eq. (3) (with Gi substituted by G′i).204

The local joint training of GraphSage and NeighGen allows NeighGen to generate missing neighbors205

in the local graph that are helpful for the classifications made by GraphSage. However, like GraphSage,206

the information encoded in the local NeighGen is limited to and biased towards the local graph,207

which does not enable it to really generate neighbors belonging to other data owners connected by the208

missing cross-subgraph links. To this end, it is natural to also train NeighGen with federated learning.209

4.3 Federated Learning of GraphSage and NeighGen210

Similarly to GraphSage alone as described in Section 3.2, we can apply FedAvg to the joint train-211

ing of GraphSage and NeighGen, by setting the loss function to L and learnable parameters to212

{θe; θd; θf ; θc}. However, we observe that cooperation through directly averaging weights of Neigh-213

Gen across the system can negatively effect its performance, i.e., averaging the weights of a single214

NeighGen model does not really allow it to generate diverse neighbors from different subgraphs.215

Recalling our goal of constructing NeighGen, which is to facilitate the training of a centralized216

GraphSage classifier by generating diverse missing neighbors in each subgraph, we do not necessarily217

need a centralized NeighGen. Therefore, instead of training a single centralized NeighGen, we train218

a local NeighGeni for each data owner Di. In order to allow each NeighGeni to generate diverse219

neighbors similar to those missed into other subgraphs Gj , j ∈ [M ] \ {i}, we add a cross-subgraph220

feature reconstruction loss into fGeni as follows:221

Lf,i =
1

|V̄i|
∑
v∈V̄i

∑
p∈[ñv ]

 min
q∈[nv ]

(||x̃pv − xqv||22) + α
∑

j∈[M ]/i

min
vq∈V h

j

(||x̃pv − xq||22)

 , (7)

where vq ∈ V h
j , ∀j ∈ [M ] \ {i} is picked as the closest node from the set of hidden nodes in each222

subgraph Gj other than Gi to simulate the neighbor of v ∈ Vi missed into Gj .223

Through Eq. (7), NeighGeni is expected to perceive diverse neighborhood information from all data224

owners, so as to generate more realistic cross-subgraph missing neighbors. The expectedly diverse225

and unbiased neighbors further assist the FedSage in training a globally useful classifier that satisfies226

our goal in Eq. (1). Note that, the additional communications and computation time incurred by227

Eq. (7) are acceptable since the size of hidden nodes V h in each subgraph is often pretty small (e.g.,228

5-15% in our experiments). We list the full pseudo code of FedSage+ with detailed server and client229

procedures in Alg. 1 in the Appendix.230

5 Experiments231

We conduct experiments on four datasets to verify the effectiveness of FedSage and FedSage+, under232

different testing scenarios. We further provide case studies visualizing how they assist local data233

owners in accommodating queries from the global distribution.234

5.1 Datasets and experimental settings235

We synthesize the distributed subgraph system with four widely used real-world graph datasets,236

i.e., Cora [24], Citeseer [24], PubMed [25], and MSAcademic [26]. To synthesize the distributed237

subgraph system, we find hierarchical graph clusters on each dataset with the Louvain algorithm [27]238

and use the clustering results with 3, 5, and 10 clusters of similar sizes to obtain subgraphs for data239

owners. The statistics of these datasets are presented in Table 1.240

We implement GraphSage with two layers and mean aggregator. We set the batch size as 64, and the241

number of nodes sampled in each layer as 5. The training-validation-testing ratio is 60%-20%-20%.242

The graph impairing ratio varies for different scenarios. All λs are simply set to 1. Adam is selected243

as the optimization algorithm, and its learning rate is 0.001. We implement FedSage and FedSage+244

in Python, and execute all experiments on NVIDIA GeForce GTX 1080 Ti GPU.245

Since we are the first to study the novel yet important setting of subgraph federated learning, there246

are no existing baselines. We conduct comprehensive ablation evaluation by comparing FedSage and247
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Table 1: Statistics of the datasets and the synthesized distributed subgraph systems with M = 3, 5,
and 10. #C row shows the number of classes, |Vi| and |Ei| rows show the averaged numbers of nodes
and links in all subgraphs, and ∆E shows the total number of missing cross-subgraph links.

Data Cora Citeseer PubMed MSAcademic

#C 7 6 3 15
|V | 2708 3312 19717 18333
|E| 5429 4715 44338 81894

M 3 5 10 3 5 10 3 5 10 3 5 10

|Vi| 903 542 271 1104 662 331 6572 3943 1972 6111 3667 1833
|Ei| 1675 968 450 1518 902 442 12932 7630 3789 23584 13949 5915
∆E 403 589 929 161 206 300 5543 6189 6445 11141 12151 22743

Table 2: Node classification results on four datasets withM = 3, 5, and 10. Besides averaged accuracy,
we also provide the corresponding std. Unspecified std values are all under 10−4.

