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ABSTRACT

Low-precision neural networks represent both weights and activations with few
bits, drastically reducing the multiplication complexity. Nonetheless, these prod-
ucts are accumulated using high-precision (typically 32-bit) additions, an opera-
tion that dominates the arithmetic complexity of inference when using extreme
quantization (e.g., binary weights). To further optimize inference, we propose
WrapNet that adapts neural networks to use low-precision (8-bit) additions in the
accumulators, achieving classification accuracy comparable to their 32-bit coun-
terparts. We achieve resilience to low-precision accumulation by inserting a cyclic
activation layer, as well as an overflow penalty regularizer. We demonstrate the
efficacy of our approach on both software and hardware platforms.

1 INTRODUCTION

Significant progress has been made in quantizing (or even binarizing) neural networks, and numer-
ous methods have been proposed that reduce the precision of weights, activations, and even gradi-
ents while retaining high accuracy (Courbariaux et al., 2016; Hubara et al., 2016; Li et al., 2016; Lin
et al., 2017; Rastegari et al., 2016; Zhu et al., 2016; Dong et al., 2017; Zhu et al., 2018; Choi et al.,
2018a; Zhou et al., 2016; Li et al., 2017; Wang et al., 2019; Jung et al., 2019; Choi et al., 2018b;
Gong et al., 2019). Such quantization strategies make neural networks more hardware-friendly by
leveraging fast, integer-only arithmetic, replacing multiplications with simple bit-wise operations,
and reducing memory requirements and bandwidth.

Unfortunately, the gains from quantization are limited as much of the computation in quantized
networks still requires high-precision arithmetic. Even if weights and activations are represented
with just one bit, deep feature computation requires the summation of hundreds or even thousands
of products. Performing these summations with low-precision registers results in integer overflow,
contaminating downstream computations and destroying accuracy. Moreover, as multiplication costs
are slashed by quantization, high-precision accumulation starts to dominate the arithmetic cost. In-
deed, our own hardware implementations show that an 8-bit×8-bit multiplier consumes comparable
power and silicon area to a 32-bit accumulator. When reducing the precision to a 3-bit× 1-bit
multiplier, a 32-bit accumulator consumes more than 10× higher power and area; see Section 4.5.
Evidently, low-precision accumulators are the key to further accelerating quantized nets.

In custom hardware, low-precision accumulators reduce area and power requirements while boost-
ing throughput. On general-purpose processors, where registers have fixed size, low-precision ac-
cumulators are exploited through bit-packing, i.e., by representing multiple low-precision integers
side-by-side within a single high-precision register (Pedersoli et al., 2018; Rastegari et al., 2016;
Bulat & Tzimiropoulos, 2019). Then, a single vector instruction is used to perform the same oper-
ation across all of the packed numbers. For example, a 64-bit register can be used to execute eight
parallel 8-bit additions, thus increasing the throughput of software implementations. Hence, the use
of low-precision accumulators is advantageous for both hardware and software implementations,
provided that integer overflow does not contaminate results.
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We propose WrapNet, a network architecture with extremely low-precision accumulators. WrapNet
exploits the fact that integer computer arithmetic is cyclic, i.e, numbers are accumulated until they
reach the maximum representable integer and then “wrap around” to the smallest representable
integer. To deal with such integer overflows, we place a differentiable cyclic (periodic) activation
function immediately after the convolution (or linear) operation, with period equal to the difference
between the maximum and minimum representable integer. This strategy makes neural networks
resilient to overflow as the activations of neurons are unaffected by overflows during convolution.

We explore several directions with WrapNet. On the software side, we consider the use of bit-
packing for processors with or without dedicated vector instructions. In the absence of vector in-
structions, overflows in one packed integer may produce a carry bit that contaminates its neighboring
value. We propose training regularizers that minimize the effects of such contamination artifacts,
resulting in networks that leverage bit-packed computation with very little impact on final accuracy.
For processors with vector instructions, we modify the Gemmlowp library (Jacob et al., 2016) to
operate with 8-bit accumulators. Our implementation achieves up to 2.4× speed-up compared to a
32-bit accumulator implementation, even when lacking specialized instructions for 8-bit multiply-
accumulate. We also demonstrate the efficacy of WrapNet in terms of cycle time, area, and energy
efficiency when considering custom hardware designs in a commercial 28 nm CMOS technology.

