
Inductive Logical Query Answering
in Knowledge Graphs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Formulating and answering logical queries is a standard communication interface1

for knowledge graphs (KGs) and their representations. Alleviating the notorious2

incompleteness of real-world KGs, neural methods achieved impressive results3

in link prediction and complex query answering tasks by learning representations4

of entities, relations, and queries. Still, most existing query answering methods5

are inherently transductive and cannot be generalized to KGs containing new en-6

tities without retraining entity embeddings. In this work, we study the inductive7

query answering task where inference is performed on a graph containing new8

entities with queries over both seen and unseen entities. To this end, we devise9

two mechanisms leveraging inductive node and relational structure representations10

powered by graph neural networks (GNNs). Experimentally, we show that induc-11

tive models are able to perform logical reasoning at inference time over unseen12

nodes generalizing to graphs up to 500% larger than training ones. Exploring the13

efficiency–effectiveness trade-off, we find the inductive relational structure method14

generally achieves higher performance, while the inductive node representation15

method is able to answer complex queries in the inference-only regime without any16

training on queries and scale to graphs of millions of nodes.17

1 Introduction18

Traditionally, querying knowledge graphs (KGs) is performed via databases using structured query19

languages like SPARQL. Databases can answer complex queries relatively fast under the assumption20

of completeness, i.e., there is no missing information in the graph. In practice, however, KGs are21

notoriously incomplete [29]. Embedding-based methods that learn vector representations of entities22

and relations are known to be effective in simple link prediction predicting heads or tails of query23

patterns (head, relation, ?), e.g., (Einstein, graduate, ?), forming the field of KG completion [1, 14].24

Complex queries are graph patterns expressed in a subset of first-order logic (FOL) with operators25

such as intersection (^), union (_), negation (¬) and existentially quantified (9) variables1, e.g.,26

?U.9V : Win(NobelPrize, V) ^ Citizen(USA, V) ^ Graduate(V, U) (Fig. 1). Complex queries27

define a superset of link prediction on KGs. The conventional link prediction task can be viewed as a28

complex query with a single triplet pattern without logic operators, e.g., Citizen(USA, V), which29

we also denote as a projection query.30

To tackle complex queries on incomplete knowledge graphs, query embedding methods are proposed31

to execute logic operations in the latent space, including variants that employ geometric [12, 20, 35],32

probabilistic [21, 7], neural-symbolic [23, 6, 4], neural [18, 3], and GNN [9, 2] approaches for33

learning entity, relation, and query representations.34

1The universal quantifier (8) is often discarded as in real-world KGs there is no node connected to all others.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Where did US citizens with Nobel Prize graduate? ݍ = ܹ݊݅:ݑ.ݒ ݈ܾ݁ܰ ݑ,݁ݖ݅ݎܲ ר ݊݁ݖ݅ݐ݅ܥ ݑ,ܣܷܵ ר ,ݑ)݁ݐܽݑ݀ܽݎܩ (ݒ

࣡௧

Nobel
Prize

USA

Einstein

University
of Zurich

ETH Zurich

࣡௩ௗ(࣡௧௦௧) (new nodes and edges)

Nobel
Prize

USA

Einstein

Feynman Princeton

University
of Zurich

ETH Zurich

win

citizen

graduate

answers

Figure 1: Inductive query answering problem: at inference time, the graph is updated with new nodes
Feynman and Princeton and edges such that the same query now has more answers.

However, this very fact of learning a separate embedding for each entity makes those methods35

inherently transductive i.e., they are bound to the space of learned entities and can not be generalized36

to unseen entities without retraining the whole embedding matrix which can be prohibitively expensive37

in large graphs. The problem is illustrated in Fig. 1: given a graph about Einstein and a logical38

query Where did US citizens with Nobel Prize graduate?, transductive QE methods learn to execute39

logical operators and return the answer set {University of Zurich, ETH Zurich}. Then, the40

graph is updated with new nodes and edges about Feynman and Princeton, and the same query now41

has more correct answers {University of Zurich, ETH Zurich, Princeton} as new unseen42

entities satisfy the query as well.43

Such inductive inference is not possible for transductive models as they do not have representations for44

new Feynman and Princeton nodes. In the extreme case, inference graphs might be disconnected45

from the training one and only share the set of relations. Therefore, inductive capabilities are a key46

factor to enable transferring trained query answering models onto updated or entirely new KGs.47

In this work, we study answering complex queries in the inductive setting, where the model has to deal48

with unseen entities at inference time. Inspired by recent advancement in inductive link prediction on49

KGs [36, 10], we devise two solutions for learning inductive representations for complex query: 1)50

The first solution, NodePiece-QE, extends the inductive node representation model NodePiece [10]51

for complex query answering. NodePiece-QE learns inductive representations of each entity as a52

function of tokens from a fixed-size vocabulary, and answers complex query with a non-parametric53

logical query executor [4]. The advantages of NodePiece-QE are that it only needs to be trained54

on simple link prediction data, answers complex queries in the inference-only mode, and that it can55

scale to large KGs. 2) The second solution, NBFNet-QE, extends the inductive link prediction model56

