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ABSTRACT

Future- or return-conditioned supervised learning is an emerging paradigm for
offline reinforcement learning (RL), where the future outcome (i.e., return) asso-
ciated with an observed action sequence is used as input to a policy trained to
imitate those same actions. While return-conditioning is at the heart of popular al-
gorithms such as decision transformer (DT), these methods tend to perform poorly
in highly stochastic environments, where an occasional high return can arise from
randomness in the environment rather than the actions themselves. Such situations
can lead to a learned policy that is inconsistent with its conditioning inputs; i.e.,
using the policy to act in the environment, when conditioning on a specific desired
return, leads to a distribution of real returns that is wildly different than desired.
In this work, we propose the dichotomy of control (DoC), a future-conditioned su-
pervised learning framework that separates mechanisms within a policy’s control
(actions) from those beyond a policy’s control (environment stochasticity). We
achieve this separation by conditioning the policy on a latent variable represen-
tation of the future, and designing a mutual information constraint that removes
any information from the latent variable associated with randomness in the envi-
ronment. Theoretically, we show that DoC yields policies that are consistent with
their conditioning inputs, ensuring that conditioning a learned policy on a desired
high-return future outcome will correctly induce high-return behavior. Empiri-
cally, we show that DoC is able to achieve significantly better performance than
DT on environments that have highly stochastic rewards and transitions.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to extract an optimal policy solely from an existing dataset
of previous interactions (Fujimoto et al., 2019; Wu et al., 2019; Kumar et al., 2020). As researchers
begin to scale offline RL to large image, text, and video datasets (Agarwal et al., 2020; Fan et al.,
2022; Baker et al., 2022; Reed et al., 2022; Reid et al., 2022), a family of methods known as return-
conditioned supervised learning (RCSL), including Decision Transformer (DT) (Chen et al., 2021;
Lee et al., 2022) and RL via Supervised Learning (RvS) (Emmons et al., 2021), have gained pop-
ularity due to their algorithmic simplicity and ease of scaling. At the heart of RCSL is the idea of
conditioning a policy on a specific future outcome, often a return (Srivastava et al., 2019; Kumar
et al., 2019; Chen et al., 2021) but also sometimes a goal state or generic future event (Codevilla
et al., 2018; Ghosh et al., 2019; Lynch et al., 2020). RCSL trains a policy to imitate actions as-
sociated with a conditioning input via supervised learning. During inference (i.e., at evaluation),
the policy is conditioned on a desirable high-return or future outcome, with the hope of inducing
behavior that can achieve this desirable outcome.

Despite the empirical advantages that come with supervised training (Emmons et al., 2021; Kumar
et al., 2021), RCSL can be highly suboptimal in stochastic environments (Brandfonbrener et al.,
2022), where the future an RCSL policy conditions on (e.g., return) can be primarily determined by
randomness in the environment rather than the data collecting policy itself. Figure 1 (left) illustrates
an example, where conditioning an RCSL policy on the highest return observed in the dataset (r =
100) leads to a policy (a1) that relies on a stochastic transition of very low probability (T = 0.01)
to achieve the desired return of r = 100; by comparison the choice of a2 is much better in terms
of average return, as it surely achieves r = 10. The crux of the issue is that the RCSL policy is
inconsistent with its conditioning input. Conditioning the policy on a desired return (i.e., 100) to
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Figure 1: Illustration of DT (RCSL) and DoC. Circles and squares denote states and actions. Solid
arrows denote policy decisions. Dotted arrows denote (stochastic) environment transitions. All
arrows and nodes are present in the dataset, i.e., there are 4 trajectories, 2 of which achieve 0 reward.
DT maximizes returns across an entire trajectory, leading to suboptimal policies when a large return
(r = 100) is achieved only due to very low-probability environment transitions (T = 0.01). DoC
separates policy stochasticity from that of the environment and only tries to control action decisions
(solid arrows), achieving optimal control through maximizing expected returns at each timestep.

act in the environment leads to a distribution of real returns (i.e., 0.01 ∗ 100) that is wildly different
from the return value being conditioned on. This issue would not have occurred if the policy could
also maximize the transition probability that led to the high-return state, but this is not possible as
transition probabilities are a part of the environment and not subject to the policy’s control.