2 RELATED WORK AND BACKGROUND

2.1 NETWORK QUANTIZATION

Network quantization aims at accelerating inference by using low-precision arithmetic. In its most
extreme form, weights and activations are both quantized using binary or ternary quantizers. The
binary quantizer Qb corresponds to the sign function, whereas the ternary quantizer Qt maps some
values to zero. Multiplications in binarized or ternarized networks (Hubara et al., 2016; Courbariaux
et al., 2015; Lin et al., 2017; Rastegari et al., 2016; Zhu et al., 2016) can be implemented using bit-
wise logic, leading to impressive acceleration. However, training such networks is challenging since
fewer than 2 bits are used to represent activations and weights, resulting in a dramatic impact on
accuracy compared to full-precision models.

Binary and ternary networks are generalized to higher precision via uniform quantization, which has
been shown to result in efficient hardware (Jacob et al., 2018). The multi-bit uniform quantizer Qu

is given by: Qu(x) = round(x/∆x)∆x, where ∆x denotes the quantization step-size. The output
of the quantizer is a floating-point number x that can be expressed as x = ∆xxq , where xq is the
fixed-point representation of x. The fixed-point number xq has a “precision” or “bitwidth,” which is
the number of bits used to represent it. Note that the range of floating-point numbers representable
by the uniform quantizer Qu depends on both the quantization step-size ∆x and the quantization
precision. Nonetheless, the number of different values that can be represented by the same quantizer
depends only on the precision.

Applying uniform quantization to both weights w = ∆wwq and activations x = ∆xxq simplifies
computations, as an inner-product simply becomes

z =
∑
i

wixi =
∑
i

(∆w(wq)i)(∆x(xq)i) = (∆w∆x)
∑
i

(wq)i(xq)i = ∆zzq. (1)

The key advantage of uniform quantization is that the core computation
∑

i(wq)i(xq)i can be carried
out using fixed-point (i.e., integer) arithmetic only. Results in (Gong et al., 2019; Choi et al., 2018b;
Jung et al., 2019; Wang et al., 2019; Mishra et al., 2017; Mishra & Marr, 2017) have shown that
high classification accuracy is attainable with low-bitwidth uniform quantization, such as 2 or 3 bits.
Although (wq)i, (xq)i, and their product may have extremely low-precision, the accumulated result
zq of many of these products has very high dynamic range. As a result, high-precision accumulators
are typically required to avoid overflows, which is the bottleneck for further arithmetic speedups.

2.2 LOW-PRECISION ACCUMULATION

Several approaches have been proposed that use accumulators with fewer bits to obtain speed-ups.
For example, reference (Khudia et al., 2021) splits the weights into two separate matrices, one with
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Table 1: Average overflow rate (in 8 bits) of each layer for a low-precision network and correspond-
ing test accuracy using either 32-bit or 8-bit accumulators during inference on CIFAR10.

Bit (A/W) Overflow rate (8-bit) Accuracy (32-bit) Accuracy (8-bit)

full precision – 92.45% –
3/1 10.84% 91.08% 10.06%
2/1 1.72% 88.46% 44.04%

small- and another with large-magnitude entries. If the latter matrix is sparse, acceleration is attained
as most computations rely on fast, low-precision operations. However, to significantly reduce the
accumulator’s precision, one would need to severely decrease the magnitude of the entries of the first
matrix, which would, in turn, prevent the second matrix from being sufficiently sparse to achieve
acceleration. Recently, (de Bruin et al., 2020) proposed using layer-dependent quantization param-
eters to avoid overflowing accumulators with fixed precision. Fine-tuning is then used to improve
performance. However, if the accumulator precision is too low (e.g., 8 bits or less), the optimized
precision of activations and weights is too coarse to attain satisfactory performance. Another line
of work (Sakr et al., 2019; Micikevicius et al., 2017; Wang et al., 2018) uses 16-bit floating-point
accumulators for training and inference—such approaches typically require higher complexity than
methods based on fixed-point arithmetic.