NBFNet [36] for complex query answering. NBFNet-QE learns inductive representations of the57

relational structure without entity embeddings, and uses the relational structure between the query58

constants and the answers to make the prediction. NBFNet-QE can be trained end-to-end on complex59

queries, achieves much better performance than NodePiece-QE, but struggles to scale to large KGs.60

To the best of our knowledge, this is the first work to study complex logical query answering in the61

inductive setting. Conducting experiments on a novel benchmarking suite of 10 datasets, we find that62

(i) both inductive solutions exhibit non-trivial performance answering logical queries over unseen63

entities and query patterns; (ii) inductive models demonstrate out-of-distribution generalization64

capabilities to graphs up to 500% larger than training ones; (iii) akin to updatable databases, inductive65

methods can successfully find new correct answers to known training queries after adding new66

nodes and edges; (iv) the inductive node representation method scales to answering logical queries67

over a graph of 2M nodes with 500k new, unseen nodes; (v) GNN-based models still exhibit68

difficulties [17, 32] generalizing to larger graphs than they were originally trained on.69

2 Related Work70

Knowledge Graph Completion. Knowledge graph completion, a.k.a. simple link prediction, has71

been widely studied in the transductive paradigm [5, 30, 24, 34], i.e., when inference is performed72

on the same training graph with a fixed set of entities. Generally, these methods learn a shallow73

embedding vector for each entity. We refer the audience to respective surveys [1, 14] covering74

2

dozens of transductive embedding methods. The emergence of message passing [11] and Graph75

Neural Networks (GNNs) has led to more advanced, inductive representation learning approaches76

that model entity or triplet representations as a function of the graph structure in its neighborhood.77

GraIL [25] learns triplet representations based on the subgraph structure surrounding the two entities.78

NeuralLP [31], DRUM [22] and NBFNet [36] learn the pairwise entity representations based on79

the set of relation paths between two entities. NodePiece [10] learns entity representations from a80

fixed-size vocabulary of tokens that can be anchor nodes in a graph or relation types.81

Complex Query Answering. In the complex (multi-hop) query answering setup with logical82

operators, existing models employ different approaches, e.g., geometric [12, 20, 35], probabilistic [21,83

7], neural-symbolic [23, 6, 4], neural [18, 3], and GNN [9, 2]. Still, all the approaches are created and84

evaluated exclusively in the transductive mode where the set of entities does not change at inference85

time. To the best of our knowledge, there is no related work in inductive logical query answering86

when an inference graph contains new entities. With our work, we aim to bridge this gap and extend87

inductive representation learning algorithms to logical query answering. In particular, we focus on88

the inductive setup where an inference graph is a superset of a training graph2 such that (i) inference89

queries require reasoning over both seen and new entities; (ii) original training queries might have90

more correct answers at inference time with the addition of new entities.91

3 Preliminaries and Problem Definition92

Knowledge Graph and Inductive Setup. Given a finite set of entities E , a finite set of relations R,93

and a set of triples (edges) T = (E ⇥R ⇥ E), a knowledge graph G is defined as G = (E ,R, T).94

Accounting for the inductive setup, we define a training graph Gtrain = (Etrain,R, Ttrain) and inference95

graph Ginf = (Einf,R, Tinf) such that Etrain ⇢ Einf and Ttrain ⇢ Tinf. That is, the inference graph extends96

the training graph with new entities and edges3.The inference graph Ginf is an incomplete part of the97

not observable complete graph Ĝinf = (Einf,R, T̂inf) with T̂inf = Tinf [Tpred whose missing triples98

Tpred have to be predicted at inference time.99

First-Order Logic Queries. Applied to KGs, a first-order logic (FOL) query Q is a formula that100

consists of constants C (C ✓ E), variables V (V ✓ E , existentially quantified), relation projections101

R(a, b) denoting a binary function over constants or variables, and logic symbols (9,^,_,¬). The102

answers AG(Q) to the query Q are assignments of variables in a formula such that the instantiated103

query formula is a subgraph of the complete graph Ĝ.104

Fig. 1 illustrates the logical form of a query Where did US citizens with Nobel Prize graduate? as105

?U.9V : Win(NobelPrize, V)^Citizen(USA, V)^Graduate(V, U) where NobelPrize and USA106

are constants; Win, Citizen, Graduate are relation projections (labeled edges); V, U - variables107

such that V is an existentially quantified free variable and U is the projected bound target of the108

query. Common for the literature, we aim at predicting assignments of the query target whereas109

assignments of intermediate variables might not always be explicitly interpreted depending on the110

model architecture. In the example, the answer set AG(Q) is a binding of a target variable U to111

constants University of Zurich and ETH Zurich.112

Inductive FOL Queries. In the standard transductive query answering setup, query constants and113

variables at both training and inference time belong to the same set of entities, i.e., Ctrain = Cinf ✓114

E ,Vtrain = Vinf ✓ E . In the inductive setup covered in this work, query constants and variables at115

inference time belong to a different and larger set of entities Einf from the inference graph Ginf, i.e.,116

Ctrain ✓ Etrain,Vtrain ✓ Etrain but Cinf ✓ Einf,Vinf ✓ Einf. This also leads to the fact that training queries117

executed over the inference graph might have more correct answers, i.e., AGtrain
(Q) ✓ AGinf

(Q). For118

example (cf. Fig. 1), the inference graph is updated with new nodes Feynman, Princeton and their119

new respective edges. The same query now has a larger set of intermediate variables satisfying the120

formula (Feynman) and an additional correct answer Princeton. Therefore, inductive generalization121

is essential for obtaining representations of such new nodes and enabling logical reasoning over both122

seen and new nodes, i.e., finding more answers to known queries in larger graphs or answering new123

queries with new constants. In the following section, we describe two approaches for achieving124

inductive generalization with different parameterization strategies.125

2The set of relation types is fixed.
3Note that the set of relation types R remains the same.

