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Abstract

We propose the Motion Capsule Autoencoder (MCAE), which addresses a key1

challenge in the unsupervised learning of motion representations: transforma-2

tion invariance. MCAE models motion in a two-level hierarchy. In the lower3

level, a spatio-temporal motion signal is divided into short, local, and semantic-4

agnostic snippets. In the higher level, the snippets are aggregated to form full-5

length semantic-aware segments. For both levels, we represent motion with a6

set of learned transformation invariant templates and the corresponding geometric7

transformations by using capsule autoencoders of a novel design. This leads to8

a robust and efficient encoding of viewpoint changes. MCAE is evaluated on a9

novel Trajectory20 motion dataset and various real-world skeleton-based human10

action datasets. Notably, it achieves better results than baselines on Trajectory2011

with considerably fewer parameters and state-of-the-art performance on the unsu-12

pervised skeleton-based action recognition task.13

1 Introduction14

Real-world movements contain a plethora of information beyond the literal sense of moving. For15

example, honeybees “dance" to communicate the location of a foraging site and human gait alone16

can reveal activities and identities [6]. Understanding these movements is vital for an artificial in-17

telligent agent to comprehend and interact with the ever-changing world. Studies on social behavior18

analysis [4, 5], action recognition [50, 55], and video summarizing [51] have also acknowledged the19

importance of movement.20

A key step towards understanding movements is to analyze its patterns. However, learning motion21

pattern representations is non-trivial due to (1) the curse of dimensionality from input data, (2) diffi-22

culties in modeling long-term dependencies in motion sequences, (3) high intra-class variation as a23

result of subject or viewpoint change, and (4) insufficient data annotation. The first two challenges24

have been ameliorated by the advances in keypoint detection methods and spatial-temporal feature25

extractors [32, 37, 43]. The third and the fourth nonetheless remain hurdles and call for unsupervised26

transformation-invariant motion models.27

Inspired by the viewpoint-invariant capsule-based representation for images [7, 11], we exploit cap-28

sule network and introduce the Motion Capsule Autoencoder (MCAE), an unsupervised capsule29

framework that learns the transformation-invariant motion representation for keypoints. MCAE30

models motion signals in a two-level snippet-segment hierarchy. At the lower level, motion signal31

is encoded as the snippet capsules (SniCap) that describe movement in narrow time spans (i.e. snip-32

pets). The motion snippets are then temporally concatenated to form movement with wider time33

spans (i.e. segments). At the higher level, the segment capsules (SegCap) maintain a set of segment34

templates (i.e. learned canonical motion patterns) and transform them to reconstruct the input seg-35

ment motion. Both SniCaps and SegCaps learn transformation-invariant motion representation in36
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their temporal receptive field. The SegCaps, which are built upon SniCaps, produce a high-level ab-37

straction of the given motion signal, where the semantics are represented by transformation-invariant38

capsule activations.39

The contributions of this work are as follows:40

• We propose MCAE, an unsupervised capsule framework that learns a transformation-41

invariant, discriminative, and compact representation of motion signals. Two motion cap-42

sules are designed to generate representation at different abstraction levels. The lower-level43

representation captures the local short-time movements, which are aggregated into higher-44

level representation that is discriminative for motion with wider time spans.45

• We propose Trajectory20, a novel and challenging synthetic dataset with a wide class of46

motion patterns and controllable intra-class variations.47

• Extensive experiments on both the synthetic and real-world skeleton human action datasets48

show the efficacy of MCAE. In addition, we perform an ablation study to examine the effect49

of different regularizers and some key hyperparameters of the proposed MCAE.50

2 Related Works51

Motion Representation A variety of methods have been proposed to learn (mostly human) mo-52

tion representation from video frames [1, 17, 22, 46], depth maps [8, 16, 21, 31, 41], or key-53

points/skeletons [2, 15, 18, 20, 23, 27, 35, 45, 48, 49]. Earlier works use handcrafted features54

like Fourier coefficients [41], dense trajectory features [24, 40], and Lie group representations [38].55

