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ABSTRACT

We propose The GANfather, an adversarial method without label requirements, to
enhance the detection of illicit activity in various domains. It comprises a gen-
erator that produces meaningful attacks and a discriminator to detect them. The
GANfather differs from anomaly detection as it generates attacks mimicking le-
gitimate activity. It also differs from GANs as it focuses on generating out-of-
sample data, namely examples of a novel class, such as illicit activity. We employ
hyperparameter tuning to balance both goals. Optionally, we may encourage the
generator to bypass pre-existing detection systems. This setup reveals defensive
weaknesses for the discriminator to correct.
We evaluate our method in two real-world use cases, money laundering, and rec-
ommendation systems. In the first, an estimated 0.7–3 trillion euros are laundered
annually undetected. Our method moves cumulative amounts close to 250 thou-
sand dollars through a network of accounts without being detected by existing
systems. In the latter, we recommend the target item to a broad user base with as
few as 30 synthetic attackers, corresponding to 0.5% of total users. In both cases,
we train a new defence system to capture the synthetic attacks, potentially saving
millions of dollars in detected criminal activity. Finally, our method is general and
applies to other use cases targeted by adversarial attacks.

1 INTRODUCTION

Illicit activities frequently target digital systems and services. Importantly, these illicit activities are
adversarial: an attacker and a defence system constantly adapt to each other’s behaviour.

For instance, the rise of digital banking enables clients to open bank accounts and perform financial
transactions efficiently worldwide but enables complex money laundering schemes.Recent estimates
indicate undetected money laundering activities of C0.7–3 trillion annually (Lannoo & Parlour,
2021) and operational costs of $37.1 billion incurred by financial institutions (Ray, 2021).

Recommender systems provide another example. They are often embedded in digital services to
deliver personalisation, matching users with content, goods, services, or people based on their in-
terests. However, recommenders may suffer injection attacks whenever malicious actors fabricate
signals (e.g., clicks, ratings, or reviews) to influence recommendations. The consequences of these
distortions are socially and economically meaningful. For example, a one-star decrease in restaurant
ratings can lead to a 5 to 9 percent decrease in revenue (Luca, 2016)1. Detecting malicious agents
is far from trivial. A critical challenge relates to class imbalance, as illicit activity is rare. Addition-
ally, labelled datasets are often unavailable or incomplete due to the absence of natural labels and
the cost of feedback, primarily generated through manual labelling. Even when labels are available,
the feedback is not immediate, as investigations are far from trivial. Furthermore, illicit agents in-

1Many other examples exist where malicious agents continuously adapt to exploit defences. Email providers
constantly battle spammers. Social networks and messaging apps must deal with abusive content and the spread
of misinformation, for example, through bot accounts. Search engines face scammers attempting to use them
to target potential victims. These illicit activities have a meaningful impact and force digital services to incur
severe operational costs to mitigate them.
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tentionally mimic legitimate activity to avoid detection. Finally, due to the adversarial environment,
malicious agents continuously adapt existing strategies, resulting in distribution shift.

We propose The GANfather, a method to generate examples of illicit activity and train effective de-
tection systems without any labelled examples leveraging Generative Adversarial Networks (GANs).
We train a model to discriminate between real and synthetic data while training a generator to fool it
by learning to generate realistic data (Goodfellow et al., 2014). Unlike typical GANs, however, our
goal is not to learn the real data distribution but out-of-distribution examples representing meaning-
ful attacks.

Our method includes an additional optimisation objective in the training loss of the generator to gen-
erate meaningful attacks. This objective is a use-case-specific, user-defined differentiable formula-
tion of the goal of the malicious agents, i.e., what they are optimising. For example, the objective
of an injection attack in a recommender system may be to increase the frequency of recommen-
dation of a given item. Alternatively, the optimisation objective in money laundering may be how
much money flows through certain accounts, a practice commonly known as layering, to conceal the
criminal origin of the funds.