3

࣡௩ௗ
(࣡௧௦௧)

NodePiece-QE

node representations
through relation context

࣡௧ CQD Beam
(non-parameteric

decoder)

trained with link prediction

NBFNet-QE

࣡௩ௗ
(࣡௧௦௧)

relation structure w.r.t.
anchors nodes in the query

࣡௧

Binary
Classifier

trained with complex query

Figure 2: Inductive node representation (NodePiece-QE, left) and relational structure (NBFNet-QE,
right) strategies for complex logical query answering. In NodePiece-QE, we obtain inductive node
representations through the invariant set of tokens (here, through incident relation types). NodePiece-
QE is the inference-only approach and is pre-trained with simple 1p link prediction and can be
directly applied to inductive complex queries with a non-parametric decoder (e.g., CQD Beam). In
NBFNet-QE, we learn the the relative structure of each node w.r.t. the anchor nodes in the query.
NBFNet-QE is trainable end-to-end with complex queries.

4 Method126

Inductive Representations of Complex Queries. Given a complex query Q = (C,RQ,G)), the127

goal is to rank all possible entities according to the query. From a representation learning perspective,128

this requires us to learn a conditional representation function f(e|C,RQ,G) for each entity e 2 E .129

Transductive methods learn a shallow embedding for each answer entity e 2 E , and, therefore, cannot130

generalize to unseen entities. For inductive methods, the function f(e|C,RQ,G) should generalize to131

some unseen answer entity e0 (or unseen constant entity c0 2 C0) at inference time. Here, we discuss132

two solutions for devising such an inductive function.133

The first solution is to parameterize the representation of each entity e as a function of an134

invariant vocabulary of tokens that does not change at training and inference. Particularly, the135

vocabulary might consist of unique relation types R that are always the same for Gtrain and Ginf, and136

we are able to infer the representation of an unseen answer entity (or an unseen constant entity) as a137

function of its incident relations (cf. Fig. 2 left). The idea has been studied in NodePiece [10] for138

simple link prediction. Here, we adopt a similar idea to learn inductive entity representations for139

complex query answering. Once we obtain the representations for unseen entities, we can use any140

off-the-shelf decoding method (e.g., CQD-Beam [4]) for predicting the answer to the complex query.141

We denote this strategy as NodePiece-QE.142

The second solution is to parameterize f(e|C,RQ,G) as a function of the relational structure.143

Intuitively, an answer of a complex query can be decided solely based on the relational structure144

between the query constants and the answer (Fig. 1). Even after anonymizing entity names (and,145

hence, not learning any explicit entity embedding), we are still able to infer Princeton as an answer146

since it forms a distinctive relational structure with the query constants and conforms to the query147

structure. Similarly, intermediate nodes will be deemed correct if they follow a relational structure148

. In other words, we do not need to know the answer node is Princeton, but only need to know149

the relative position of Princeton w.r.t. the constants like Nobel Prize and USA. Based on this150

idea, we design f(e|C,RQ,G) to be a relational structure search function. Such an idea has been151

studied in Neural Bellman-Ford Networks (NBFNet) [36] to search for a single relation in simple152

link prediction. Here, we chain several NBFNet instances with differentiable logic operations to learn153

inductive complex query in an end-to-end fashion. We denote this strategy as NBFNet-QE.154

4.1 NodePiece-QE: Inductive Node Representation155

Here, we aim at reconstructing node representations for seen and new entities without learning shallow156

node embedding vectors. To this end, we employ NodePiece [10], a compositional tokenization157

approach that learns an invariant vocabulary of tokens shared between training and inference graphs.158

Formally, given a vocabulary of tokens ti 2 T , each entity ei is deterministically hashed into a set of159

4

representative tokens ei = [t1, . . . , tk]. An entity vector ei is then obtained as a function of token160

embeddings ei = f✓([ti, . . . , tk]), ti 2 T|T |⇥d where the encoder function f✓ : Rk⇥d ! Rd is161

parameterized with a neural network ✓.162

Since the set of relation types R is invariant for training and inference graphs, we can learn relation163

embeddings R|R|⇥d and our vocabulary of learnable tokens T is comprised of distinct relation types164

such that entities are hashed into a set of unique incident relation types. For example (cf. Fig. 2 left),165

a middle node from a training graph Gtrain is hashed with a set of relations ei = [] that stands for166

two unique incoming relations and one unique outgoing relation . Passing the hashes through167

f✓, we can reconstruct the whole entity embedding matrix E|Etrain|⇥d. Additionally, it is possible to168

enrich entity and relation embeddings by passing them through a relational GNN encoder [28] over a169

target graph G: E0,R0 = GNN(E,R,G). In both ways, the entity embedding matrix E encodes a170

joint probability distribution p(h, r, t) for all triples in a graph.171

Having a uniform featurization mechanism for both seen and unseen entities, it is now possible to172

apply any previously-transductive complex query answering model with learnable entity embeddings173

and logical operators [20, 9, 21, 6]. Moreover, it was recently shown [4] that a combination of174

simple link prediction pre-training and a non-parametric logical executor allows to effectively answer175

complex FOL queries in the inference-only regime without training on any complex query sample.176