2.3 THE IMPACT OF INTEGER OVERFLOW

Overflow is a major problem, especially in highly quantized networks. Table 1 demonstrates that
overflows occur in around 11% of the neurons in a network with 3-bit activations (A) and binary
weights (W) that is using 8-bit accumulators for inference after being trained on CIFAR-10 with
standard precision. Clearly, overflow has a significant negative impact on accuracy. Table 1 shows
that if we use an 8-bit (instead of a 32-bit) accumulator, then the accuracy of a binary-weight network
with 2-bit activations drops by more than 40%, even when only 1.72% neurons overflow. If we repeat
the experiment with 3-bit activations and binary weights, the accuracy is only marginally better than
a random guess. Therefore, existing methods try to avoid integer overflow by using accumulators
with relatively high precision, and pay a correspondingly high price when doing arithmetic.

3 WRAPNET: DEALING WITH INTEGER OVERFLOWS

We now introduce WrapNet, which includes a cyclic activation function and an overflow penalty,
enabling neural networks to use low-precision accumulators. We also present a modified quantiza-
tion step-size selection strategy for activations, which retains high classification accuracy. Finally,
we show how further speed-ups can be achieved on processors with or without specialized vector
instructions.

We propose training a network with layers that emulate integer overflows on the fixed-point pre-
activations zq to maintain high accuracy. However, directly training a quantized network with an
overflowing accumulator diverges (see Table 2) due to the discontinuity of the modulo operation.
To facilitate training, we insert a cyclic “smooth modulo” activation immediately after every lin-
ear/convolutional layer, which not only captures the wrap-around behavior of overflows, but also
ensures that the activation is continuous everywhere. The proposed smooth modulo activation c is a
composite function of a modulo function m and a basis function f that ensures continuity. Specifi-
cally, given a b-bit accumulator, our smooth-modulo c for fixed-point inputs is as follows:

f(m) =


m, for − k

k+12b−1 ≤ m ≤ k
k+12b−1

−k2b−1 − km, for m < − k
k+12b−1

k2b−1 − km, for m > k
k+12b−1

c(zq) = f(mod(zq + 2b−1, 2b)− 2b−1),

where k is a hyper-parameter that controls the slope of the transition. Note that we apply constant
shifts to keep the input of f in [−2b−1, 2b−1). Figure 1a illustrates the smooth modulo function with
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(a) (b)

Figure 1: (a) Example of the proposed cyclic activation with different slopes k and the original
modulo operator for a 4-bit accumulator. (b) Convolutional block with proposed cyclic activation.

two different slopes k = 1, 4. As k increases, the cyclic activation becomes more similar to the
modulo operator and has a greater range, but the transition becomes more abrupt. Since our cyclic
activation is continuous and differentiable almost everywhere, standard gradient-based learning can
be applied easily. A convolutional block with cyclic activation layer is shown in Figure 1b. After
the convolution result goes into the cyclic activation, the result is multiplied by ∆z to compute
a floating-point number, which is then processed through BatchNorm and ReLU. A fixed per-layer
quantization step-size is then used to convert the floating-point output of the ReLU into a fixed-point
input for the next layer. We detail the procedure to find this step-size in Section 3.2.

3.1 OVERFLOW PENALTY

An alternative way to adapt quantized networks to low-precision accumulators is to directly reduce
the amount of overflows. To achieve this, we propose a regularizer which penalizes outputs that
exceed the bitwidth of the accumulation register. Concretely, for a b-bit accumulator, we define an
overflow penalty for the l-th layer of the network as follows: Ro

l = (1/N)
∑

i max{|ziq|− 2b−1, 0}.
Here, ziq is the fixed-point result in (1) for the i-th neuron of the l-th layer, and N is the total number
of neurons in the l-th layer. The overflow penalty is imposed after every quantized linear layer and
before the cyclic activation. All these penalties are combined into one regularizer Ro =

∑
lR

o
l .

3.2 SELECTION OF ACTIVATION QUANTIZATION STEP-SIZE

To keep multiplication simple, the floating-point output of ReLU must be quantized before it is fed
into the following layer. However, as shown in Table 1, a significant number of overflow occurs even
with 3-bit activations. From our experiments (see Table 3), we have observed that if overflow occurs
too frequently (i.e., on more than 10% of the neurons), then WrapNet starts to suffer significant
accuracy degradation. However, if we reduce the activation precision so that no overflows happen
at all, several layers will have 1-bit activations (see Table 3), thereby increasing quantization errors
and degrading accuracy. To balance accumulation and quantization errors, we adjust the quantiza-
tion step-size ∆x of each layer based on the overflow rate, i.e., the percentage p% of neurons that
overflow in the network. If the overflow rate p% is too large, then we increase ∆x to reduce the
overflow rate p%. The selected quantization step-size is then fixed for further fine-tuning.