A number of works propose a generalization of RCSL, known as future-conditioned supervised
learning methods. These techniques have been shown to be effective in imitation learning (Singh
et al., 2020; Pertsch et al., 2020), offline Q-learning (Ajay et al., 2020), and online policy gradi-
ent (Venuto et al., 2021). It is common in future-conditioned supervised learning to apply a KL
divergence regularizer on the latent variable – inspired by variational auto-encoders (VAE) (Kingma
& Welling, 2013) and measured with respect to a learned prior conditioned only on past informa-
tion – to limit the amount of future information captured in the latent variable. It is natural to ask
whether this regularizer could remedy the insconsistency of RCSL. Unfortunately, as the KL regu-
larizer makes no distinction between future information that is controllable versus that which is not,
such an approach will still exhibit inconsistency, in the sense that the latent variable representation
may contain information about the future that is due only to environment stochasticity.

It is clear that the major issue with both RCSL and naı̈ve variational methods is that they make
no distinction between stochasticity of the policy (controllable) and stochasticity of the environment
(uncontrollable). An optimal policy should maximize over the controllable (actions) and take expec-
tations over uncontrollable (e.g., transitions) as shown in Figure 1 (right). This implies that, under a
variational approach, the latent variable representation that a policy conditions on should not incor-
porate any information that is solely due to randomness in the environment. In other words, while
the latent representation can and should include information about future behavior (i.e., actions), it
should not reveal any information about the rewards or transitions associated with this behavior.

To this end, we propose a future-conditioned supervised learning framework termed dichotomy of
control (DoC), which, in Stoic terms (Shapiro, 2014), has “the serenity to accept the things it cannot
change, courage to change the things it can, and wisdom to know the difference.” DoC separates
mechanisms within a policy’s control (actions) from those beyond a policy’s control (environment
stochasticity). To achieve this separation, we condition the policy on a latent variable representa-
tion of the future while minimizing the mutual information between the latent variable and future
stochastic rewards and transitions in the environment. DoC only captures information from the con-
trollable actions and avoids capturing information from the uncontrollable environment transitions
in the latent variable so that maximization only happens with respect to the controllable actions.
Theoretically, we show that DoC policies are consistent with their conditioning inputs, ensuring
that conditioning on a high-return future will correctly induce high-return behavior. Empirically,
we show that DoC can outperform both RCSL and naı̈ve variational methods on highly stochastic
environments.
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2 RELATED WORK

Return-Conditioned Supervised Learning. Since offline RL algorithms (Fujimoto et al., 2019;
Wu et al., 2019; Kumar et al., 2020) can be sensitive to hyper-parameters and difficult to apply in
practice (Emmons et al., 2021; Kumar et al., 2021), return-conditioned supervised learning (RCSL)
has become a popular alternative, particularly when the environment is deterministic and near-expert
demonstrations are available (Brandfonbrener et al., 2022). RCSL learns to predict behaviors (ac-
tions) by conditioning on desired returns (Schmidhuber, 2019; Kumar et al., 2019) using an MLP
policy (Emmons et al., 2021) or a transformer-based policy that encapsulates history (Chen et al.,
2021). Richer information other than returns, such as goals (Codevilla et al., 2018; Ghosh et al.,
2019) or trajectory-level aggregates (Furuta et al., 2021), have also been used as inputs to a condi-
tional policy in practice. Our work also conditions policies on richer trajectory-level information in
the form of a latent variable representation of the future, with additional theoretical justifications of
such conditioning in stochastic environments.

RCSL Failures in Stochastic Environments. Despite the empirical success of RCSL achieved by
DT and RvS, recent work has noted the failure modes in stochastic environments. Paster et al. (2020)
and Štrupl et al. (2022) presented counter-examples where online RvS can diverge in stochastic
environments. Brandfonbrener et al. (2022) identified near-determinism as a necessary condition for
RCSL to achieve optimality guarantees similar to other offline RL algorithms but did not propose a
solution for RCSL in stochastic settings. Paster et al. (2022) identified this same issue with stochastic
transitions and proposed to cluster offline trajectories and condition the policy on the average cluster
returns. However, the approach in Paster et al. (2022) has technical limitations (see Appendix C),
does not account for reward stochasticity, and still conditions the policy on (expected) returns, which
can lead to undesirable policy-averaging, i.e., a single policy covering two very different behaviors
(clusters) that happen to have the same return. Villaflor et al. (2022) also identifies overly optimistic
behavior of DT and proposes to use discrete β-VAE to induce diverse future predictions a policy
can condition on. This approach only differs the issue with stochastic environments to stochastic
latent variables, i.e., the latent variables will still contain stochastic environment information that
the policy cannot reliably reproduce.