Furthermore, our method may consider an existing defence system as long as a differentiable for-
mulation is possible. In that case, we reward the generator for not triggering existing detection
mechanisms. Thus, our method can actively find liabilities in the current system while simultane-
ously training a complementary detection system to correct them.

We summarise our main contributions as follows:

• Automated generation of attacks: We propose a framework to generate synthetic data,
simulating adversarial attacks by malicious actors, where the distance between real and
synthetic distributions is controllable by hyperparameters.

• Detection of attacks: We simultaneously train a detection system, distinguishing the syn-
thetic attacks from the real data.

• No labels: We do not require any labelled examples of malicious activity; the method
can devise previously unseen, unlabelled attacks. Instead, we generate attacks using a
differentiable formulation of the intended behaviour. Our method is suitable for creating
examples of a class for which we do not have data.

• Expose and augment current defence system: Optionally, if a detection system is in place
and it is possible to formalise it in a differentiable manner, we may train the generator to
bypass it. Additionally, we may use the resulting discriminator as a complementary model,
specialised in detecting attacks that evade the existing system.

• Our method is general: We validate and provide an experimental study of our method in
two domains: money laundering and recommendation systems.

The remainder of the paper is structured as follows. We first describe our proposed framework in
Section 2. We detail our experiments and discuss results in Section 3. We provide an overview of
related work in Section 4. Finally, we present our conclusions in Section 5.

2 METHODS

This section provides a general description of our proposed framework in Section 2.1. We proceed
to describe two use-cases: AML (Section 2.2) and injection attacks in recommendation systems
(Section 2.3).

2.1 GENERAL DESCRIPTION

Figure 1 depicts the general structure of our framework. It includes a generator (Section 2.1.1), a
discriminator (Section 2.1.2, an optimisation objective (Section 2.1.3), and, optionally, an existing
alert system (Section 2.1.4).
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Figure 1: The GANfather framework. Its main components comprise a generator, C1, which gen-
erates realistic attacks, and a discriminator, C2, which detects these attacks. Our method includes
an optimization objective, C3, to incentivise realistic instances. Finally, our method supports the
inclusion of an existing alert system, C4.

2.1.1 GENERATOR

As in the classical GAN architecture, the generator receives a random noise input vector and outputs
an instance of data. However, unlike classical GANs, its output is passed to multiple components,
which will return feedback as a gradient during training. The loss of the generator is a linear com-
bination of the losses of the components, where the weights are hyperparameters controlling the
relative strength of the various losses. It contains the following terms:

L(G) = αLObj(G,O) + βLGAN (G,D) + γLAlert(G,A) (1)

where LObj(G,O) denotes the optimisation objective; LGAN (G,D) denotes the GAN loss;
LAlert(G,A) is an optional term representing an existing detection system; and α, β, and γ are
hyperparameters to tune the strength of each component.

2.1.2 DISCRIMINATOR

The discriminator receives an example and produces a score indicating the likelihood that the ex-
ample is real or synthetic. It serves two primary purposes. We assume malicious agents mimic
legitimate users; therefore, the generator’s synthetic examples should be similar to real data. The
discriminator’s feedback will nudge the generator towards realistic examples. Moreover, the dis-
criminator eventually learns to distinguish synthetic attacks from real data, which may function as
an automatic detection system for illicit activity. Notably, the discriminator has no label require-
ments since it learns to detect illicit activity based on the generated synthetic attacks. We use the
Wasserstein loss (Arjovsky et al., 2017) as our GAN loss.

2.1.3 OBJECTIVE

The optimisation objective quantifies how well the synthetic example is fulfilling the goal of a mali-
cious agent. It can be a mathematical formulation or a differentiable model of the goal. Suppose we
train the generator to optimise the output of the objective function. In that case, the synthetic data
approximates the illicit behaviour, as it will actively learn strategies aligned with the optimisation
objective. This allows the generator to find previously unseen strategies to meet malicious goals.

