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Abstract

Compositional generalization is the ability to understand
novel combinations of known concepts. Although it is con-
sidered as an innate skill for humans, recent studies have
shown that neural networks lack this characteristic. In this
paper, we focus on compositional generalization with respect
to the two specific tasks of word problem solving and visual
relation recognition and propose a neuro-symbolic solution,
using DeepProbLog, that addresses the problem of composi-
tionality in state-of-the-art neural systems for these tasks.

Introduction
Compositional generalization is an instinctive ability of hu-
mans to decipher novel combinations of primitive concepts,
once they are familiar with the primitive concepts and have
observed a few instances of the interactions between these
concepts. For example, if a person knows the meaning of
‘jump’, ‘run’ and ‘run twice’, she can immediately under-
stand the meaning of ‘jump twice’. Similarly, if a person can
identify a cube, sphere, a red sphere and a metallic sphere,
it is straightforward for her to recognize a red metallic cube
even though she has not seen one before. Recent research
(Lake and Baroni 2018), (Klinger et al. 2020) has demon-
strated through extensive experimental studies that purely
neural models lack the characteristic of compositional gen-
eralization. While (Lake and Baroni 2018) showed that se-
quence to sequence models were not effective in learning
compositional rules for generalization in the domain of natu-
ral language processing (NLP), (Klinger et al. 2020) demon-
strated how neural models failed to generalize composition-
ally in relation recognition in the domain of computer vision.

Word problems or story problems in the mathematics do-
main are short narratives describing a real-world problem
scenario in natural language. The narrative is accompanied
by a question about the problem scenario. Answering this
question requires one to first extract pertinent numerical
facts from the problem, identify the unknown quantity, form
an equation and finally solve it. The following are examples
of two word problems, mapped to their equations. These are
single-equation single-operation/step problems as they can
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be solved with a single equation that involves a single oper-
ation (addition in Problem 1, subtraction in Problem 2).

Problem 1: John had 10 apples. He bought 11 more.
How many apples does he have now?
Equation: x = 10 + 11
Solution: x = 21

Problem 2: John had 10 apples. He ate 2. How many
apples does he have now?
Equation: x = 10 - 2
Solution: x = 8

Compositional generalization in the context of word prob-
lem solving is the ability to solve new problems involving
equations with multiple operations having observed only
single-equation single-operation word problems. Consider
the following problem:

Problem 3: John had 10 apples. He bought 11 more.
He ate 2. How many apples does he have now?
Equation: x = 10 + 11 − 2
Solution: x = 19

Although the above problem is a new type of problem as
the equation it maps to involves multiple operations (un-
like Problems 1 and 2), it is composed of sentences that
are similar to the ones in Problems 1 and 2. If a student
knows how to solve Problems 1 and 2, solving Problem 3
is straightforward. But, as we will show in this paper, the
state-of-the-art word problem solvers fail to solve a multi-
operation problem like Problem 3 at test time, if these are
just trained on single-operation problems like 1 and 2. That
is, these solvers fail to generalize compositionally. In order
to evaluate the ability of automatic word problem solvers to
generalize compositionally, we create a dataset by collect-
ing (from existing datasets) a specific type of word problems
called Change Problems (Powell and Fuchs 2018). Change
problems involve scenarios where there is an entity of inter-
est with an initial value, that gets updated (either increased
or decreased) to a new value as a result of an action. Prob-
lems 1, 2 (single update change) and 3 (two update change)
are all examples of change problems.

Compositionality is also the focus of recent research in
computer vision due to multi-modality in visual features.



Figure 1: Considering the order of images, the True label
in (1) indicates either a red triangle or a blue circle or an
intersection between them is of importance. True label in
(2) discards the color constraints. False label in (3) confirms
that intersection with a triangle results in label True. So, one
can infer (4) as True, regardless of the new combination of
colors for the shapes.