Some works use canonical human pose [26] or view-invariant short tracklets to learn robust feature56

for recognition [13]. The development of deep learning brings the usage of convolution networks57

(ConvNet) and recurrent networks for motion representation. Simonyan et al. [33] proposes a two-58

stream ConvNet which combines video frame with optical flow. C3D [37] proposes to use 3D59

convolution on the spatial-temporal cubes. Srivastava et al. [34] uses an LSTM-based encoder to60

map input frames to a fixed-length vector and apply task-dependent decoders for applications such61

as frame reconstruction and frame prediction. The combined use of convolution module and LSTM62

has also been proved effective in [1, 32, 44].63

A series of works [9, 12, 14, 39, 42] have been proposed to address the problem of learning64

viewpoint-invariant motion representation from videos or keypoint sequences. Most of these meth-65

ods rely on multi-modality input of RGB frames, depth maps or keypoint trajectories. Some other66

works [18, 27, 35, 54] focus on the unsupervised learning of keypoint/skeleton motion. In these67

works, LSTM is widely used for motion modelling which generally results in a heavy memory68

footprint.69

Different from prior works, MCAE takes only keypoint motion as input and uses LSTM to model70

snippet-segment relations only. This results in a lightweight yet capable model.71

Capsule Network MCAE is closely related to the Capsule Network [28], which is designed to72

represent objects in images using automatically discovered constituent parts and poses. The explicit73

modeling of poses helps learning viewpoint-invariant visual features that are more compact and74

flexible than traditional ConvNets. Kosiorek et al. [11] proposed the unsupervised stacked capsule75

autoencoder (SCAE), which learns view-invariant representation for images. More recently, capsule76

network has also been applied to point cloud processing [52, 53] for 3D object classification and77

reconstruction.78

Despite the success of capsule networks in various vision tasks, the study of capsule networks on79

motion representation is scarce. VideoCapsuleNet [3] proposes to generalize capsule networks from80

2D to 3D for action detection in videos. Yu et al. [47] proposed a limited study on supervised81

skeleton-based action recognition using Capsule Network. Sankisa et al. [30] proposed to use Cap-82

sule Network for error concealment in videos.83

Different from these works, MCAE performs unsupervised learning of motion represented as co-84

ordinates rather than pixels. It aims at learning an appearance-agnostic transformation-invariant85

motion representation.86
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Figure 1: Overview of MCAE (best viewed in color). (a) The Snippet Autoencoder, which learns
the semantic-agnostic short-time representation (snippet capsules) by reconstructing the input signal
X . (b) The Segment Autoencoder, which learns the semantic-aware long-time representation (seg-
ment capsules) by aggregating and reconstructing snippet capsule parameters. The activation values
in segment capsules are used as semantic information for self-supervised contrastive training. (c)
Meanings for different shapes and variables.

3 Methodology87

We consider a single point1 in d-dimension space. The motion of the point, i.e. a trajectory, is88

described by X = {xi|i = 1, . . . , L}, where xi ∈ Rd is the coordinates at time i. Semantically, X89

belongs to a motion pattern, subject to an arbitrary and unknown geometric transformation. Given90

sufficient samples of X, we aim to learn a discriminative (in particular, transformation-invariant)91

representation for those motion samples without supervision.92

3.1 Framework Overview93

We solve this problem in two steps, namely snippet learning and segment learning. Snippets and94

segments correspond to the lower and higher levels in the hierarchy of how MCAE views the motion95

signal. Both snippets and segments are temporally consecutive subsets of X , but snippets have a96

shorter time span than segments. In the snippet learning step, the input X is first divided into L/l97

temporally non-overlapping snippets, where l is the length of snippets. Each of these snippets will98

be mapped into a semantic-agnostic representation by the Snippet Autoencoder. In the segment99

learning step, the snippet representations are combined and fed into the Segment Autoencoder,100

where the full motion is represented as a weighted mixture of the transformed canonical represen-101

tations. The segment activations are used as the motion representation for downstream tasks. An102

overview of the framework is shown in Fig. 1. In the following section, we delineate the details for103

each module and explain the training procedure.104

3.2 Snippet Autoencoder105

To encode the snippets’ motion variation, we propose the Snippet Capsule (SniCap), which we106

denote as CSni. SniCap is parameterized as CSni = {T ,A, µ}, where T , A, and µ are the snippet107

template, snippet transformation parameter, and snippet activation, respectively. The snippet108

template T =
{
ti|ti ∈ Rd, i = 1, ..., l

}
describes a motion template of length l and is the identity109

information of a SniCap. A and µ depend on the input snippet. The transformation parameter110