2.1.4 ALERT SYSTEM

If an existing, differentiable alert system is present, we can add it to our framework to teach the gen-
erator to create examples that do not trigger detection. Naturally, this is the most realistic scenario
in adversarial environments, as malicious agents actively try to bypass detection in real life. Fur-
thermore, it is beneficial for the discriminator to focus on undetected illicit activity, so we include
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the alert system in the generator’s loss such that it can learn to avoid triggering it. Whenever the
existing system is not differentiable, a differentiable proxy may be possible.

2.2 ANTI-MONEY LAUNDERING

We tackle the layering stage of money laundering, in which criminals attempt to conceal the origin
of the money by moving large amounts across financial institutions through what is known as “mule
accounts”, creating a flow of money from the perspective of each institution. To represent these
transactions, we can use a 3D tensor as depicted in Figure 2. The first two dimensions correspond
to the weighted adjacency matrix of the accounts and the third dimension is time. We discretise the
events into time windows of fixed length and group events that belong to the same entry in the tensor
by summing their amounts. Our representation covers any dynamic network with a 3D tensor whose
size is fixed and pre-specified, which allows us to avoid recurrent models. While this approach may
limit the size of generated data, domain experts reported that up to 95% of the money-laundering
investigations involve cases containing up to 5 accounts.

Figure 2: Data representation of transactional data. From the raw tabular data, we build the tripartite
graph of the transactions, which is in turn represented as a 3D tensor.

2.2.1 GENERATOR

We implement the generator (Section 2.1.1) using a set of dense layers, followed by a set of trans-
posed convolutions. Then, we create two branches: one to generate transaction amounts and the
other to generate transaction probabilities. We use the probabilities to perform categorical sampling
and generate sparse representations, similar to real transaction data. After the sampling step, the two
branches are combined by element-wise multiplication, resulting in a final output tensor with the
dimensions described above. More details of the generator’s architecture are found in Table 1.

2.2.2 DISCRIMINATOR

The discriminator (Section 2.1.2) receives two tensors with the same shape as inputs: one containing
the total amount of money transferred per entry, and the other with the count information (mapping
positive amounts to 1 and empty entries to 0). Each tensor passes through convolutional layers,
followed by permutation-invariant operations over the internal and external accounts. Then, we
concatenate both tensors. We reduce the dimensionality of the final vector to a classification outcome
using dense layers. More details of the discriminator architecture are found in Table 2.

2.2.3 OBJECTIVE

To characterise the money flow behaviour of layering, we define the objective function (Sec-
tion 2.1.3) as the geometric mean of the total amount of incoming and outgoing money per internal
account (Equation 2). This objective function incentivizes the generator to increase the amount of
money sent and received per account and keep these two quantities similar.

Raml(x) =

M∑
i=0

√
(Sin(x[i])× Sout(x[i]) (2)
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2.2.4 ALERT SYSTEM

In AML, it is common to have rule-based detection systems. However, rules are usually not differ-
entiable, and our generator requires feedback in the form of a gradient. Hence, we construct a deep
learning model as a proxy for the rules system. We train this model before the other framework
components, using augmented real data and the rule’s predictions for each example as labels. This
proxy network will then give the same feedback as the rules system, but in a differentiable way, so
we can backpropagate its feedback to the generator.

2.3 RECOMMENDATION SYSTEM

In this work, we consider collaborative filtering recommender systems. However, our method is
compatible with any other differentiable recommender. The system receives a matrix of ratings R
with shape (Nu,Ni), where Nu is the number of users and Ni is the number of items. First, we
compute the matrix D of shape (Nu,Nu) with the cosine distance between the users. Then, we
compute the predicted ratings P as a dot product between D and R 2.

2.3.1 GENERATOR

The generator consists of multi-layer perceptrons that gradually increase the size of the random
noise input vector to the output vector of ratings. For gradients to flow better, we implement the
network with residual blocks as in ResNet (He et al., 2016), but using two dense layers instead of
the convolutional layers. We use residual blocks to process the input noise vector. Then, similarly
to the AML implementation, we create two branches: one for ratings and the other for probabilities.
Each of these passes through additional residual blocks until the last dense layer, where we scale up
the vector size to the number of items Ni, before doing the categorical sampling step. Importantly,
each synthetic user is independent, but the architecture could easily be adapted to generate them
together. More details of the generator architecture available in Table 4.