Figure 1 shows an example of visual-spatial intelligence
tests, rather easy for humans to address, but problematic for
neural-based methods due to compositionality in the col-
or/position/shape of objects. Although existing deep learn-
ing methods have shown promising results in visual relation
recognition, they tend to fail with compositional generaliza-
tion (Klinger et al. 2020). This is largely due to distribution-
shift where a model is tested with new combinations of fea-
tures never observed during training. In this paper, we study
compositionality w.r.t color, shape and position of the ob-
jects in the image (as shown in Figure 1). In order to evalu-
ate compositionality in visual relation recognition, we have
devised our own dataset, rather than using available bench-
marks (Johnson et al. 2016; Santoro et al. 2017). One reason
behind such decision is that the aforementioned benchmarks
are associated with language input which requires a parallel
line of processing separated from the visual recognition task.
Furthermore, by generating our own dataset, we are in con-
trol of generating different types of compositionality related
to color, shape, position and number of objects.

One can address inability of neural models to generalize
compositionally by providing it with more data that has suf-
ficient number of instances of every combination of concepts
we are interested in. There are tasks where providing more
data may not be practical, but it may be instead more con-
venient and efficient to provide knowledge about the tasks
that can aid the models in generalizing better. We, in this
paper, show that incorporating task specific knowledge into
purely neural models help address its inability to generalize
compositionally. For this, we propose a neuro-symbolic ap-
proach using DeepProbLog (Manhaeve et al. 2018) for both
word problem solving and visual (spatial) relation recogni-
tion, and, show how by modelling task specific knowledge
in logic, such models can improve the performance of neural
models w.r.t compositional generalization.

Our contributions are the following - for the two tasks of
word problem solving and visual relation recognition, we

1. create datasets to test compositional generalization.

2. analyze compositional generalization ability of state-of-
the-art neural models using the above datasets.

3. develop neuro-symbolic models based on DeepProbLog
to improve compositional generalization ability through
inclusion of task specific knowledge.

Related Work
In this section we briefly survey the following areas: auto-
matic word problem solving, visual relation recognition, and
finally, neuro-symbolic modelling.

Automatic Math Word Problem Solving
There has been a surge of research in automatic math
word problem solving in the past six years. (Zhang et al.
2019) gives an extensive survey on automatic word problem
solvers. While the earlier systems used a purely symbolic
approach to solving, the more recent ones are data-driven
based systems. Some consider it as a structure prediction
problem, where the structure to be predicted is the expres-
sion tree corresponding to the equation that the word prob-
lem is mapped onto ((Roy and Roth 2016), (Kushman et al.
2014)). Since these required manual feature engineering, the
community has transitioned to deep learning approaches.
Most of the existing neural models for math word problem
solving utilize Seq2Seq models (Luong, Kayser, and Man-
ning 2015), considering the source sequence as the word
problem and the target sequence as the equation. More re-
cently (Zhang et al. 2020) and (Xie and Sun 2019) intro-
duced graph-based encoders to encode the graph-based rep-
resentation of the word problem and tree-based decoders to
generate expression trees for the word problem.

The research on math word problem solvers started off
with datasets like, AddSub (Kushman et al. 2014) and Sin-
gleOp (Roy, Vieira, and Roth 2015), containing simple
single-equation word problems. Although some now con-
sider this as a solved research problem, (Patel, Bhattamishra,
and Goyal 2021) illustrated through experiments that the ex-
isting state-of-the-art solvers relied on superficial heuristics
to map the word problems to equations. They created a chal-
lenge dataset named SVAMP, that contained problems cre-
ated by slightly varying the problems from existing datasets
like AddSub and SingleOp. These variations were created by
adding relevant or irrelevant information to the problem or
changing the order of phrases in the word problem. It was
shown that the state-of-the-art solvers trained on existing
datasets showed poor performance when tested on SVAMP
dataset. In this paper, we introduce another challenge - that
of compositional generalization and show that while state-
of-the-art neural solvers fail to generalize compositionally,
the proposed DeepProbLog solver exhibits promising re-
sults. To test the ability of solvers to generalize composi-
tionally, we train both the state-of-the-art solvers and our
DeepProbLog-based model on simple single-step, single-
equation change problems from AddSub and SingleOp (like,
Problem 1 and Problem 2) and then test the trained models
on multi-step, single-equation problems (like Problem 3).