A ∈ R(d+1)×(d+1) descries the geometric relation between the input snippet and the snippet template.111

The snippet activation µ ∈ [0, 1] denotes whether the snippet template is used, i.e. activated, to112

represent the input snippet.113

Snippet Encoding/Decoding For a given snippet xi:i+l, the snippet module performs the follow-114

ing steps: (1) encode motion properties with Snippet Encoder into SniCaps, and (2) decode SniCaps115

to reconstruct the original xi:i+l. For the encoding step, a 1D-ConvNet fCONV is used to extract116

1We show a way to generalize MCAE to multi-point systems in Section 4.2
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Figure 2: (a) and (b) show a reference motion pattern and a variant of it. The circle and the arrow
shows the start and the direction of motion respectively. (c) Interpretation of a segment template
P . P is functionally the same as S snippet parameters (A,µ). When combined with T , it can be
decoded into an L-long sequence. The segment autoencoder maintains multiple segment templates,
which can be transformed and mixed to reconstruct the input snippet parameters.

the motion information from xi:i+l and predict SniCap parameters, i.e. {(Aj , µj)|j = 1, . . . , N} =117

fCONV(xi:i+l) where N is the number of SniCaps. For the decoding step, we first apply the transfor-118

mation A to the snippet templates as119 (
t̂ij

1

)
= Ai

(
tj

1

)
, i = 1, . . . , N, j = 1, . . . , l. (1)

Then, the transformed templates from different SniCaps are mixed, according to their activations,120

and the corresponding reconstructed input is121

x̂j =

N∑
i=1

µit̂ij , j = 1, . . . , l, (2)

where t̂ij indicates the transformed coordinate of the ith SniCap at jth time step.122

3.3 Segment Autoencoder123

The motion information encoded in SniCaps is agnostic to the segment level motion patterns. This124

makes it less biased towards the training data domain. However, its utility on high-level applications,125

such as activity analysis or motion classification, is greatly undermined. For example, consider126

Fig. 2(a) as a reference “triangle” trajectory. Fig. 2(b) illustrates a possible variation. Since the two127

trajectories differ a lot in their local movement, they could be considered as different classes without128

transformation-invariant information from the full trajectory.129

Hence, we introduce a segment encoder to gain a holistic understanding of motion and encapsu-130

late such information in the segment capsules (SegCap). A SegCap is parameterized as CSeg =131

{P,B, ν}, where P ,B, and ν are the segment template, segment transformation parameter, and132

segment activation, respectively. The segment template P is fixed for a SegCap w.r.t the training133

domain. It describes a set of canonical motion patterns in terms of all the snippet templates and is134

defined as P = {(P i,αi) | i = 1, . . . , S}, where P i ∈ RN×(d+1)×(d+1) and αi ∈ RN . S = L/l is the135

number of snippets. Each P ij ∈ R(d+1)×(d+1) describes how the jth snippet template in SniCaps136

is aligned to form the motion pattern. The weight αij controls the importance of jth snippet tem-137

plate in the ith snippet. In other words, a (P i,αi) describes how the N snippet templates are used138

to construct an l-long snippet and a SegCap requires S such parameters to describe a full L-long139

sequence. Fig. 2(c) illustrates the interpretation of P . Both B and ν are dependent on the input.140

B ∈ R(d+1)×(d+1) is a transformation on P , and ν ∈ [0, 1] is the activation of the segment template.141