We adopt this Continuous Query Decomposition algorithm with beam search (CQD-Beam) as the177

main query answering decoder. CQD-Beam relies only on entity and relation embeddings E,R178

pre-trained on a simple 1p link prediction task. Then, given a complex query, CQD-Beam applies179

t-norms and t-conorms [16] that execute conjunctions (^) and disjunctions (_) as non-parametric180

algebraic operations in the embedding space, respectively.181

In our inductive setup (Fig. 2), we train a NodePiece encoder f✓ and relation embeddings R (and182

optionally a GNN) on the 1p link prediction task over the training graph Gtrain. We then apply the183

learned encoder to materialize entity representations of the inference graph E|Einf|⇥d and send them184

to CQD-Beam that performs a non-parametric decoding of complex FOL queries over new inference185

entities. The inference-only nature of NodePiece-QE is designed to be challenging and probing the186

abilities for zero-shot generalization in performing complex logical reasoning over larger graphs.187

4.2 NBFNet-QE: Inductive Relational Structure Representation188

The second strategy relies on learning inductive relational structure representations instead of explicit189

node representations. Having the same set of relation types R at training and inference time, we can190

parameterize each entity based on the relative relational structure between it and the anchor nodes191

in a given query. For instance (Fig. 2 right), given a query with a particular relational structure192

and a set of anchor nodes, the representation of each node captures its relational structure relative193

to the anchor nodes. Each neighborhood expansion step is equivalent to the projection step. In our194

example, immediate neighboring nodes will capture the intersection pattern , and further nodes, in195

turn, capture the extended intersection-projection structure .196

Therefore, a node is likely to be an answer if its captured (or predicted) relational structure conforms197

with the query relational structure. As long as the set of relations is fixed, relation projection is198

performed in the same way for training or new unseen nodes. The idea of a one-hop (1p) projection199

for simple link prediction has been proposed by Neural Bellman-Ford Networks (NBFNet) [36].200

In particular, given a relation projection query (h, r, ?), NBFNet assigns unique initial states h(0) to201

all nodes in a graph by applying an indicator function h(0)
e = INDICATOR(h, v, r), i.e., a head node h202

is initialized with a learnable relation embedding r and all other nodes are initialized with zeros. Then,203

NBFNet applies L relational message passing GNN layers where each layer l has its own learnable204

relation embedding matrix Rl obtained as a projection of the initial relation Rl = Wlr + bl. Final205

layer representations h(L) are passed through an MLP and activation function � to get a probability206

distribution over all nodes in a graph p(t|h, r) = �(MLP(h(L))). As each query spawns a uniquely207

initialized graph and message passing procedure, NBFNet is seen to be applying a labeling trick [33]208

to model a conditional probability distribution p(t|h, r) which is provably more expressive than a209

joint distribution p(h, r, t) produced by standard graph encoders.210

Applied to complex queries, chaining k NBFNet instances allows to answer k-hop projection queries,211

e.g., two instances for 2p queries. NBFNet-QE employs NBFNet as a trainable projection operator212

5

and endows it with differentiable, non-parametric product logic for modeling conjunction (^),213

disjunction (_), and negation (¬) over the fuzzy sets of all entities x 2 [0, 1]E , i.e., after applying a214

logical operator (discussed in Appendix A), each entity’s degree of truth is associated with a scalar215

in range [0, 1]. For the next hop projection, the indicator function initializes a node state with a216

relation vector ri weighted by a scalar probability predicted in the previous hop xe: h(0)
e = xeri.217

Differentiable logical operators allow training NBFNet-QE end-to-end on complex queries.218

5 Experiments219

We designed the experimental agenda to demonstrate that inductive representation strategies are able220

to: (1) answer complex logical queries over new, unseen entities at inference time, i.e., when query221

anchors are new nodes (Section 5.2); (2) predict new correct answers for known training queries when222

executed over larger inference graphs, i.e., when query anchors come from the training graph but223

variables and answers belong to the larger inference graph (Section 5.3); (3) generalize to inference224

graphs of up to 500% larger than training graphs; (4) scale to inductive query answering over graphs225

of millions of nodes when updated with 500k new nodes and 5M new edges (Section 5.4).226

5.1 Setup & Dataset227

Dataset. Due to the absence of inductive logical query benchmarks, we create a novel suite of228

datasets4 based on FB15k-237 [26] (open license) and following the BetaE [21] query sampling229

methodology. Given a source graph with E entities, we sample |Etrain| = r · |E|, r 2 [0.1, 0.9] nodes230

to induce a training graph Gtrain. For validation and test graphs, we split the remaining set of entities231

into two non-overlapping sets each with 1�r
2 |E| nodes. We then merge training and unseen nodes232

into the inference set of nodes Einf and induce inference graphs for validation and test from those sets,233

respectively, i.e., Eval

inf
= Etrain [Eval and E test

inf
= Etrain [Etest. That is, validation and test inference234

graphs both extend the training graph but their sets of new entities are disjoint. Finally, we sample and235

remove 15% of edges Tpred in the inference graphs as missing edges for link prediction pre-training236

and query sampling. Overall, we sample 9 such datasets varying r to obtain ratios of inference graph237

size to the training graph Einf/Etrain from 105% to 550%.238

For each dataset, we employ the query sampler from BetaE [21] to extract 14 typical query types239