Visual Relation Recognition
In recent years, visual relation recognition has also been
at the centre of deep learning research in computer vision
under different names such as visual question answering
(VQA). Most of the deep learning approaches for VQA are
based on convolutional neural networks (CNNs) together
with relation networks (RNs) (Santoro et al. 2017). For in-
stance, a two-stage Relation Network (2S-RN) (Messina



et al. 2018) has achieved 95% accuracy in answering vi-
sual relational questions in CLEVR dataset (Johnson et al.
2016). (Ding et al. 2021) also proposed a neural object-based
attention model for solving spatio-temporal reasoning task
and was tested on CLEVRER (Yi et al. 2020) and CATER
(Girdhar and Ramanan 2019) datasets. The RN-augmented
architecture (Santoro et al. 2017) has outperformed the state-
of-the-art in tackling relational inferences about complex
scenes in CLEVR. Moreover, (Dai, Zhang, and Lin 2017)
proposed an integrated framework called Deep Relational
Network (DR-Net), that could exploit statistical dependen-
cies between objects, their spatial configurations and ap-
pearances. DR-Net is composed of several modules such as
RCNN-based object detection (He et al. 2017), pair filtering,
and joint recognition used for exploring all the possible spa-
tial relations between any two pairs of objects. A large num-
ber of contributions in visual relation recognition has been
evaluated on the datasets involving both visual scenes and
text annotations, i.e., the proposed models include modules
to learn features from the language input in parallel.

Towards more general purpose architectures for relation
recognition, (Shanahan et al. 2020) proposed PrediNet, an
end-to-end network inspired by symbolic AI based on first-
order predicate calculus, that learns and maps vectorial rep-
resentations from raw pixels to propositions with explicit re-
lational structure. PrediNet (upon a customized dataset) has
shown its capacity to address compositionality to a degree,
thanks to the core of the network that allows for parallel pro-
cessing of information organized into small chunks that con-
tribute to learning reusable representations. However, most
proposed deep relation recognition methods perform poorly
w.r.t compositional generalization (Klinger et al. 2020). We
show in this paper that a neuro-symbolic model for relation
recognition can offer solutions to the problem of composi-
tionality observed in deep neural models.

Neuro-symbolic Models
The area of Neuro-Symbolic Artificial Intelligence (NeSy
AI) focuses on integrating the neural and symbolic AI
in such a way that the desirable characteristics of both
are inherited efficiently and effectively (De Raedt et al.
2020). The research in the area has resulted in the devel-
opment of multiple neuro-symbolic frameworks like Deep-
ProbLog (Manhaeve et al. 2018), Concept Learner (Mao
et al. 2019), Neural-Grammar-Symbolic Model (NGS) (Li
et al. 2020), Neuro Symbolic Forward Reasoner (NSFR)
(Shindo, Dhami, and Kersting 2021). These frameworks dif-
fer in the way the symbolic part is made differentiable and
incorporated into the training of the neural network part of
the framework. In this paper, we use DeepProbLog to im-
plement neuro-symbolic solutions for the two tasks. Deep-
ProbLog integrates neural networks with the very expres-
sive ProbLog paradigm (De Raedt, Kimmig, and Toivonen
2007), and allows explicit representation of task-specific
knowledge in ProbLog (unlike Concept Learner, which is
based on quasi-symbolic program execution) and is based on
a gradient-based learning algorithm (unlike NGS - in which
the module that propagates loss back to the neural network
is task-dependent and has to be redefined for every task).