Segment Encoding/Decoding Assume we have M SegCaps with which we hope to reconstruct142

the low-level motion encoded in the SniCap parameters. This is equivalent to reconstructing all143

the data-dependent SniCap parameters [CSni1 , . . . , CSniS ], where CSnii = {(Aj , µj) | j = 1, . . . , N} is144

the set of SniCap parameters for the ith snippet. To obtain the SegCap parameters, we encode the145

S-long sequence of SniCap parameters with an LSTM model fLSTM shared by all SegCaps, and M146
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fully-connected layers (one for each SegCap) to produce {B, ν}. Formally,147

h = fLSTM

([
CSni1 , . . . , CSniS

])
,

{B(k), ν(k)} = f
(k)
FC (T ,h), k = 1, . . . ,M,

(3)

where superscript (k) refers to the kth SegCap. The transformation and activation parameters are148

then applied to P to reconstruct snippet parameters149

P̂
(k)

ij = B(k) × P (k)
ij , i = 1, . . . , S, j = 1, . . . , N, k = 1, . . . ,M,

ĈSnii = (Âi, µ̂i) =
( M∑

k

ν(k)P̂
(k)

i ,

M∑
k

ν(k)α
(k)
i

)
, i = 1, . . . , S,

(4)

where Âi ∈ RN×(d+1)×(d+1) and µ̂i ∈ RN are the reconstructed snippet transformation and acti-150

vation of the snippet templates for the ith snippet. Note that S = L/l, which means fLSTM can have151

a much smaller footprint than a recurrent network that handles the whole L-long sequence.152

The above formulation enables SegCap to learn a transformation-invariant representation of motion.153

Intuitively, P describes snippet-segment relation, and B can be regarded as the spatial relation154

between a segment template pattern and the observed trajectory. The segment activation ν ∈ RM155

reveals the semantics of the input trajectory and can be used for self-supervised training.156

3.4 Training157

As delineated in Section 3.2 and 3.3, SniCap and SegCap play different roles by capturing infor-158

mation at two different abstraction levels. SniCap focuses on short-time motion while SegCap is159

defined upon SniCap to model long-time semantic information. Hence, the two autoencoders are160

trained using different objective functions.161

The only objective of the snippet autoencoder is to faithfully reconstruct the original input. There-162

fore, for a training sample X = {xi|i = 1, . . . , L}, we use a self-supervised reconstruction loss:163

LSniRec =

L∑
i=1

||(x̂i − xi)||22, (5)

where x̂i denotes the reconstructed coordinate following Equation (2).164

The segment autoencoder’s primary goal is to reconstruct the input SniCap parameters, hence the165

reconstruction loss166

LSegRec =

S∑
i=1

||(Âi −Ai)||22 + ||(µ̂i − µi)||22. (6)

Furthermore, we use unsupervised contrastive training to learn semantic meaningful activations ν.167

For a batch of B samples, the contrastive loss is168

LSegCon = − 1

B

B∑
i=1

log
exp

(
cossim(ν′i,ν

′′
i )/τ

)∑
j exp

(
cossim(ν′i,ν

′′
j )/τ

) , (7)

where τ = 0.1 is the temperature used for all experiments, ν′i and ν′′i is the segment activation of169

sample X ′i and X ′′i , respectively. Here, X ′i and X ′′i are the spatial-temporally disturbed version of170

Xi. The disturbance is dataset-dependent and will be discussed in supplementary materials.171

In additional to the above loss terms, we impose two regularizers: a smoothness constraint on re-172

constructed sequence, and a sparsity regularization on the segment activations173

LRegSmt =

L∑
i=2

||x̂i − x̂i−1||22, LRegSps =
1

B

B∑
i=1

||νi||22. (8)

The final training objective is:174

L = λSniLSniRec + λSegLSegRec + L
Seg
Con + 0.5LRegSmt + 0.05LRegSps, (9)

where λSni and λSeg are empirically determined.175
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Figure 3: The 20 motion patterns in the Trajectory20 (T20) dataset. a.t. is short for “asymptotic to".