3.3 ADAPTING TO BIT-PACKING

Most modern processors provide vector instructions that enable parallel operation on multiple 8-
bit numbers. For instance, the AVX2 (NEON) instruction set on x86 (ARM) processors provides
parallel processing with 32 (16) 8-bit numbers. Vector instructions provide a clean implementation
of bit-packing, which WrapNet can leverage to attain significant speed-ups. While some embed-
ded processors and legacy chips do not provide vector instructions, bit-packing can still be applied.
Without vector instructions for multiplication, binary/ternary weights must be used to replace mul-
tiplication with bit-wise logic (Bulat & Tzimiropoulos, 2019; Pedersoli et al., 2018). Furthermore,
bit-packing of additions is more delicate: Each integer overflow not only results in wrap-around
behavior, but also generates a carry bit that contaminates the adjacent number—specialized vector
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instructions avoid such contamination. We propose the following strategies to minimize the impact
of carry propagation.

Reducing variance in the number of carries. The number of carries generated during a convo-
lution operation can be large. Nevertheless, if we can keep the number of carries approximately
the same for all the neurons among a batch of images, the estimated number of carries can be sub-
tracted from the result to correct the outputs of a bit-packed convolution operation. To achieve this,
during training, we calculate the number of carries for each neuron and impose a regularizer, Rc,
to keep the variance of the number of carries small. The detailed formulation of Rc can be found
in Appendix A.1. Using a buffer bit. Alternatively, since each addition can generate at most one
carry bit, we can place a buffer bit between every low-bit number in the bit-packing. For example,
instead of packing eight 8-bit representations into a 64-bit number, we pack eight 7-bit numbers with
one buffer bit between each of them. These buffer bits absorb the carry bits, and are cleared using
bit-wise logic after each addition. Buffering makes representations 1-bit smaller, which potentially
degrades accuracy. A hybrid approach. To get the benefits from both strategies, we use a variance
penalty on layers that have small standard deviation to begin with, and equip the remaining layers
with a buffer bit.

4 EXPERIMENTS

We compare the accuracy and efficiency of WrapNet to networks with full-precision accumulators
using the CIFAR-10 and ImageNet datasets. Most experiments use binary or ternary weights for
WrapNet as AVX2 lacks 8-bit multiplication instructions, but supports 8-bit additions and logic
operations needed for binary/ternary convolutions.

4.1 TRAINING PIPELINE

We first pre-train a network with quantized weights and no cyclic layers, while keeping full-precision
activations. Then, we select the quantization step-sizes of the activations (see Section 3.2) such
that each layer has an overflow rate of around p% (a hyper-parameter) with respect to the desired
accumulator bitwidth. Given the selected quantization step-size for each layer and the pre-trained
network, we insert our proposed cyclic activation layer. We then warm-up our WrapNet by fine-
tuning with full-precision activation for several epochs. Finally we further fine-tune the network
with both activations and weights quantized. Both overflow and carry variance regularizers are
only applied in the final fine-tuning step, except when training ResNet for ImageNet, where the
regularizers are also included during warm-up.

4.2 ADAPTING TO LOW-PRECISION ACCUMULATORS

We conduct ablation studies on the following factors: the type of cyclic function, the initial overflow
rate for quantization step-size and precision selection, and the coefficient of the overflow penalty
regularizer. These experiments are conducted on VGG-7 (Li et al., 2016), which is commonly used
in the quantization literature for CIFAR-10. We binarize the weights as in (Rastegari et al., 2016),
and we train WrapNet to adapt to an 8-bit accumulator. As our default setting, we use k = 2 as the
transition slope, p = 5% as the initial overflow rate, and 0 as the coefficient of the regularizer.