Learning Latent Variables from Offline Data. Various works have explored learning a latent
variable representation of the future (or past) transitions in offline data via maximum likelihood and
use the latent variable to assist planning (Lynch et al., 2020), imitation learning (Kipf et al., 2019;
Ajay et al., 2020; Hakhamaneshi et al., 2021), offline RL (Ajay et al., 2020; Zhou et al., 2020), or
online RL (Fox et al., 2017; Krishnan et al., 2017; Goyal et al., 2019; Shankar & Gupta, 2020; Singh
et al., 2020; Wang et al., 2021; Venuto et al., 2021). These works generally focus on the benefit
of increased temporal abstraction afforded by using latent variables as higher-level actions in a hi-
erarchical policy. Villaflor et al. (2022) has introduced latent variable models into RCSL, which is
one of the essential tools that enables our method, but they did not incoporate the appropriate con-
straints which can allow RCSL to effectively combat environment stochasticity, as we will see in our
work. In general, existing work in latent variable models for future-conditioned supervised learn-
ing provides no theoretical guarantees in the literature, whereas our approach provides consistency
guarantees.

3 PRELIMINARIES

Environment Notation We consider the problem of learning a decision-making agent to interact
with a sequential, finite-horizon environment. At time t = 0, the agent observes an initial state s0
determined by the environment. After observing st at a timestep 0 ≤ t ≤ H , the agent chooses an
action at. After the action is applied the environment yields an immediate scalar reward rt and, if
t < H , a next state st+1. We use τ := (st, at, rt)

H
t=0 to denote a generic episode generated from

interactions with the environment, and use τi:j := (st, at, rt)
j
t=i to denote a generic sub-episode,

with the understanding that τ0:−1 refers to an empty sub-episode. The return associated with an
episode τ is defined as R(τ) :=

∑H
t=0 rt.

We will useM to denote the environment. We assume thatM is determined by a stochastic reward
functionR, stochastic transition function T , and unique initial state s0, so that rt ∼ R(τ0:t−1, st, at)
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and st+1 ∼ T (τ0:t−1, st, at) during interactions with the environment. Note that these definitions
specify a history-dependent environment, as opposed to a less general Markovian environment.

Learning a Policy in RCSL In future- or return-conditioned supervised learning, one uses a fixed
training data distribution D of episodes τ (collected by unknown and potentially multiple agents) to
learn a policy π, where π is trained to predict at conditioned on the history τ0:t−1, the observation st,
and an additional conditioning variable z that may depend on both the past and future of the episode.
For example, in return-conditioned supervised learning, policy training minimizes the following
objective over π:

LRCSL(π) := Eτ∼D

[
H∑
t=0

− log π(at|τ0:t−1, st, z(τ))

]
, (1)

where z(τ) is the return R(τ).

Inconsistency of RCSL To apply an RCSL-trained policy π during inference — i.e., interacting
online with the environment — one must first choose a specific z.1 For example, one might set z
to be the maximal return observed in the dataset, in the hopes of inducing a behavior policy which
achieves this high return. Using πz as a shorthand to denote the policy π conditioned on a specific
z, we define the expected return VM(πz) of πz inM as,

VM(πz) := Eτ∼Pr[·|πz,M] [R(τ)] . (2)

Ideally the expected return induced by πz is close to z, i.e., z ≈ VM(πz), so that acting according
to π conditioned on a high return induces behavior which actually achieves a high return. However,
RCSL training according to Equation 1 will generally yield policies that are highly inconsistent in
stochastic environments, meaning that the achieved returns may be significantly different than z
(i.e., VM(πz) ̸= z). This has been highlighted in various previous works (Brandfonbrener et al.,
2022; Paster et al., 2022; Štrupl et al., 2022; Eysenbach et al., 2022; Villaflor et al., 2022), and we
provided our own example in Figure 1.