4 Experiments176

In this section, we first assess the proposed MCAE on a synthetic motion dataset to show its ability in177

learning transformation-invariant robust representations. Then, we generalize MCAE to multi-point178

systems and show its efficacy in real-world skeleton-based human action datasets. We report the179

mean accuracy and standard error based on three runs with random initialization. The experiments180

are run on an NVIDIA Titan V GPU, where we use a batch size of 64, and the Adam [10] optimizer181

with a learning rate of 10−3. Please refer to the supplementary material for details.182

4.1 Learning from Synthesized Motion183

The Trajectory20 Dataset While datasets like movingMNIST [34] have been commonly used in184

the motion representation learning literature, it is innately linear and has limited motion variations.185

Moreover, its prediction-oriented setting makes it difficult to examine the motion category of each186

trajectory. In this paper, we introduce the Trajectory20 (T20), a synthetic trajectory dataset based on187

20 distinct motion templates (as shown in Fig. 3). Each sample in T20 is a 32-step-long sequence188

of coordinates in [−1, 1]2. In the data generating process, a motion template is picked randomly and189

is randomly rotated, scaled, and translated to a random position to produce a trajectory. A closed190

trajectory (marked blue in Fig. 3) starts at a random point on the trajectory and end at the same191

point, whereas an open trajectory (marked yellow in Fig. 3) starts at a random end’s vicinity. The192

randomized generating process ensures the trajectories are controllably diverse in scale, rotation,193

and position. The training data is generated on-the-fly and a fixed test set of 10,000 samples is used194

for evaluation. Examples of T20 are shown in the supplementary material.195

Table 1: Ablation study on T20.
Reg. l #Sni #Seg Acc. (%)

Full

8 8 80 69.30 ± 0.76

4 8 80 41.01 ± 8.81
16 8 80 45.83 ± 8.36

8 2 80 64.02 ± 2.10
8 4 80 68.17 ± 0.36
8 16 80 48.11 ± 1.60

8 8 32 42.36 ± 3.15
8 8 64 63.94 ± 1.41
8 8 128 69.44 ± 1.69

w/o LRegSmt 8 8 80 67.60 ± 1.69
w/o LRegSps 8 8 80 65.92 ± 1.63

Ablation Study We perform an ablation study of196

MCAE on T20 to examine the effect of different197

regularizers and three key hyperparameters: snippet198

length l, the numbers of SniCap (#Sni) and SegCap199

(#Seg). The result is shown in Table 1. The length200

of snippet l plays a vital role in learning a useful201

representation. A very small l results in a narrow202

receptive field for snippet capsules, which makes it203

less useful for inferring semantics of the whole se-204

quence. At the other end, a large l makes snippets205

challenging to reconstruct. The numbers of Sni-206

Cap and SegCap also have major effect on the out-207

come. Too few SniCaps makes it difficult to recon-208

struct the input motion signal. Too few SegCaps un-209

dermines the expressiveness of the segment autoen-210

coder. Too many SniCaps could cause difficulty in211

learning proper alignments between SegCaps and SniCaps. Both degrade the quality of the learned212

features. Moreover, increasing #Seg from 80 to 128 does not bring further improvements. As the re-213

sult shows, (l, #Sni, #Seg) = (8, 8, 80) performs well and we will use it in all experiments below. As214

for the regularizers, while both regularizers improve the performance, the sparsity regulation (LRegSps)215

on segment activation is more helpful for learning discriminative features.216
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Motion Classification We compare MCAE with the following baseline models, namely KMeans,217

DTW-KMeans, k-Shape [25], LSTM and 1D-Conv2. KMeans, DTW-KMeans, and k-Shape are218

parameter-free time series clustering algorithms. Briefly, KMeans uses Euclidean distance to mea-219

sure the similarity between signals. DTW-KMeans normalizes input signals using dynamic time220

warping [29], and performs KMeans on the normalized signals. k-Shape uses cross-correlation221

based distance measure to cluster time series. We use the implementation by tslearn [36] for the222

three clustering methods. LSTM, 1D-Conv, and MCAE are used as backbone networks, which take223

the raw coordinate sequence as input and output a feature vector of a pre-defined dimension. The224

feature vector is used for contrastive learning following Equation (7). Upon each model we attach225

an auxiliary linear classifier (i.e. a single layer perceptron), which is trained with labels but the gra-226

dient is blocked from back-propagating into the backbone. The corresponding accuracy reflects the227

quality of the learned representation.228

Table 2: Unsupervised learning performance of MCAE
and baselines on T20.