Cyclic activation function. We compare the performance of various transition slopes k of our
cyclic function c in Table 2, and we achieve the best performance when k = 2. If k is too small,
then the accuracy decreases due to a narrower effective bitwidth (only half of the bitwidth is used
when k = 1). Meanwhile, the abrupt transition for large k hurts the performance as well. In the
extreme case where the cyclic function degenerates to modulo (k → ∞), WrapNet diverges to
random guessing, which highlights the importance of training with a “smooth” cyclic non-linearity
to assimilate integer overflow. We also find that placing a ReLU after batch norm yields the best
performance, even though the cyclic function is already non linear. More experimental results can
be found in Appendix B.1.

Quantization step-size. As described in Section 3.2, the quantization step-sizes are selected to
balance the rounding error of the activations and accumulation errors due to overflow. We compare
the classification performance when we choose different step-sizes to control the overflow rate as in
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Table 2: Results for different transition slopes for cyclic function; ∗ denotes divergence.

k 1 2 4 10 ∞
Accuracy 90.24% 90.52% 90.25% 89.16% ∗

Table 3: Results for different quantization step-sizes
based on overflow rate p(%). ∗ denotes divergence.

p Bits Accuracy p Bits Accuracy

0 1 90.07% 20 4 88.25%
2 3 90.51% 30 5 85.30%
5 3 90.52% 40 5 36.11%
10 4 89.92% 50 5 ∗

Table 4: Results for fine-tuning with the
overflow penalty (Ro).

Ro p% Accuracy Difference

0 20 88.25% –
0 5 90.52% 2.27%
0.01 20 90.05% –
0.01 5 90.81% 0.76%

Table 3. If the initial overflow rate is large, then the quantization step-size will be finer, but training
is less stable. We obtain the best performance when the initial overflow rate is around 5%. The
median bitwidths of the activations across layers are also reported in Table 3. Note that if we want
to suppress all overflows, we can only use 1-bit activations. We also observe that WrapNet can attain
reasonable accuracy (85%) even with a large overflow rate (around 30%), which demonstrates that
our proposed cyclic activations provides resilience against integer overflows.

Overflow penalty. The overflow penalty regularizer improves stability to step-size selection. More
specifically, in Table 4, the difference in accuracy between two step-size selections decreases from
2.27% to 0.76% after adding the regularizer. The overflow penalty also complements our cyclic
activation, as we achieve the best performance when using both of them together during the fine-
tuning stage. Moreover, in Appendix B.2, we compare our results to fine-tuning the pre-trained
network using the overflow regularizer only. In the absence of a cyclic layer, neural networks still
suffer from low accuracy (as in Section 2.3) unless a very strong penalty is imposed.

4.3 ADAPTING TO BIT-PACKING

We now show the efficacy of WrapNet for bit-packing without vector operations. We use the same
architecture, binary weights, 8-bit accumulators, and hyper-parameters as in Section 4.2. The train-
ing details can be found in Appendix A.2. We consider CIFAR-10, and we compare with the best
result of WrapNet from the previous section as a baseline. Without specific vector instructions,
accuracy degenerates to a random guess because of undesired carry contamination during inference.

Surprisingly, with the carry variance regularizer, WrapNet works well even with abundant carry con-
tamination during inference (for each neuron, 384 on average over all the dataset). The regularizer
drops the standard deviation of the per-neuron carry contamination by 90%. When we use the hybrid
approach, the accuracy is further improved (89.43%) and close to the best result (90.81%) we can
achieve with vector instructions that do not propagate carries across different numbers (see Table 5).

Table 5: Results for adaptation to bit-packing with 8-bit accumulator. (v) denotes no carry contami-
nation as in a vector instruction; (c) denotes carry propagation between different numbers.

Method Accuracy (v) Accuracy (c) Carry Carry Std

Baseline 90.81% 10.03% 254.91 159.55
Buffer Bit – 88.22% – –
Rc – 87.86% 384.42 17.91
Hybrid – 89.43% 482.4 16.18
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4.4 BENCHMARK RESULTS

In this section, we compare our WrapNet when there is no carry contamination, with the following
32-bit accumulator baselines: a full-precision network (FP), a network trained with binary/ternary
weights but with full-precision activations (BWN/TWN), and a network where both weights and
activations are quantized to the same precision as our WrapNet (BWN/TWN-QA). We benchmark
our results on both CIFAR-10 and ImageNet. We use VGG7 and ResNet20 for our CIFAR-10
experiments, and we use AlexNet (Krizhevsky et al., 2012; Simon et al., 2016), ResNet18 and
ResNet50 (He et al., 2016) for our ImageNet experiments. Details of training can be found in
Appendix B.3.