1p/2p/3p/2i/3i/ip/pi/2u/up/2in/3in/inp/pin/pni. Training queries are sampled from the training graph240

Gtrain, validation and test queries are sampled from their respective inference graphs Ginf where at241

least one edge belongs to Tpred and has to be predicted at inference time.242

As inference graphs extend training graphs, training queries are very likely to have new answers being243

executed over Ginf with simple graph traversal and without any link prediction. We create an additional244

set of true answers for all training queries executed over the test inference graph G test

inf
to measure the245

generalization capabilities of query answering models. This is designed to be an inference task and246

extends the faithfullness experiment [23]. Dataset statistics can be found in Appendix B.247

Evaluation Protocol. Following the literature [21], query answers are separated into two sets: easy248

answers that only require graph traversal over existing edges, and hard answers that require inferring249

missing links to achieve the answer node. For the main experiment, evaluation involves ranking of250

hard answers against all entities having easy ones filtered out. For evaluating training queries on251

inference graphs, we only have easy answers and rank them against all entities. We report Hits@10252

as the main performance metric on different query types.253

Implementation Details. All NodePiece [10]-based models were pre-trained until convergence on254

a simple 1p link prediction task with the relations-only vocabulary and entity tokenization, MLP255

encoder, and ComplEx [27] scoring function. We used a 2-layer CompGCN [28] as an optional256

message passing encoder on top of NodePiece features. The non-parametric CQD-Beam [4] de-257

coder for answering complex queries is tuned for each query type based on the validation set of258

queries, most of the setups employ a product t-norm, sigmoid entity score normalization, and beam259

size of 32. Following the literature, the NBFNet-QE models were trained on 10 query patterns260

(1p/2p/3p/2i/3i/2in/3in/inp/pin/pni) where ip/pi/2u/up are only seen at inference time. Each model261

employs a 4-layer NBFNet [36] as a trainable projection operator with DistMult [30] composi-262

4Available to reviewers, will be published under the CC0 license

6

Figure 3: Aggregated Hits@10 performance of test queries (involving unseen entities) executed
on inference graphs of different ratios compared to training graphs. NodePiece-based models are
inference-only and support EPFO queries, NBFNet-QE is trainable and supports negation queries.

Table 1: Test Hits@10 results (%) on answering inductive FOL queries when Einf/Etrain = 175%.
avgp is the average on EPFO queries (^, _). avgn is the average on queries with negation.

Model avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni
Inference-only

NodePiece-QE 11.0 - 21.3 8.9 5.1 13.0 14.7 9.8 8.7 9.7 7.5 - - - - -
NodePiece-QE w/ GNN 20.9 - 34.4 15.6 10.5 28.7 33.4 19.2 16.2 17.8 12.2 - - - - -

Trainable

NBFNet-QE 51.1 31.4 66.1 40.9 31.2 73.0 83.3 58.3 41.3 37.8 27.8 31.1 44.3 28.4 25.2 28.0

tion function and PNA [8] aggregation. Other logical operators (^,_,¬) are executed with the263

non-parametric product t-norm. Both NodePiece-QE and NBFNet-QE are implemented5 with Py-264

Torch [19] and trained with the Adam [15] optimizer. NodePiece-QE models were pre-trained265

and evaluated on a single Tesla V100 32 GB GPU whereas NBFNet-QE models were trained and266

evaluated on 4 Tesla V100 16GB. All hyperparameters are listed in Appendix D.267

5.2 Complex Query Answering over Unseen Entities on Differently Sized Inference Graphs268

First, we probe inference-only NodePiece-based embedding models and trainable NBFNet-QE in269

the inductive setup, i.e., query answering over unseen nodes requiring link prediction over unseen270

nodes. Table 1 summarizes the results on a reference dataset with ratio Einf/Etrain of 175% while271

Fig. 3 illustrates a bigger picture on all datasets (we provide a detailed breakdown by query type for272

all splits in Appendix C). We observe that even inference-only models pre-trained solely on simple 1p273

link prediction exhibit non-trivial performance in answering queries with unseen entities. Paired with274

an additional GNN encoder, the inference-only baseline exhibits significantly better performance275

over all query types and inference graphs up to 300% larger than training graphs.276

The trainable NBFNet-QE models expectedly outperform non-trainable baselines and can tackle277

queries with negation (¬). Here, we confirm that the labeling trick [33] and conditional p(t|h, r)278

modeling better capture the relation projection problem than joint p(h, r, t) encoding approaches.279

Still, all evaluated models with message passing, both inference-only NodePiece-QE with GNN280

and trainable NBFNet-QE, suffer from increasing the size of the inference graph and having more281

unseen entities. Reaching best results on Einf/Etrain ratios around 130%, both approaches steadily282

deteriorate up until final 550% by 20 absolute Hits@10 points on EPFO queries and negation queries.283