DeepProbLog for Compositional
Generalization

As mentioned earlier, DeepProbLog combines neural
networks with the probabilistic programming language,
ProbLog (De Raedt, Kimmig, and Toivonen 2007), by ex-
tending ProbLog with neural predicates. In Problog, a fact f
can be associated with a probability p, as p :: f , indicating
f is true with probability p and false with probability 1− p.
An annotated disjunction in Problog is represented as:

p1 :: h1; ...; pn :: hn :- b1, ..., bm
where, Σpi <= 1. The above translates to ‘if all bi hold,
then either one of the hj is true with probability pj , or none
is true with probability 1−Σpi’. DeepProbLog, through neu-
ral predicates, enables us to use neural networks to provide
probabilities associated with a fact. A neural annotated dis-
junction is of the following form:

nn(mr, [X1, ..., Xk], O, [y1, ..., yn]) :: r(X1, ..., Xk, O)
where mr represents a neural network that generates a
probability distribution pmr

(O|X = x) over the domain
[y1, ..., yn], given a specific input x = [x1, ..., xk] (raw data
- e.g., sequence of words, tensor representing an image).
The above translates to ‘r(X1, ..., Xk, yi) is true with prob-
ability pmr (O = yi|X1 = x1, ..., Xk = xk)’. The neu-
ral network is a discriminative classifier, that may use an
encoder of choice (e.g., convolutional, recurrent neural net-
works), but the output layer is expected to normalize the in-
puts it receives into a probability distribution (like softmax
layer). Thus, a DeepProbLog program is comprised of a set
of neural annotated disjunctions and neural facts in addition
to a set of probabilistic facts, and rules as in ProbLog pro-
gram. The weights of the neural networks represented by
the neural predicates in a DeepProbLog program is learned
using a gradient-based learning approach. DeepProbLog re-
lies on gradient semiring in Algebraic ProbLog (Kimmig,
Van den Broeck, and De Raedt 2011) to compute the gradi-
ent of the loss with respect to the outputs of the neural net-
works (which are the probabilities associated with the neural
facts). The gradient of the neural network outputs with re-
spect to the weights of the neural network is computed as in
the standard backpropagation algorithm (using chain rule).

We will next describe the details of the proposed
DeepProbLog-based word problem solver and visual rela-
tion recognizer, and the solving pipeline as depicted in the
grey box in Figures 3 and 4.

DeepProbLog for Word Problem Solving
We break down the task of word problem solving into two
components - the first is that of perception or understand-
ing and extracting relevant facts from the natural language
description and the second that of performing mathematical
reasoning on these facts.

Perception In this section, we describe the neural net-
works associated with the two neural predicates in the pro-
gram. In order to address the problem of compositionality,
we process the word problem sentence-wise, representing
each sentence in logical form. We use a representation simi-



Figure 2: Processing the second sentence ‘He bought 11
more’ - Figure shows the neural networks represented by
the two neural predicates, nn vc and nn wc, that extracts the
predicate and the container, entity mentions in the sentence.

lar to the one described in (Kushman et al. 2014). The set of
predicates used are shown below:

1. holds(C, E, N): represents the fact that a container
‘C’ holds ‘N ’ number of the entity ‘E’.

2. increase(C, E, Ni): represents the fact that the num-
ber of items of entity ‘E’ held by the container ‘C’
is increased by an amount, ‘Ni’.

3. decrease(C, E, Nd): represents the fact that the
number of items of entity ‘E’ held by the container
‘C’ is decreased by an amount, ‘Nd’.