2.3.2 DISCRIMINATOR

The architecture of the discriminator mirrors that of the generator since each user is also processed
independently. It receives two tensors with the same shape as inputs: one containing the ratings and
the other with the count information. We scale down each tensor with a dense layer before passing
through the residual blocks. Finally, we concatenate the two vectors into a single vector. After
passing it through additional residual blocks, we scale down the final vector to single value output
with a dense layer. Invariant permutation is not required because we generate and process each user
separately. More details of the discriminator architecture available in Table 5.

2.3.3 OBJECTIVE

We define the goal of malicious agents as increasing the frequency of recommendation of a specific
item. The objective function in Equation 3 incentivizes the generator to increase the rating of the
target item for every user.

Rrs(P ) = −
Nu∑
i=0

Nm∑
j=0

ReLU(P [i, j]− P [i, t]) (3)

3 RESULTS

We evaluate the efficiency of TheGANfather to generate attacks and also to detect them in two use-
cases: money laundering (Section 3.1) and recommendation system (Section 3.2).

2We decide not to represent time since most classical recommender systems do not account for it. However,
it is possible to temporal information using a similar setup to what we described in the AML use case.
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3.1 MONEY LAUNDERING

3.1.1 OVERVIEW

We use a real-world dataset of financial transactions, containing approximately 200000 transactions,
between 100000 unique accounts, over 10 months. We implement The GANfather’s generator and
discriminator following the architectures presented in Table 1 and Table 2, respectively. The rules
detection system contains five scenarios, capturing known suspicious patterns such as a sudden
change in behaviour or rapid movements of funds3. Instead of pre-training the rules detection sys-
tem, we hard-code the rules and implement the logical gates using arithmetic operators. We conduct
a hyperparameter search over α, β and γ (discussed in Section 2.1.1) to study the impact of different
the relative weights for each component, as shown in Table 3.

3.1.2 RESULTS

We perform a random search over the hyperparameters in Table 3. In Figure 3, we show a projection
of the various generators trained with different hyperparameters. The horizontal and vertical axes
represent multi-dimensional scaling of the distance of amount distribution and probability distribu-
tion, respectively. We depict the amount of money flowing using colour. The size indicates the
diversity score (Equation 4). Figure 3 shows that the generators trained to avoid both the existing
detection system and the discriminator can move up to 250k dollars through just five accounts. We
also observe that generators with higher diversity scores typically are the ones that circulate more
money while avoiding detection.

Next, we build a dataset combining real and synthetic data. We ensure that the synthetic data con-
tains a variety of behaviours by sampling from various generators at various epochs during training
and with different random noise seeds. We use this dataset of synthetic examples to evaluate snap-
shots of the trained discriminators and quantify how well they detect the synthetic data (Figure 4).
We observe that the discriminator typically achieves a perfect classification performance, especially
for higher values of the β parameter.

Figure 3: Hyperparameter search results.
Each point corresponds to a different generator.

Figure 4: Discriminator AUC. Each point
corresponds to a different discriminator.

These experiments show that The GANfather’s generator moves high volumes of money through a
small set of accounts without triggering the alert system. Furthermore, The GANfather’s discrimi-
nator can complement the rules system and allows us to detect illicit activity undetected by the rules
system consistently.