We attribute this deterioration to the known generalization issues [17, 32] of message passing GNNs284

when performing inference over much larger graph than the network has seen during training. On285

the other hand, a simple NodePiece-QE model without message passing retains similar performance286

independently of the inference graph size.287

Lastly, we observe that lower performance of inference-only NodePiece models can be also attributed288

to underfitting (cf. train graph charts in Fig. 4). Although 1p link predictors were trained until289

convergence (on the inductive validation set of missing triples), the performance of training queries290

5Source code is available to reviewers

7

Figure 4: Aggregated Hits@10 performance of training queries on the original training and extended
test inference graphs where queries have new correct answers. NodePiece-based models are inference-

only and support EPFO queries, NBFNet-QE is trainable and supports negation queries.

on training graphs with easy answers that require only relation traversal without predicting missing291

edges is not yet saturated. This fact suggests that better fitting entity featurization (obtained by292

NodePiece or other strategies) could further improve the test performance in the inference-only293

regime. We leave the search of such strategies for future work.294

5.3 Predicting New Answers for Training Queries on Larger Inference Graphs295

Simulating the incremental addition of new edges in graph databases, we evaluate the performance296

of our inference-only and trainable QE models on training queries on the original training graph297

and extended inference graph (with added test edges). As databases are able to immediately retrieve298

new answers to known queries after updating the graph, we aim at exploring and quantifying this299

behaviour of neural reasoning models. In this experiment, we probe training queries and their easy300

answers that require performing only graph traversal without predicting missing links in the inference301

graph. While execution of training queries over the training graph indicates how well the model302

could fit training data, executing training queries over the bigger inference graph with new entities303

aims to capture basic reasoning capabilities of QE models in the inductive regime.304

Particular challenges arising when executing training queries over a bigger graph are: (1) the same305

queries can have more correct answers as more new nodes and edges satisfying the query pattern306

might have been added (as in Fig. 1); (2) more new entities create a “distractor” setting with more307

false positives. Generally, evaluation of training queries on the inference graph can be considered308

as an extended version of the faithfullness [23] evaluation that captures how well a trained model309

can answer original training queries, i.e., memorization capacity. In all 9 datasets, most of training310

queries have at least one new correct answer in the inference graph (more details in Appendix B).311

Fig. 4 illustrates the performance of the inference-only NodePiece-QE (without and with GNN) and312

trainable NBFNet-QE. Generally, NBFNet-QE fits the training query data almost perfectly confirming313

the original finding [36] that NBFNet can perform graph traversal akin to symbolic rule-based models.314

NBFNet-QE can also find new correct answers on graphs up to 300% larger than training ones. Then,315

the performance quickly deteriorates which we attribute to the distractor factor with more unseen316

entities and the already mentioned generalization issue on larger inference graphs.317

The inference-only NodePiece-QE models, as expected, do not fully fit the training data as they were318

never trained on complex queries. Still, the inference-only models exhibit non-trivial performance319

in finding more answers on graphs up to 200% larger than training ones with relatively small320

performance margins compared to training queries. The most surprising observation is that GNN-free321

NodePiece-QE models improve the performance on both training and inference graphs as the graphs322

(and the Einf/Etrain ratio) grow larger while GNN-enriched models steadily deteriorate. We attribute323

this growth to the relation-based NodePiece tokenization and its learned features that tend to be more324

discriminative in larger inference graphs where new nodes have smaller degree and thus can be better325

identified by their incident relation types. We provide more experimental results for each dataset ratio326

with breakdown by query type in Appendix C.327

8

5.4 Scaling to Millions of Nodes on WikiKG-QE328

Finally, we perform a scalability experiment evaluating complex query answering in the inductive329

mode on a new large dataset WikiKG-QE constructed from OGB WikiKG 2 [13] (CC0 license).330

While the original task is transductive link prediction, we split the graph into a training graph of331

1.5M entities (5.8M edges, 512 unique relation types) and validation (test) graphs of 500k unseen332

nodes (5M known and 600k missing edges) each. The resulting validation (test) inference graphs are333

therefore of 2M entities and 11M edges with the Einf/Etrain ratio of 133% (details are in Appendix B).334

None of GNN-enabled models can scale to such sizes, so we use a basic inference-only NodePiece-335

QE. Due to the problem size, we only sample 10k EPFO queries of each type from the test inference336

graph to run in the inference-only regime. Each query has at least one missing edge to be predicted at337

inference. The answers are ranked against all 2M entities in the filtered setting (in contrast to the338

OGB task that ranks against 1000 pre-computed negative samples) and Hits@100 as the target metric.339

We pre-train a NodePiece encoder (in addition to relation types, we tokenize nodes with a vocabulary340

of 20k anchor nodes, total 3M parameters in the encoder) with the ComplEx decoder on 1p link341

prediction over the training graph for 1.5M steps (see Appendix D for hyperparameters). Then, the342

graph is extended with 500k new nodes and 5M new edges forming the inference graph. Then, using343

the pre-trained encoder, we materialize representations of entities (both seen and new) and relations344

from this inference graph. Finally, CQD-Beam executes the queries against the bigger inference345

graph extended with 500k new nodes and 5M new edges.346

Table 2: Test Hits@100 of NodePiece-QE on WikiKG-QE (2M nodes, 11M edges including 500k
new nodes and 5M new edges) in the inference-only regime. avgp is the average on EPFO queries.