Hidden Param. #Param. Acc. (%)

KMeans – – 8.57 ± 0.04
DTW-KMeans – – 9.12 ± 0.20
k-Shape [25] – – 12.94 ± 0.34

LSTM

128 600k 29.17 ± 2.45
256 669k 40.03 ± 0.57
512 805k 45.59 ± 1.37

1,024 1,078k 53.47 ± 1.52
2,048 1,625k 54.32 ± 0.55

1D-Conv

128 588k 44.78 ± 0.57
256 787k 53.69 ± 0.53
512 1,185k 57.57 ± 0.56

1,024 1,982k 57.58 ± 0.08

(#Sni, #Seg) #Param. Acc. (%)

MCAE (8, 80) 277k 69.30 ± 0.76

For LSTM and 1D-Conv backbone, dif-229

ferent numbers of hidden units/channels230

have been explored (shown as Hidden231

Param. in Table 2), which has resulted232

in different model sizes (measured by233

#Param. in Table 2).234

As shown in Table 2, since the spatial235

variance (e.g. viewpoint changes) within236

motion signal cannot be directly cap-237

tured by temporal warping/correlation,238

all the three parameter-free cluster-239

ing methods perform poorly on T20.240

On the other hand, with considerably241

fewer parameters, MCAE outperforms242

LSTM and 1D-CNN by a large margin.243

This provides quantitative evidence that244

MCAE can capture the transformation-245

invariant semantic information more ef-246

ficiently than the compared baselines.247

4.2 Generalizing to Multiple Points248

The MCAE running on T20 dataset handles a single moving point while most real-world problems249

involve multiple points. This section presents a naive (yet effective) extension of MCAE, which250

we name MCAE-MP, to enable processing the motion of multi-point systems. Such motion can251

be described as X = {Xi|i = 1, . . . ,K}, where K is the number of moving points. The extension252

works as follows:253

1. The K moving points are processed separately by an MCAE. This results in K segment254

activation vectors {νi, |i = 1, . . . ,K}.255

2. The K activation vectors are concatenated into a single representation ν ∈ RKM , which is256

used for unsupervised learning following Equation (9).257

Skeleton-based Human Action Recognition We apply MCAE-MP to solve the unsupervised258

skeleton-based action recognition problem, where a human skeleton is a system consisting of mul-259

tiple moving joints (points). Three widely-used datasets are used for evaluation: NW-UCLA [42],260

NTU-RGBD60 (NTU60) [31], and NTU-RGBD120 (NTU120) [19]. The three datasets consist of261

sequences with 1 or 2 subjects whose movement is measured in 3D space. For NW-UCLA, we262

follow previous works [35] to train the model on view 1 and 2, and test the model on view 3. For263

NTU60, we follow the official data split for the cross-subject (XSUB) and cross-view (XVIEW)264

protocols. The similar is implemented on NTU120 for the cross-subject (XSUB) and cross-setting265

(XSET) protocol. For ease of implementation, we project the 3D sequence into three orthonormal266

2D spaces and use an MCAE defined on 2D space to process the three views of the sequences. Then267

the segment activations from the three views are concatenated to form the representation. Four types268

2Architectures of LSTM and 1D-Conv are detailed in the supplementary material.
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Table 3: Performance (%) for unsupervised skeleton-based action classification. Column “Mod.”
shows the data modality, where “S” indicates skeleton and “D” indicates depth map. Column “Cls.”
shows the auxiliary classifier used for supervised training.