3.2 RECOMMENDER SYSTEM

3.2.1 OVERVIEW

We use the MovieLens 1M dataset, comprised of a matrix of 6, 040 users and 3, 706 movies, with
ratings ranging from 1 to 5 (Harper & Konstan, 2015). We implement the generator and discrimina-
tor according to Table 4 and Table 5, respectively. We use the collaborative filtering recommender

3The AML rules consist of logical conditions comprised of a linear combination of profiles and thresholds.
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system described in Section 2.3. During training, we take a weighted average of ratings considering
all users in the dataset. In contrast, we only consider the top-400 closest neighbours for inference
since we observed empirically that this value produces the best recommendation loss. We consider
all users during training because the initially generated ratings are random, and only providing feed-
back from the top-400 closest users limits the strategies that the generator can learn. We assume that
there is no previous detection system in place. We train our networks with 300 synthetic attackers
but evaluate the generator’s ability to influence the recommender system with various injection at-
tacks. We define four baseline attacks: (1) a rating of 5 for the target movie and 0 otherwise, (2) a
rating of 5 for the target movie and ∼90 random ratings for randomly chosen movies, (3) a rating of
5 for the target movie and ∼90 random ratings for the top 10% highest rated movies, (4) a rating of
5 for the target movie and ∼90 random ratings for the top 10% most rated movies.

3.2.2 RESULTS

We perform an extensive hyperparameter search for α. In Figure 5, we observe that the generated
attacks consistently outperform the baselines in recommending the target movie, with as few as 30
synthetic attackers, corresponding to 0.5% of the number of real users. Furthermore, increasing α
leads to generators whose attacks make the recommender system recommend the target movie to an
increasingly large portion of the real users, at the cost of moving further away from the real data
distribution (measured through the KL divergence). Increasing the number of generated users also
increases the target movie’s recommendation frequency to real users.

Figure 5: Hyperparameter search results. Each point corresponds to a different generator. The x-axis
corresponds to the alpha value, the y-axis to the number of users with the target item on their top-10,
and the colour to the KL divergence between real and generated data. We include the number of
generated users above each panel. The green line represents the best baseline in each panel.

We subsequently analyse the generated attacks. In Figure 6, we see that the generated attacks overlap
with real users more than the naive baselines, as expected in collaborative filtering. Furthermore, we
see in Figure 7 that several generators are closer to real data than the baselines.

Finally, we analyse the detection of synthetic attacks. We build a dataset containing real and syn-
thetic data. We then quantify the AUC of the pre-trained discriminators. In Figure 8, we observe
that most discriminators achieve around 0.75 AUC. Then, we test training a discriminator directly
on this synthetic dataset, obtaining near-perfect classification (Figure 9).

4 RELATED WORK

4.1 CONTROLLABLE DATA GENERATION

Wang et al. (2022) review controllable data generation with deep learning. Among the presented
works, we highlight De Cao & Kipf (2018). It leverages a GAN trained with reinforcement learning
to generate small molecular graphs that verify desired properties. Their work is similar to ours in
that we both (1) train a generator with a discriminator and a reward function to generate data and (2)
use similar data representations, namely sparse matrices. However, we differ in motivation and goal.
Whereas De Cao & Kipf (2018) concerns generating realistic data that verifies some conditions (e.g.,
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Figure 6: Projection of multi-dimensional
scaling of user embeddings.

Figure 7: Histogram of distances between the
distributions of generated attacks and real data.

Figure 8: Discriminator AUC. Each point
corresponds to a different discriminator.

Figure 9: We can train a discriminator with
almost perfect performance.

as our method could achieve leveraging the optional alert system), The GANfather generates out-of-
distribution data to tackle adversarial domains. We address this issue by adding a novel component:
the optimisation objective.

4.2 ANTI-MONEY LAUNDERING

Typical anti-money laundering solutions are rule-based (Watkins et al., 2003; Savage et al., 2016;
Weber et al., 2018). They encode domain knowledge, ensure compliance, and generate interpretable
alerts. However, rules suffer from high false-positive rates, may fail to detect complex schemes, and
are costly to maintain. Machine learning-based solutions tackle these problems (Chen et al., 2018).
Given the lack of labelled data, most solutions employ unsupervised methods like clustering (Wang
& Dong, 2009; Soltani et al., 2016), and anomaly detection (Gao, 2009; Camino et al., 2017). These
assume that illicit behaviours are rare and distinguishable, which may not hold whenever money
launderers mimic legitimate behaviour.