For CIFAR-10, even with an 8-bit accumulator, our results are comparable to both BWN and TWN.
When adapting to a 12-bit accumulator, we further achieve performance on-par with TWN and
better than BWN (see Table 6). For ImageNet, our WrapNet can achieve accuracy as good as BWN
when adapting to a 12-bit accumulator where we can use binary weights and roughly 7-bit quantized
activations. However, in the extreme low-precision case (8-bit), the accuracy of our binary WrapNet
drops around 8% due to the limited bitwidth we can use for activations. As reported in Table 6,
the median activation bitwidth is roughly 3-bit, and for some layers in AlexNet, we can only use
1-bit activations. Despite the gap from BWN, we observe that our model can achieve almost the
same as performance as BWN-QA where the same precision is used for activations. When using
ternary weights, our WrapNet only drops by 3% and 2% from TWN for ResNet18 and ResNet50
respectively, even when using an 8-bit accumulator. In addition, in the case of 12-bit accumulator,
our ternary WrapNet with roughly 7-bit activations is slightly better than TWN for ResNet50. Note
that, without cyclic activation function, all the results for 8-bit accumulator are as poor as random
guessing which is consistent with Table 1.

Table 6: Top-1 test accuracy for both CIFAR-10 and ImageNet with different architectures. Here,
“Acc” represents accumulator, and “QA” represents quantized activation.

Bits CIFAR-10 ImageNet

Activation Weight Acc VGG7 ResNet20 AlexNet ResNet18 ResNet50

FP 32 32 32 92.45% 91.78% 60.61% 69.59% 76.15%

BWN 32 1 32 91.55% 90.03% 56.56% 63.55% 72.88%
BWN-QA ∼ 3 1 32 91.30% 89.86% 46.30% 57.54% 66.85%
WrapNet ∼ 3 1 8 90.81% 89.78% 44.88% 55.60% 64.30%
WrapNet ∼ 7 1 12 91.59% 90.17% 56.62% 63.11% 72.37%

TWN 32 2 32 91.56% 90.36% 57.57% 65.70% 73.31%
TWN-QA ∼ 4 2 32 91.49% 90.12% 55.84% 63.67% 72.50%
WrapNet ∼ 4 2 8 91.14% 89.56% 52.24% 62.13% 71.62%
WrapNet ∼ 7 2 12 91.53% 90.88% 57.60% 63.84% 73.93%

4.5 EFFICIENCY ANALYSIS

We conduct an efficiency analysis of parallelization by bit-packing, both with and without vector
operations, on an Intel i7-7700HQ CPU operating at 2.80 GHz. We also conduct a detailed study of
improvements that can be obtained using custom hardware.

AVX2 instruction efficiency analysis. We study the empirical efficiency of WrapNet when vec-
tor operations are available. We extended Gemmlowp (Jacob et al., 2016) to implement matrix
multiplications using 8-bit accumulators with AVX2 instructions. To demonstrate the efficiency of
low-precision accumulators, we compare our implementation with the AVX2 version of Gemmlowp,
which uses 32-bit accumulators. We report the execution speed of both on various convolution ker-
nels of ResNet18 in Table 7. From Table 7 we observe significant speed-ups ranging from 2× to
2.4× among different blocks. Besides, we compare the entire inference time (ms) of ResNet18 for
WrapNet (234.74) with a 32b-accumulator quantized network (312.42), which gains 33% speed-up.
The result provides solid evidence for the efficiency advantage of using low-precision accumulators.
We remark that in average, the time cost for cyclic activation is only around 10% of the time cost
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Table 7: Time cost (ms) for typical 3×3 con-
volution kernels in ResNet using different ac-
cumulator bitwidths.

Input size Output 8-bit 32-bit

64x56x56 64 3.467 8.339
128x28x28 128 2.956 6.785
256x14x14 256 2.499 5.498
512x7x7 512 2.710 5.520

Table 8: Time cost (ms) for 3×3 convolution ker-
nels in ResNet with no vector instructions using
bit packing.