The logical representation for Problem 1 would be:

• ‘John had 10 apples’
holds(John, apples, 10)

• ‘He bought 11 more’
increase(John, apples, 11)

• ‘How many does he have now?’
holds(John, apples, ?X)

Hence, given a sentence, the goals of perception are to
identify the predicate associated with the sentence (holds
or increase or decrease) and the arguments associated with
this predicate (the container and the entity). Figure 2 shows
the two neural networks, both discriminative classifiers, in-
volved - predicate recognizer and entity/container recog-
nizer. A predicate recognizer takes the specific sentence - S,
and its context, which is the entire word problem - P , as its
two inputs and generates a probability distribution over the
domain {holds, increase, decrease}. The context is in some
cases important to decide whether the verb in the sentence
represents an action that results in an increase or decrease of
the quantity of interest. Consider the following example:

Problem 4: There were 6 roses in the vase. Mary cut
some roses from her flower garden. There are now 16
roses in the vase. How many did she cut?
Equation: 6 + x = 16
Solution: x = 10

The predicate associated with the second sentence is ‘in-
crease’ as it results in an increase in the number of roses
in the vase. If the sentence is considered in isolation, there

are possibilities of associating it with ‘decrease’, as it is de-
scribing an action (‘cut’) that caused a reduction in the num-
ber of roses in the flower garden. The neural network uses a
Bidirectional Long Short Term Memory (BiLSTM) to gen-
erate contextual representations of the sentence and the word
problem, which are then consumed by a MultiLayer Percep-
tron (MLP) to generate the required probability distribution.

A container/entity recognizer takes three inputs - the sen-
tence - S, the word problem - P and the index - Wi (some
number between 0 and 13 in case of Problem 1 as shown in
Figure 2) of a word in the word problem. The network pre-
dicts the probability that the corresponding word is a con-
tainer or entity or neither for the specific sentence. The sen-
tence cannot be processed in isolation, as it might not have a
container or entity mentioned in it directly. For example, in
the sentence, ‘He bought 11 more’, in Figure 2, the pronoun
‘he’ is used to refer to the actual container ‘John’ which is in
the previous sentence. Similarly, the entity, ‘apples’ is also
absent in the sentence. As in the case of predicate recognizer,
we use a BiLSTM to generate contextual representations of
the sentence and the word problem. The representation of
the specific word, Wi, is obtained from the word problem’s
representation which is then concatenated with the sentence
before passing it on to MLP. MLP generates a probability
distribution, over the domain {container, entity, none}, for
the word. We invoke the network once for each word in the
word problem - since containers and entities are nouns, we
invoke the network only for words that are nouns in the word
problem. Thus, the recognizer gives a probability distribu-
tion for each noun in the word problem.

Reasoning Figure 3 shows the different phases in solving,
starting from perception. The knowledge provided enables it
to derive the equation associated with a word problem. In the
case of change problems, the query is regarding an unknown
initial value or update or final value.

The query predicate posed to the program is
?wps(Tok Sentences, POS Sentences,
Quantities, Solution), where Tok Sentences
is the list of sentences/constituents in the word problem
1 - each constituent represented as a list of words/tokens
in it, POS Sentences is the list of part of speech tags
of words in the problem2, Quantities is the list of
numerical quantities mentioned in the word problem and
finally, Solution - represents the solution of the word
problem. While training, the actual solution is provided in
Solution and the goal is to find a proof for the posed
query. While testing, Solution will be assigned the
solution predicted by the program.

The perception phase, as mentioned earlier, employs neu-
ral networks for predicate recognition and entity/container
recognition. These networks are represented by the neural
predicates, nn vc (vc for verb categorizer as the verb in
the sentence determines the predicate - holds/increase/de-
crease) taking as inputs the Sentence and Context

1Constituents are obtained using Stanford constituency parser
(Zhu et al. 2013)

2POS tags are obtained using Stanford parser (Klein and Man-
ning 2003)



Figure 3: The DeepProbLog pipeline in solving word problems.

and predicting Y over the domain [holds, increase,
decrease] and nn wc (wc for word categorizer identi-
fying whether the word is a container/entity/none) taking
as inputs Sentence, Context and a specific Word and
predicting Y over the domain [container, entity,
none].