Supervised methods have also been explored, including Random Forests (Jullum et al., 2020),
Bayesian Networks (Raza & Haider, 2011), Neural Networks (Lv et al., 2008), and SVMs (Tang
& Yin, 2005). In practice, anti-money laundering labels are typically incomplete, delayed, and ex-
pensive. Thus, most of these works assume that real data correspond to legitimate activity and use
synthetic positive examples for training. Alternatively, Deng et al. (2009) and Lorenz et al. (2020)
propose efficient label collection with active learning (Charitou et al., 2021) explores data aug-
mentation using conditional GANs. We propose learning a generator through adversarial training,
combined with an optimisation objective and, optionally, an existing detection system, to produce
the synthetic positive instances.
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There is a growing body of work on leveraging network properties and graph information to improve
detection. Proposed techniques include feature engineering (Oliveira et al., 2021), recursive neural
networks (RNNs) (Branco et al., 2020), and graph convolutional networks (GCNs) (Weber et al.,
2019). Our method, alternatively, relies on a fixed, pre-specified structure to represent relational
information while avoiding the need for sequential or graph-based methods.

Lastly, Li et al. (2020) and Sun et al. (2021) identify dense flows in large transaction graphs. Al-
though we use similar representations, in our work, the representation underlies the generation of
illicit money flows while training a discriminator for detection.

4.3 RECOMMENDER SYSTEMS INJECTION ATTACKS

Most injection attacks on recommender systems are hand-crafted according to simple heuristics.
Examples include random and average attacks (Lam & Riedl, 2004), bandwagon attacks (Burke
et al., 2005a) and segmented attacks (Burke et al., 2005b). However, these strategies are less ef-
fective and easily detectable as most generated profiles differ significantly from real data and corre-
late with each other. Tang et al. (2020) address the optimisation problem of finding the generated
profiles that maximise their goals directly through gradient descent and a surrogate recommender
system. Alternatively, certain attacks target specific types of recommender systems, including as-
sociation rules (Yang et al., 2017), matrix factorisation (Fang et al., 2020), and graph-based recom-
menders (Fang et al., 2018).

The detection of injection attacks may consist of statistical monitoring Chirita et al. (2005). More
advanced detection methods include outlier detection (Chakraborty & Karforma, 2013; Davoudi &
Chatterjee, 2017), SVMs (Zhang & Zhou, 2014), neural networks (Ebrahimian & Kashef, 2020;
Meleshko et al., 2020), and among others (He et al., 2010; Xia et al., 2015). In recent years, some
studies apply GANs to recommender systems to generate attacks and defend the system. Wu et al.
(2021) combines a graph neural network (GNN) with a GAN to generate their attack. The former
select which items to rate, and the latter decides the ratings. Zhang et al. (2021) and Lin et al. (2022)
propose a similar setup to ours in which they train a GAN to generate realistic data and add a loss
function to guide the generation of profiles to perform malicious recommendations as expected. Our
work differs from theirs in two key aspects. Firstly, we use a different objective function. Secondly,
we generate profiles directly from the noise vector. We then use categorical sampling to make
our output sparse, while they base their profile generation on real data to obtain sparse ratings, as
proposed in Chae et al. (2018)).

5 CONCLUSION

In this work, we propose The GANfather to generate data of a novel class without labelled examples,
while simultaneously training a detection network to classify the novel class correctly.

Our strategy differs significantly from the existing anomaly detection literature as our generator
produces data close to real data. Additionally, it differs from traditional GANs as we focus on
generating out-of-sample data. The objective function nudges the generator from merely replicating
the distribution of real data, instead balancing the objective with the similarity to real data through
hyperparameter tuning. Thus, we can generate data ranging from likely legitimate to likely malicious
activity.

We successfully apply our method to two use-cases: money laundering and recommendations. In
both scenarios, a defence system has to adapt to the evolving behaviour of attackers. We show that
our method generates attacks that bypass in-place systems but the proposed discriminator.