Cora Citesser

Model M=3 M=5 M=10 M=3 M=5 M=10

LocSage 0.5762 0.4431 0.2798 0.6789 0.5612 0.4240
(±0.0014) (±0.0072) (±0.0080) (±0.0029) (±0.0074) (±0.0074)

LocSage+ 0.5644 0.4533 0.2851 0.6848 0.5676 0.4323
(±0.0007) (±0.0022) (±0.0080) (±0.0027) (±0.0051) (±0.0051)

FedSage 0.9071 0.8968 0.4917 0.8499 0.8192 0.8192
FedSage+ 0.9269 0.9099 0.5505 0.8526 0.8272 0.8269

GlobSage 0.9213 0.8554

PubMed MSAcademic

Model M=3 M=5 M=10 M=3 M=5 M=10

LocSage 0.8447 0.8039 0.7148 0.8188 0.7426 0.5918
(±0.0000) (±0.0011) (±0.0090) (±0.0016) (±0.0062) (±0.0101)

LocSage+ 0.8481 0.8046 0.7039 0.8393 0.7480 0.5927
(±0.0000) (±0.0010) (±0.0085) (±0.0016) (±0.0066) (±0.0120)

FedSage 0.8238 0.8046 0.7742 0.9327 0.9373 0.9262
FedSage+ 0.8716 0.8279 0.8285 0.9359 0.9422 0.9314

GlobSage 0.9342 0.9681

FedSage+ with three models, i.e., 1) GlobSage: the GraphSage model trained on the original global248

graph without missing links (as an upper bound for FL framework with GraphSage model alone), 2)249

LocSage: one GraphSage model trained solely on each subgraph, 3) LocSage+: the GraphSage plus250

NeighGen model jointly trained solely on each subgraph.251

The metric used in our experiments is the node classification accuracy on the queries sampled from the252

testing nodes on the global graph. For globally shared models of GlobSage, FedSage, and FedSage+,253

we report the average accuracy scores with variance over five random repetitions, while for locally254

possessed models of LocSage and LocSage+, the scores are further averaged across local models.255

5.2 Experimental results256

Overall performance. We conduct comprehensive ablation experiments to verify the significant257

promotion brought by FedSage and FedSage+ for local owners in global node classification, and258

the results are listed in Table 2. The most striking observation emerging from the results is that259

FedSage+ remarkably outperforms LocSage by at most 46.68% and the vanilla FedSage by at most260

5.88% (absolute accuracy gain). Notably, for the Cora dataset, when M is 3, FedSage+ even exceeds261

GlobSage by 0.56% .262

The large gaps between locally obtained classifier, i.e., through LocSage or LocSage+, and the263

federated trained classifier, i.e., with FedSage or FedSage+, assay the benefits brought by the264

collaboration across data owners in our distributed subgraph system. Compared to FedSage, the265

further elevation brought by FedSage+ corroborates the assumed degeneration brought by missing266

cross-subgraph links and the effectiveness of our innovatively designed NeighGen module. Note that,267
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(a) Ground-truth on different local data owners (b) Global ground-truth vs. model predictions

Figure 3: Label distributions on the PubMed dataset with M=5.
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Figure 4: Training curves of different frameworks (GlobSage provides an upper bound).

the gaps between LocSage and LocSage+ are comparatively smaller, indicating that our NeighGen268

serves more than a robust GNN trainer, but is rather uniquely crucial in the subgraph FL setting.269

Case studies. To further understand how FedSage improves the global classifier over LocSage, we270

provide case study results on PubMed with five data owners in Fig. 3. For the studied scenario, each271

data owner only possesses about 20% of the nodes with rather biased label distributions as shown272

in Fig. 3 (a). Such bias is due the way we synthesize the distributed subgraph system with Louvain273

clustering, which is also realistic in real scenarios, which essentially makes it hard for any local274

data owner with limited training samples to obtain a generalized classifier that is globally useful.275

Although with 13.9% of the links missing across data owners, both FedSage and FedSage+ empower276

the local data owners in predicting labels that closely follow the ground-true global label distribution277

as shown in Fig. 3 (b). It is evidently clear from the figure that our FL models exhibit their advantages278

in learning a more realistic label distribution as our goal in Eq. (1), which is consistent with the279

observed classification accuracy in Table 2 and our theoretical implications in Section 6.280

For the studied case, we also visualize testing accuracy, loss convergence, and runtime along 500281

epochs in obtaining C with FedSage, FedSage+ and GlobSage. The results are presented in Figure 4.282