Input size Output bit packing naı̈ve

64x56x56 64 29.80 83.705
128x28x28 128 23.86 80.557
256x14x14 256 21.71 86.753
512x7x7 512 20.41 87.671

for the GEMM kernel. We also remark that AVX2 lacks a single instruction that performs both mul-
tiplication and accumulation for 8-bit data, but it does have such instruction for 32-bit data. Thus,
further acceleration can be achieved on systems like ARM where such combined instructions for
8-bit data are available.

Bit-packing results without vector operations. We implement a naı̈ve for-loop based matrix multi-
plication, which uses buffer bit and logical operations introduced in Section 3.3 to form the baseline.
We then pack four 8-bit integers into 32 bits, and report the execution speed of both implementa-
tions on various convolution kernels of ResNet18 in Table 8. The results show significant speed-ups
ranging from 2.8× to 4.3×. Such observations demonstrate our proposed approach to handle extra
carry bits makes bit-packing viable and efficient, even when vector instructions are not available.

Hardware analysis. To illustrate the potential benefits of WrapNet for custom hardware accel-
erators, we have implemented a multiply-accumulate (MAC) unit in a commercial 28nm CMOS
technology. The MAC unit consists of (i) a multiplier with an output register, (ii) an accumula-
tor with its corresponding register, and (iii) auxiliary circuitry. Please refer to Appendix C for the
details. We have considered 8-bit× 8-bit and 3-bit× 1-bit multipliers, as well as 32-bit and 8-bit
accumulators, where the latter option is enabled by our WrapNet approach and its cyclic activation
function. We consider a slope k = 2 for the cyclic activation. Figure 2 shows our post-layout results.

Figure 2a shows that reducing the multiplier bitwidth decreases the cycle time by 7%; reducing the
accumulator precision from 32-bit to 8-bit further the cycle time by 16%. Figures 2b and 2c highlight
the importance of reducing the accumulator’s precision. When using an 8-bit× 8-bit multiplier,
the 32-bit accumulator already constitutes more than 40% of the area and energy of a MAC unit.
Once the multiplier’s precision reduces, the accumulator dominates area- and energy-efficiency.
Thanks to WrapNet, we can reduce the accumulator precision from 32-bit to 8-bit, thus reducing the
accumulator’s area- and energy-efficiency by more than 5× and 4×, respectively. WrapNet requires
the implementation of the cyclic activation, which has an area- and energy-efficiency comparable
(although lower) to that of the accumulator. In spite of this overhead, WrapNet is still able to reduce
the total MAC unit’s area- and energy-efficiency by up to 3× and 2×, respectively. While our
hardware implementation only uses one adder per inner-product, we note that WrapNet can also be
applied to spatial architectures, such as systolic arrays, which use several adders per inner-product.
For such spatial architectures, WrapNet avoids an increase in the adders’ bitwidth, normalizing all

(a) (b) (c)

Figure 2: (a) Cycle time, (b) area and (c) energy efficiency for different MAC units implemented in
28nm CMOS. We consider 8-bit×8-bit or 3-bit×1-bit multipliers with 32-bit or 8-bit accumulators.
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adders to the same low bitwidth. Moreover, the use of several adders per inner-product amortizes
the overhead from the cyclic activation, of which only one is needed per inner-product. Finally,
we note that this analysis only considers the computation part of a hardware accelerator as this is
where WrapNet has a significant impact—the memory sub-system will remain virtually the same, as
existing methods already quantize the output activations to low-bit before storing them in memory.

5 CONCLUSION

We have proposed WrapNet, a novel method to render neural networks resilient to integer overflow,
which enables the use of low-precision accumulators. We have demonstrated the effectiveness of
our adaptation on both CIFAR-10 and ImageNet. In addition, our custom GEMM kernel achieves
2.4× acceleration over its standard library version, and our hardware exploration shows significant
improvements in area- and energy-efficiency. Our hope is that hardware-aware architectures will en-
able deep learning applications on a wide range of platforms and mobile devices. Furthermore, with
future innovations in GPU and data center technologies, we hope that WrapNet can provide further
speed-ups by enabling inference using quarter-precision—a step forward in terms of performance
from the currently available half-precision standard available on emerging GPUs.
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