NTU60 NTU120 NW-UCLA

Model Mod. Cls. XSUB XVIEW XSUB XSET V1&V2→ V3

Luo et al. [21] S+D SLP 61.4 53.2 – – 50.7
Li et al. [14] S+D SLP 68.1 63.9 – – 62.5
SeBiReNet [23] S LSTM – 79.7 – – 80.3

LongT GAN [54] S SLP 39.1 48.1 – – 74.3
MS2L [18] S SLP 52.6 – – – 76.8
CAE+ [27] S SLP 58.5 64.8 48.6 49.2 –
MCAE-MP (SLP) S SLP 65.6 74.7 52.8 54.7 83.6

P&C [35] S 1-NN 50.7 76.1 – – 84.9
MCAE-MP (1-NN) S 1-NN 51.9 82.4 42.3 46.1 79.1

of disturbance are introduced for contrastive learning, namely jittering, spatial rotation, masking,269

and temporal smoothing. The readers are referred to the supplementary material for details.270

The classification accuracy is put into three groups in Table 3. In the first group are the prior works271

that are not directly comparable as they use depth map [14, 21] or stronger auxiliary classifiers for272

supervised training [23]. In the second group, where our model is marked as MCAE-MP (SLP), a273

single layer perceptron (SLP) is trained as the auxiliary classifier with backbone parameters frozen.274

In the third group, where our model is marked as MCAE-MP (1NN), a 1-nearest-neighbor classifier275

is used instead of an SLP. Although MCAE-MP is a naive extension as it encodes joints separately276

and largely ignores their interactions, it achieves better or competitive performance compared with277

the baselines. Notably, on NTU60-XVIEW and NTU120-XSET where the training set and test set278

have different viewpoints, our model outperforms baselines by a clear margin thanks to the capsule-279

based representation which effectively captures viewpoint changes as transformations on input.280

4.3 What does MCAE Learn?281

To better understand what is encoded, we plot the learned snippet templates T and segment tem-282

plates P in Fig. 4. Note that T are initialized as random straight lines, and P are initialized as arbi-283

trary patterns composed randomly of T . As shown in Fig. 4a, the snippets are mainly simple lines284

and hook-like curves that does not carry semantic information. Segment templates in Fig. 4b, how-285

ever, bear some resemblance to the patterns shown in Fig. 3. This suggests that semantic-agnostic286

snippets are being aggregated into semantic-aware segments.287

head

tail

(a) Snippet templates T .

head

tail

(b) Samples of segment templates P .

Figure 4: Templates learned from Trajectory20 dataset. Color indicates time.

We proceed to explore the information in SegCaps. In particular, we would like to see if SegCaps288

have learned transformation-invariant information. To this purpose, we randomly sample a trajectory289

from T20 dataset. The trajectory is first normalized so that its centroid is at (0, 0), then rotated290

clockwise by an angle θ, and finally fed into the model. We examine the segment templates with291

the highest activation values (which reflects the trajectory’s semantics) and calculate the rotation292

angle φ from those templates’ parameter B. As shown in Table 4, the calculated φ reveals two293

types of segments templates as we rotate the input. One type yields constant φ (e.g. segment ID294

2 for sample “absolute sine”), which indicates its rotation-invariance, the other has φ that changes295

monotonically with θ (e.g. segment ID 8 for sample “hexagon”), which shows its rotation-awareness.296

As for the activation values, samples from different categories activates different set of segments.297

8



Table 4: Top-5 segment templates (sorted by segment activation ν then segment ID for better visu-
alization), and the rotation φ calculated from their parameters B. Bold IDs are segments repeating
across different θ.