Both FedSage and FedSage+ can consistently achieve convergence with rapidly improved testing283

accuracy. Regarding runtime, even though we conjecture the training of NeighGen to potentially284

incur significantly more communications and computations, FedSage+ does not consume observable285

more training time compared to FedSage, since the training data scale of NeighGen is indeed much286

smaller than GraphSage discussed in Section 4.3.287

To sum up, our experimental results quantify the effectiveness of subgraph federated learning, i.e.,288

FedSage and FedSage+, in retrieving a general applicable node classifier in the distributed subgraph289

systems essentially through involving more training samples from the underlying global graph without290

directly sharing training data across subgraphs. FedSage+, resolving the unique challenge of missing291

cross-subgraph links in this setting, further improves FedSage with convincing testing results in all292

tested scenarios.293

6 Implications on Generalization Bound294

In this section, we provide a theoretical implication for the generalization error associated with295

number of training samples, i.e., nodes in the distributed subgraph system. Thus, we are motivated to296

promote the FedSage and FedSage+ algorithms that include more nodes in the global graph through297
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collaborative training with FL. To narrow the gap between the real and theoretical settings, we follow298

Graph Neural Tangent Kernel (GNTK) [28] on universal graph neural networks.299

Setting. Our explanation builds on a generalized setting, where we assume a GNN fGNN with300

layer-wise aggregation operations and fully-connected layers with ReLU activation functions, which301

includes GraphSage as a special case. The weights of fGNN, W , is i.i.d. sampled from a multivariate302

Gaussian distribution N (0, I). For Graph G = {V,E}, we define the kernel matrix of two nodes303

u, v ∈ V as follows.304

Definition 6.1 (Informal version of GNTK on node classification) Considering training an over-305

parameterized GNN fGNN by gradient descent with infinitesimally small learning rate. Given n306

training samples of nodes with corresponding labels, we denote Θ ∈ Rn×n as the the kernel matrix307

of GNTK. Θuv is defined as308

Θ(u, v) = EW∼N (0,I)

[〈
∂fGNN(W,G, u)

∂W
,
fGNN(W,G, v)

∂W

〉]
∈ R.

Full expression of Θ is shown in the Appendix. The generalization ability in the NTK regime depends309

on the kernel matrix Θ. We present the generalization bound associated with the number of training310

samples n in Theorem 6.2.311

Theorem 6.2 (Generalization bound) Given n training samples of nodes (ui, yi)
n
i=1 drawn i.i.d312

from the global graph G, consider any loss function l : R × R 7→ [0, 1] that is 1-Lipschitz in the313

first argument such that l(y, y) = 0. With probability at least 1 − σ and constant c ∈ (0, 1), the314

generalization error of GNTK for node classification can be upper-bounded by315

LD(fGNTK) = E(u′,y)∼G[l(fGNTK(G, u′), y)] . O(1/nc).

Following the generalization bound analysis in [28], we use a standard generalization bound of kernel316

methods of [29], which shows the upper bound of our GNTK formation error depends on that of317

y>Θ(−1)y and tr(Θ), where y is the label vector. For the full version of the proofs, please see the318

Appendix.319

Implications. We show the error bound of GNTK on node classification corresponding to the320

number of training samples. Under the assumptions in Definition 6.1, our theoretical result indicates321

that more training samples bring down the generalization error 1, which provides plausible support322

for our goal of building a globally useful classifier through FL in Eq. (1). Such implications are also323

consistent with our experimental findings in Figure 3 where our FedSage and FedSage+ models can324

learn more generalizable classifiers that follow the label distributions of the global graph through325

involving more training nodes across different subgraphs.326

7 Conclusion327

This work aims at obtaining a generalized node classification model in a distributed subgraph system328

without data sharing. To resolve the limitation in data accessibility, we interweave GraphSage329

and FedAvg and propose a federated graph learning method, FedSage. To tackle the realistic yet330

unexplored issue of missing cross-subgraph links, we design a novel missing neighbor generator331

NeighGen with the corresponding local and federated training processes. Combining NeighGen332

with FedSage, we present FedSage+. Experimental results evidence the distinguished elevation333

brought by FedSage and FedSage+ by allowing local data owners to collaboratively learn a global334

node classifier, which is consistent with our theoretical implications. Notably, FedSage+ exceeds all335

compared methodologies in all testing scenarios, which indicates it a practical and universal solution336

in real-world applications.337

Though FedSage+ is manifested with advantageous performance, similar to existing FL methods, it338

confronts the inevitable communication cost and potential adversarial analysis during interactions.339

As communications are vital for collaborative learning, leveraging model compression methods to340

improve communication efficiency and cryptologic techniques to minimize the privacy leakage risk341

in the distributed subgraph system can both be promising future directions.342

1We conjecture the statement can be extended in FL using the techniques in FL-NTK [30].
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