Model avgp 1p 2p 3p 2i 3i pi ip 2u up
NodePiece-QE 6.6 19.0 2.1 1.8 11.0 15.8 4.4 2.8 1.3 1.5

As shown in Table 2, we find a non-trivial performance of the inference-only model on EPFO queries347

demonstrating that inductive node representation QE models are able to scale to graphs with hundreds348

of thousands of new nodes and millions of new edges in the zero-shot fashion. That is, answering349

complex queries over unseen entities is available right upon updating the graph without the need350

to retrain a model. This fact paves the way for the concept of neural graph databases capable of351

performing zero-shot inference over updatable graphs without expensive retraining.352

6 Limitations and Future Work353

Limitations. With the two proposed inductive query answering strategies, we observe a common354

trade-off between the performance and computational complexity. That is, inductive node repre-355

sentation models like NodePiece-QE are fast, scalable, and can be executed in the inference-only356

regime but underperform compared to the inductive relational structure representation models like357

NBFNet-QE. On the other hand, NBFNet-QE incurs high computational costs due to executing each358

query on a uniquely initialized graph instance. Alleviating this issue is a key to scalability.359

Societal Impact. The inductive setup assumes running inference on (partly) unseen data, that is, the360

nature of this unseen data might be out-of-distrbution, unknown and potentially malicious. This fact361

has to be taken into account when evaluating predictions and overall system trustworthiness.362

Conclusion and Future Work. In this work, we defined the problem of inductive complex logical363

query answering and proposed two possible parameterization strategies based on node and relational364

structure representations to deal with new, unseen entities at inference time. Experiments demon-365

strated that both strategies are able to answer complex logical queries over unseen entities as well as366

identify new answers on larger inference graphs. In the future work, we plan to extend the inductive367

setup to completely disjoint training and inference graphs, expand the set of supported logical query368

patterns aligned with popular queries over real-world KGs, enable reasoning over continuous features369

like texts and numbers, support more KG modalities like hypergraphs and hyper-relational graphs,370

and further explore the concept of neural graph databases.371

9

References372

[1] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand373

Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing light into the dark: A374

large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE375

Transactions on Pattern Analysis and Machine Intelligence, 2021.376

[2] Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, and Mikhail Galkin. Query embedding377

on hyper-relational knowledge graphs. In International Conference on Learning Representations,378

2022.379

[3] Alfonso Amayuelas, Shuai Zhang, Xi Susie Rao, and Ce Zhang. Neural methods for logical380

reasoning over knowledge graphs. In International Conference on Learning Representations,381

2022.382

[4] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query383

answering with neural link predictors. In International Conference on Learning Representations,384

2021.385

[5] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.386

Translating embeddings for modeling multi-relational data. In Christopher J. C. Burges, Léon387

Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Advances in Neural Information388

Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems389

2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States,390

pages 2787–2795, 2013.391

[6] Xuelu Chen, Ziniu Hu, and Yizhou Sun. Fuzzy logic based logical query answering on392

knowledge graph. In International Conference on Machine Learning. PMLR, 2021.393

[7] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K. Reddy.394

Probabilistic entity representation model for reasoning over knowledge graphs. In Thirty-Fifth395

Conference on Neural Information Processing Systems, 2021.396

[8] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal397

neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,398

33:13260–13271, 2020.399

[9] Daniel Daza and Michael Cochez. Message passing query embedding. arXiv preprint400

arXiv:2002.02406, 2020.401

[10] Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Compo-402

sitional and parameter-efficient representations of large knowledge graphs. In International403

Conference on Learning Representations, 2022.404

[11] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.405

Neural message passing for quantum chemistry. In Proceedings of the 34th International406

Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,407

volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 2017.408

[12] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding409

logical queries on knowledge graphs. Advances in Neural Information Processing Systems, 31,410

2018.411

[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele412

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.413

In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-414

Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference415

on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,416

2020.417

[14] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on418

knowledge graphs: Representation, acquisition and applications. IEEE Transactions on Neural419

Networks and Learning Systems, 33(2):494–514, 2022.420

10

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR421

(Poster), 2015.422

[16] Erich-Peter Klement, Radko Mesiar, and Endre Pap. Triangular norms. position paper I: basic423

analytical and algebraic properties. Fuzzy Sets Syst., 143(1):5–26, 2004.424

[17] Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding attention and425

generalization in graph neural networks. In Advances in Neural Information Processing426

Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS427

2019, December 8-14, 2019, Vancouver, BC, Canada, pages 4204–4214, 2019.428

[18] Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. Answering complex queries in429

knowledge graphs with bidirectional sequence encoders. CoRR, abs/2004.02596, 2020.430

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,431

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas432

Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,433

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-434

performance deep learning library. In Advances in Neural Information Processing Systems 32:435

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December436

8-14, 2019, Vancouver, BC, Canada, pages 8024–8035, 2019.437

[20] Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in438

vector space using box embeddings. In International Conference on Learning Representations,439