θ = −10◦ θ = −5◦ θ = 0◦ θ = 5◦ θ = 10◦

Input ID φ ID φ ID φ ID φ ID φ

hexagon 2 6.3 2 6.7 2 6.8 2 7.0 2 7.1
8 6.9 8 9.0 8 11.2 8 13.9 8 16.5

12 54.9 12 55.5 12 55.8 12 56.5 12 56.8
37 -20.8 37 -19.8 37 -18.9 37 -17.9 37 -16.9
66 50.2 66 52.5 66 55.4 66 59.0 66 62.4

abs_sine 2 12.1 2 12.3 2 12.2 2 12.1 2 11.9
7 8.2 5 -10.7 5 -10.1 5 -9.9 7 17.2

33 65.1 7 10.7 7 13.4 7 15.4 32 -9.7
37 -22.9 37 -22.3 37 -21.8 37 -21.3 37 -19.9
46 45.7 46 47.5 46 48.6 46 50.2 46 51.6

Table 5: Top-5 segment templates (sorted by segment activation ν then segment ID for better visu-
alization), and the translation (x, y) calculated from their parametersB.

(∆x,∆y) = (-0.2, 0) (∆x,∆y) = (-0.1, 0) (∆x,∆y) = (0, 0) (∆x,∆y) = (0, 0.1) (∆x,∆y) = (0, 0.2)

Input ID x y ID x y ID x y ID x y ID x y

hexagon 2 0.05 0.18 2 0.17 0.19 2 0.27 0.19 2 0.28 0.28 2 0.27 0.37
8 0.01 -0.07 8 0.09 -0.06 8 0.18 -0.04 8 0.19 0.04 8 0.19 0.12

12 -0.09 0.13 12 0.00 0.13 12 0.09 0.13 12 0.09 0.23 12 0.09 0.32
37 0.10 -0.11 37 0.18 -0.11 37 0.27 -0.11 37 0.27 -0.03 37 0.27 0.05
66 -0.12 0.16 66 -0.03 0.16 66 0.05 0.17 66 0.06 0.26 66 0.06 0.35

abs_sine 2 0.04 0.2 2 0.14 0.19 2 0.24 0.19 2 0.24 0.28 2 0.23 0.38
5 -0.01 0.30 5 0.07 0.29 5 0.16 0.29 5 0.16 0.38 5 0.15 0.46
7 0.20 -0.16 7 0.28 -0.16 7 0.37 -0.15 7 0.36 -0.06 7 0.36 0.04

37 0.04 -0.17 37 0.12 -0.16 37 0.21 -0.16 37 0.20 -0.07 37 0.20 0.01
46 0.02 0.01 46 0.13 0.02 46 0.23 0.04 46 0.23 0.13 46 0.22 0.23

Meanwhile, the same sample under different rotation angle θ gives stable segment activation, despite298

some changes which are found to have no effect on the classification result.299

We do a similar study on the translation component (x, y), where we translate the input by (∆x,∆y).300

As shown in Table 5, (x, y) changes monotonically with (∆x,∆y) while the activated segments301

remain stable. These results suggest that the semantics and transformation information has been302

encoded separately in the segment activation ν and transformation parameters B. In other words,303

the encoded semantic information is robust against geometric transformations.304

5 Conclusion305

In this paper, we introduce MCAE, a framework that learns robust and discriminative representation306

for keypoint motion. To resolve the intra-class variation of motion, we propose to learn a compact307

and transformation-invariant motion representation using a two-level capsule-based representation308

hierarchy. The efficacy of the learned representation is shown through an experimental study on309

synthetic and real-world datasets. The output of MCAE could serve as mid-level representation310

in other frameworks, e.g. Graph Convolution Network, for tasks that involve more context than311

classification. We anticipate this work to inspire further studies that apply capsule-based models to312

other time series processing tasks, such as joint modeling of visual appearance and motion in video.313

The software and the T20 dataset of our research will be released to the research community.314

Motion analysis techniques are in the foreground of the misuse of machine learning methods, among315

which adverse societal impacts and privacy breach are two major concerns. Regarding the societal316

impacts, admittedly, our method has both upside and downside. On one hand, a transformation-317

invariant motion representation enables us better decode the information implicit in the trajectory,318

which has applications for example in ethology. On the other hand, it could also be misused in mass319

surveillance. Appropriate boundaries of use and ethical review are required to prevent potential320

malicious applications. Regarding the privacy concerns, our method isolates the subjects’ motion321

from their sensitive information, such as gender and race.322
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