The knowledge provided to the solver guides it to arrive
at an equation and a solution. We assume that the temporal
order of events in the word problem is same as the order
in which it is narrated. This allows sequential processing of
the sentences in the word problem. The pseudocode of the
knowledge provided is shown in Figure 3. getRepresenta-
tion(Sentence) invokes the neural networks responsible for
perception, through the neural predicates nn vc and nn wc,
to obtain the intermediate representation of a sentence. The
solving process starts from the last sentence in the word
problem, which is assumed to be the sentence posing the
query (query sentence in pseudocode). The solver first gets
the representation of the query sentence (holds(John, apples,
?X) in case of Problem 1). This gives information about the
predicate associated with the query sentence (pred query in
pseudocode) and the container and entity of interest. If the
predicate is holds, then the unknown value is either the ini-
tial/final value (final value is queried for in case of Problem
1). If the predicate is increase/decrease, then the unknown
value queried for is the change or the amount by which the
value got updated. The for loop in the pseudocode indicates
that the solver processes each sentence in the word prob-
lem, starting from the first sentence - getting a representa-
tion for each sentence (a sentence is relevant if it is about
the container and entity mentioned in the query). Based on
the predicate associated with each sentence (pred = hold-
s/increase/decrease), the numerical quantity associated with
the sentence is appended into an accumulator (Acc in pseu-
docode) directly or the value in the accumulator is increased
or decreased by the quantity. The processing for Problem 1
is shown below:

Sentence 1: holds(John, apples, 10) − > Acc = [10]
Sentence 2: increase(John, apples, 11) − > Acc =
[10+11]
Sentence 3 (Query): holds(John, apples, ?X)− > Re-

sult = Acc[0] = 21

DeepProbLog for Relation Recognition
To show the role of neuro-symbolic frameworks in address-
ing compositional generalization in vision, we have defined
a relation recognition task as the task of identifying images
that involve at least a triangle intersecting with any other
geometrical shape. As in the case of word problem solving,
we break down the task of visual relation recognition into
two parts - perception and reasoning.

Perception
Given that the state-of-the-art deep learning methods in
(multi) object detection, like MASK R-CNN (He et al.
2017), show good performance, we have simplified visual
relation recognition into a classification task that accepts as
input visual scenes together with the bounding boxes of ob-
jects in the scene provided by a pre-trained object detec-
tion model like MASK R-CNN. Since the type of shapes of
the objects in the scene is important, we dedicated the per-
ception part of our DeepProbLog model to shape recogni-
tion (see Figure 1). More specifically, we have implemented
a CNN-MLP neural model to classify input images into 3
classes - circle, triangle and rectangle.

Reasoning
Figure 4 illustrates the same solving pipeline depicted in
Figure 3, however modified for relation recognition.

The query predicate is ?scene(Images, BBoxes,
Solution), where Images is the list of images, one for
each object in the given input image, BBoxes is the list of
bounding boxes of the objects and Solution represents
the actual (during training) or the predicted class label (dur-
ing testing) which is either True/False.

Given the input data, the perception phase employs a neu-
ral network for shape recognition. The network is repre-
sented by the neural predicate, nn shape, taking as input
one element of Images (an object) and predicting Y over
the domain [circle, triangle, rectangle].

The knowledge associated with the solving process iden-
tifies the spatial relations between each pair of shapes and



Figure 4: The DeepProbLog pipeline in visual relation recognition.

infers a suitable class label for the input image accordingly.
The pseudocode of the knowledge is given in Figure 4. get-
Pair(Images, BBoxes) gets the list of pairs of objects and
their equivalent bounding boxes. Within an iterative process
over the list of pairs, getRepresentation(Image) invokes the
shape recognition neural network for each object in a pair
(PI[0] and PI[1]). If there is at least one triangle pre-
dicted in a pair, the solver checks whether the pairs inter-
sects or not using the information related to their bounding
boxes (PB[0] and PB[1]). It returns True if an intersect with
a triangle is identified, and returns False otherwise.

Experiments
Here, we compare the state-of-the-art neural models for
word problem solving and visual relation recognition with
our DeepProbLog models. Although it is an unfair compari-
son considering the additional knowledge support that Deep-
ProbLog models possess, our intention is to show how the
ability to explicitly represent and reason upon such knowl-
edge helps in addressing generalization problems.