2019.440

[21] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge441

graphs. Advances in Neural Information Processing Systems, 33, 2020.442

[22] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum:443

End-to-end differentiable rule mining on knowledge graphs. Advances in Neural Information444

Processing Systems, 32, 2019.445

[23] Haitian Sun, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando Pereira, and William W.446

Cohen. Faithful embeddings for knowledge base queries. In Hugo Larochelle, Marc’Aurelio447

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural448

Information Processing Systems 33: Annual Conference on Neural Information Processing449

Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.450

[24] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph em-451

bedding by relational rotation in complex space. In 7th International Conference on Learning452

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.453

[25] Komal K. Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph454

reasoning. In Proceedings of the 37th International Conference on Machine Learning, ICML455

2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,456

pages 9448–9457. PMLR, 2020.457

[26] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and458

text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and459

their Compositionality, pages 57–66, Beijing, China, July 2015. Association for Computational460

Linguistics.461

[27] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.462

Complex embeddings for simple link prediction. In International conference on machine463

learning, pages 2071–2080. PMLR, 2016.464

[28] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based465

multi-relational graph convolutional networks. In International Conference on Learning Repre-466

sentations, 2020.467

11

[29] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang468

Lin. Knowledge base completion via search-based question answering. In Chin-Wan Chung,469

Andrei Z. Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd International World Wide470

Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, pages 515–526. ACM,471

2014.472

[30] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and473

relations for learning and inference in knowledge bases. In 3rd International Conference on474

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track475

Proceedings, 2015.476

[31] Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for477

knowledge base reasoning. In Advances in Neural Information Processing Systems 30: Annual478

Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,479

CA, USA, pages 2319–2328, 2017.480

[32] Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, and Haggai Maron. From local481

structures to size generalization in graph neural networks. In Proceedings of the 38th Interna-482

tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume483

139 of Proceedings of Machine Learning Research, pages 11975–11986. PMLR, 2021.484

[33] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using485

graph neural networks for multi-node representation learning. In M. Ranzato, A. Beygelzimer,486

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information487

Processing Systems, volume 34, pages 9061–9073. Curran Associates, Inc., 2021.488

[34] Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In489

Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,490

and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual491

Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,492

2019, Vancouver, BC, Canada, pages 2731–2741, 2019.493

[35] Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings494

for multi-hop reasoning over knowledge graphs. Advances in Neural Information Processing495

Systems, 34, 2021.496

[36] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford497

networks: A general graph neural network framework for link prediction. Advances in Neural498

Information Processing Systems, 34, 2021.499

12

Checklist500

1. For all authors...501

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s502

contributions and scope? [Yes]503

(b) Did you describe the limitations of your work? [Yes] See Section 6504

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See505

Section 6506

(d) Have you read the ethics review guidelines and ensured that your paper conforms to507

them? [Yes]508

2. If you are including theoretical results...509

(a) Did you state the full set of assumptions of all theoretical results? [N/A]510

(b) Did you include complete proofs of all theoretical results? [N/A]511

3. If you ran experiments...512

(a) Did you include the code, data, and instructions needed to reproduce the main exper-513

imental results (either in the supplemental material or as a URL)? [Yes] Code and514

sample data are included in the supplementary material515

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they516

were chosen)? [Yes] Dataset creation process is described in Section 5.1 with more517

details in Appendix B. Hyperparameters are specified in Appendix D.518

(c) Did you report error bars (e.g., with respect to the random seed after running experi-519

ments multiple times)? [No] We observe negligible variance w.r.t. random seeds520

(d) Did you include the total amount of compute and the type of resources used (e.g., type521

of GPUs, internal cluster, or cloud provider)? [Yes] Training details are specified in522

Section 5.1 and in Appendix D.523

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...524

(a) If your work uses existing assets, did you cite the creators? [Yes]525

(b) Did you mention the license of the assets? [Yes]526

(c) Did you include any new assets either in the supplemental material or as a URL?527

[Yes] Due to the overall size, we include a sample of the benchmarking suite in the528

supplemental material and will openly publish the whole dataset.529

(d) Did you discuss whether and how consent was obtained from people whose data you’re530

using/curating? [N/A] No personal data involved531

(e) Did you discuss whether the data you are using/curating contains personally identifiable532

information or offensive content? [Yes] The datasets are anonymized, we discuss it in533

Appendix B.534

5. If you used crowdsourcing or conducted research with human subjects...535

(a) Did you include the full text of instructions given to participants and screenshots, if536

applicable? [N/A]537

(b) Did you describe any potential participant risks, with links to Institutional Review538

Board (IRB) approvals, if applicable? [N/A]539

(c) Did you include the estimated hourly wage paid to participants and the total amount540

spent on participant compensation? [N/A]541

13

	Introduction
	Related Work
	Preliminaries and Problem Definition
	Method
	NodePiece-QE: Inductive Node Representation
	NBFNet-QE: Inductive Relational Structure Representation

	Experiments
	Setup & Dataset
	Complex Query Answering over Unseen Entities on Differently Sized Inference Graphs
	Predicting New Answers for Training Queries on Larger Inference Graphs
	Scaling to Millions of Nodes on WikiKG-QE

	Limitations and Future Work
	Differentiable Logical Operators
	Benchmarking Datasets Details
	More Experimental Results
	Hyperparameters