Our method fits the adversarial game between criminals and security systems by simulating various
meaningful attacks. If existing defences are in place, our method may learn to avoid them and,
eventually, train a complementary model. We hope our work contributes to increase robustness
against illicit actors.
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A APPENDIX

A.1 DIVERSITY MEASURE

We want to ensure that attacks are diverse. Otherwise, they are easily detected.

To quantify the diversity of the generated attacks, we calculate the inception score of three distribu-
tions extracted from the generated data:

• The amount distribution;

• The count distribution, i.e., the number of transactions per account;

• The interval distribution, i.e., the time difference between consecutive transactions of a
same account.

We then define the diversity score as the average of these three inception scores (Equation 4).

(Ex∼pG
[DKL(damount(x)||Ey∼pG

[damount(y)])]+

Ex∼pG
[DKL(dcount(x)||Ey∼pG

[dcount(y)])]+

Ex∼pG
[DKL(dinterval(x)||Ey∼pG

[dinterval(y)])])/3

(4)

A.2 FURTHER EXPERIMENTAL DETAILS: ANTI-MONEY LAUNDERING

Index Layer Output shape
0 Linear(100, 400) (400,)
1 Linear(400, 1600) (1600,)
2 Linear(1600, 5000) (5000,)

Reshape (5,10,10,10)
3 ConvTranspose1d(10,10,4,2,1) (5,10,20,10)
4 ConvTranspose1d(10,10,4,2,1) (5,10,40,10)
5 ConvTranspose1d(10,10,4,2,1) (5,10,80,10)
6 ConvTranspose1d(10,10,4,2,1) (5,10,160,10)

Split amounts and probabilities (5,10,160,10)
7 ConvTranspose1d(10,10,4,2,1) (5,10,320,10)
8 Conv1d(10,1,1,1,0) (5,10,320)

Categorical sampling (5,10,320)

Table 1: AML generator architecture.

Index Layer Output shape
0 Conv1d(1,10,6,4,1) (5,10,80,10)
1 Conv1d(10,10,6,4,1) (5,10,20,10)
2 Conv1d(10,5,6,4,1) (5,10,5,5)

Reshape (5,2,5,25)
Mean pooling (1,2,1,25)

Concatenate amounts and probabilities (100,)
3 Linear(100,128) (128,)
4 Linear(128,32) (32,)
5 Linear(32,1) (1,)

Table 2: AML discriminator architecture.
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alpha 1
beta [102, 105]
gamma [103, 4× 103]
lr [10−4, 3× 10−3]

Table 3: Hyperparameter search space on the AML use case.

A.3 COMPARISON OF REAL AND GENERATED ANTI-MONEY LAUNDERING DATA

In Figure 10, we compare the distributions of the total amount of money flowing through the internal
accounts from real data with our generated dataset; we observe that the generators consistently move
more money than real accounts. By investigating the distributions of amounts per transaction and
the number of transactions per account, we verify that the generators can circulate more money than
real accounts because they do more transactions but keep the amounts in a similar range as the real
data.

Figure 10: Comparison distributions of total money flow, amounts and counts between G and real.

A.4 FURTHER EXPERIMENTAL DETAILS: RECOMMENDER SYSTEMS

Index Layer Output shape
0 ResBlock(128,128) (128,)
1 ResBlock(128,128) (128,)

Split ratings and probabilities (128,)
2 ResBlock(128,128) (128,)
3 ResBlock(128,64) (64,)
4 Linear(64,3706) (3706,)

Categorical sampling (3706,)

Table 4: RS generator architecture.
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Index Layer Output shape
0 Dense(3706,64) (64,)
1 ResBlock(64,128) (128,)
2 ResBlock(128,64) (64,)

Concatenate ratings and probabilities (128,)
3 ResBlock(128,128) (128,)
4 ResBlock(128,128) (128,)
5 Linear(128,1) (1,)

Table 5: RS discriminator architecture.
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