Word problem solving
Datasets As mentioned earlier, we collected 330 Change
problems from the datasets, AddSub (Kushman et al. 2014)
and SingleOp (Roy, Vieira, and Roth 2015). Out of the 330
problems collected, 300 were single-update problems and
30 were two-update problems. We created two test sets - the
first, Testsimilar had 30 single-update problems , the sec-
ond, Testcompositional had 30 two-update problems. All the
remaining (270) problems were used as the training set.

Baselines We compared the performance of
DeepProbLog-based solver against the state-of-the-art
neural solvers. The first baseline, Graph2Tree (Zhang
et al. 2020), uses a graph based encoder to encode the
word problem and a tree-based decoder to generate the
expression tree associated with the word problem. The
second baseline, is the Goal driven Tree Structured neural
solver - GTS (Xie and Sun 2019) that uses Long Short
Term Memory (LSTM) to encode the word problem, and
a tree-based decoder to generate the equation. The third
baseline is a Sequence-to-Sequence - Seq2Seq network
based on BiLSTM (Luong, Kayser, and Manning 2015),

that translates the word problem into equation 3.

Experimental Setup All the baseline models are provided
with RoBERTa pretrained embeddings (768d), while Deep-
ProbLog starts with random 256d embeddings. The embed-
ding layer is trained along with other layers in the network. It
should be noted that, while all the baselines are trained with
(word problem, equation) pairs, DeepProbLog is trained
with (word problem, final solution) pairs and hence is
weakly supervised. But, the knowledge provided enables it
to derive equations.

Results Table 1 shows performance of the solvers on the
two test sets - Testsimilar and Testcompositional. As can
be observed, all the baselines fail to solve any of the prob-
lems in Testcompositional. As mentioned earlier, all the
solvers are trained with problems that are mapped to equa-
tions of the form (X = N1 +/− N2) unlike the prob-
lems in Testcompositional, which are mapped to equations
of the form (X = N1 +/− N2 +/− N3). The base-
line models fail to generalize to unseen equation forms/tem-
plates. Since the perception module of DeepProbLog pro-
cesses the word problem sentence-wise, learning a repre-
sentation for each sentence and then composing these sen-
tence representations based on the knowledge provided to
derive the equation, DeepProbLog is able to perform bet-
ter on Testcompositional, solving 70% of the problems cor-
rectly. DeepProbLog could not beat the performance of
Graph2Tree or GTS on Testsimilar. We believe this is be-
cause both Graph2Tree and GTS are trained on the equations
directly (fully supervised), rather than on just the final solu-
tion as done in DeepProbLog.

Visual Relation Detection
Datasets To evaluate state-of-the-art methods more accu-
rately, we built our own dataset composed of images con-
taining geometrical shapes for a simple classification task.
Each image is labeled with True or False depending on
whether there is a triangle (regardless of color, shape, size)
intersecting with another shape in the image or not, respec-
tively. This allows us to form different set of data w.r.t dif-
ferent compositional configurations.

3Baseline implementations were from https://github.com/
arkilpatel/SVAMP (Patel, Bhattamishra, and Goyal 2021)



Table 1: Accuracy of DeepProblog in dealing with compositionality compared to baselines (Word Problem Solving)

Test Set Graph2Tree GTS Seq2Seq DeepProbLog
Testsimilar 96.6% 90% 73.3% 86.6%
Testcompositional 0 0 0 70%

Table 2: Accuracy of DeepProblog in dealing with compositionality compared to baselines (Visual Relation Recognition)

Test Set CNN-MLP PrediNet ResNet-50 DeepProbLog
Testsimilar 81.35% 82.0% 95.0% 95.7%
Testcompositional cps 57.5% 45.1% 72.7% 89.3%
Testcompositional total 53.43% 37.6% 58.75% 76.4%

The dataset contains 5000 RGB images (100×100) com-
posed of 3 different types of shapes including circle, trian-
gle, rectangle, in 3 different colors - red, blue and green.
As an individual instance of data, each RGB image in our
dataset is associated with a list of bounding boxes related to
its shapes and a class label.

The training set which involves 80% of data (= 4000) is
generated w.r.t the following constraints: (I) It is an even 50-
50 split across the binary True/False class labels. (II) There
are exactly two shapes in each image. (III) 90% of the pos-
itive instances (i.e., a triangle intersects with another shape)
in the training data comply with the following shape/posi-
tion/color constraints: a red triangle is located at the left
side of the second shape that is blue. The remaining 10%
of the positive instances do not follow the above constraint.
(IV) We apply no shape/position/color constraints on nega-
tive (label = False) instances in the training set.

Given the above set of constraints for the training set, we
have defined 3 test sets, each of size 250, as follows:
• Testsimilar is the test set with the same distribution as

the training set;
• Testcompositional cps is the test set where the number of

shapes per image is as in the training set, however, in-
stead of 90%, only 10% of the positive cases follow the
color/position/shape (cps) constraint mentioned in (III).

• Testcompositional total is the test set where the con-
straints (II, III) in the training set are violated (each im-
age is composed of 3 shapes).

Baselines We compare the performance of DeepProbLog
with 3 baselines. The first two are the standard neural-based
networks - CNN-MLP and ResNet-50 (He et al. 2016).
As the third baseline we applied PrediNet (Shanahan et al.
2020) which, as mentioned earlier, is an end-to-end network
that learns to directly map an image to propositions repre-
senting relations between objects in the image.

Experimental Setup The convolutional network used in
our CNN-MLP is composed of 2 parts: (1) a 3-layer CNN
network as an encoder with batch normalization and ReLU
activation function trained by stochastic gradient descent
and ADAM optimizer, and (2) a two-layer fully connected
MLP with softmax activation function with output size 2
representing the binary classes True and False in the dataset.
The perception part in our DeepProbLog implementation
also uses the same configuration as mentioned above.

We configured PrediNet with a single task setting where
the task refers to our relation of interest: a triangle inter-
secting with another shape. The structure of the PrediNet
network evaluated in this work is equipped with a single con-
volutional input layer and an output multi-layer perceptron
(MLP) resulting in a one-hot label denoting True or False.

The three aforementioned neural-based methods accept as
input only images. In order to have a fair comparison be-
tween these methods and DeepProblog model which also
relies on information about the bounding-boxes, we first
preprocessed the data by augmenting each image with the
bounding boxes of its shapes drawn on the image. This can
assist the neural based models to recognize shapes even
when same-color shapes intersect.

Results Table 2 shows performance of the models on
the 3 test sets - Testsimilar and Testcompositional cps and
Testcompositional total. As can be observed, all the base-
lines show significant drop in performance when tested on
the compositional test sets. It is not surprising to see this
drop specifically in case of Testcompositional total dataset
as the baselines were trained on examples with images with
just two objects. Our intention is to show that DeepProbLog
is able to generalize better to a variable number of objects
without requiring to see such examples during training. This
is because DeepProbLog processes the input image object-
wise, learning the shape of each object and then infers the
label for the input image based on both the knowledge it has
about the pattern of interest (‘Is there a triangle intersect-
ing with another shape in the image?’) and the geometrical
knowledge regarding intersection of bounding boxes.

Discussion & Future work
We focused on compositional generalization with respect to
the two specific tasks of word problem solving and visual
relation recognition. Through an empirical evaluation, we
showed that neuro-symbolic models are able to adapt bet-
ter to distribution shifts as a result of compositionality by
leveraging task specific knowledge. It is worth mentioning
that a neuro-symbolic approach can offer solutions when it
is difficult to collect more data but straightforward to repre-
sent knowledge useful for tackling generalization problems.
Our next step is to implement models based on other NeSy
frameworks and compare them with each other.
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