Approaches to Mitigating Inconsistency A number of future-conditioned supervised learning
approaches propose to learn a stochastic latent variable embedding of the future, q(z|τ), while reg-
ularizing q with a KL-divergence from a learnable prior conditioned only on the past p(z|s0) (Ajay
et al., 2020; Venuto et al., 2021; Lynch et al., 2020), thereby minimizing:

LVAE(π, q, p) := Eτ∼D,z∼q(z|τ)

[
H∑
t=0

− log π(at|τ0:t−1, st, z)

]
+ β · Eτ∼D [DKL(q(z|τ)∥p(z|s0))] .

(3)

One could consider adopting such a future-conditioned objective in RCSL. However, since the KL
regularizer makes no distinction between observations the agent can control (actions) from those it
cannot (environment stochasticity), the choice of coefficient β applied to the regularizer introduces
a ‘lose-lose’ trade-off. Namely, as noted in Ajay et al. (2020), if the regularization coefficient is too
large (β ≥ 1), the policy will not learn diverse behavior (since the KL limits how much information
of the future actions is contained in z); while if the coefficient is too small (β < 1), the policy’s
learned behavior will be inconsistent (in the sense that z will contain information of environment
stochasticity that the policy cannot reliably reproduce). The discrete β-VAE incoporated by Villaflor
et al. (2022) with β < 1 corresponds to this second failure mode.

4 DICHOTOMY OF CONTROL

In this section, we first propose the DoC objective for learning future-conditioned policies that are
guaranteed to be consistent. We then present a practical framework for optimizing DoC’s con-
strained objective in practice and an inference scheme to enable better-than-dataset behavior via a
learned value function and prior.

1For simplicitly, we assume z is chosen at timestep t = 0 and held constant throughout an entire episode.
As noted in Brandfonbrener et al. (2022), this protocol also encompasses instances like DT (Chen et al., 2021)
in which z at timestep t is the (desired) return summed starting at t.
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4.1 DICHOTOMY OF CONTROL VIA MUTUAL INFORMATION MINIMIZATION

As elaborated in the prevous section, whether z(τ) is the return R(τ) or more generally a stochastic
latent variable with distribution q(z|τ), existing RCSL methods fail to satisfy consistency because
they insufficiently enforce the type of future information z can contain. Our key observation is that
z should not include any information due to environment stochasticity, i.e., any information about
a future rt, st+1 that is not already known given the previous history up to that point τ0:t−1, st, at.
Accordingly, we modify the RCSL objective from Equation 1 to incorporate a conditional mutual
information constraint between z and each pair rt, st+1 in the future:

LDoC(π, q) := Eτ∼D,z∼q(z|τ)

[
H∑
t=0

− log π(at|τ0:t−1, st, z)

]
s.t. MI(rt; z | τ0:t−1, st, at) = 0,MI(st+1; z | τ0:t−1, st, at) = 0, (4)

∀ τ0:t−1, st, at and 0 ≤ t ≤ H, (5)

where MI(rt; z|τ0:t−1, st, at) denotes the mutual information between rt and z given τ0:t−1, st, at
when measured under samples of rt, z from D, q; and analogously for MI(st+1; z|τ0:t−1, st, at).

The first part of the DoC objective conditions the policy on a latent variable representation of the
future, similar to the first part of the future-conditioned VAE objective in Equation 3. However,
unlike Equation 3, the DoC objective enforces a much more precise constraint on q, given by the MI
constraints in Equation 4.

4.2 DICHOTOMY OF CONTROL IN PRACTICE

Contrastive Learning of DoC Constraints. To satisfy the mutual information constraints
in Equation 4 we transform the MI to a contrastive learning objective. Specifically, for the con-
straint on r and z (and similarly on st+1 and z) one can derive,

MI(rt; z|τ0:t−1, st, at)

= DKL (Pr[rt, z|τ0:t−1, st, at]∥Pr[rt|τ0:t−1, st, at]Pr[z|τ0:t−1, st, at])

= EPr[rt,z|τ0:t−1,st,at]

[
log

(
Pr[rt|z, τ0:t−1, st, at]

Pr[rt|τ0:t−1, st, at]

)]
= EPr[rt,z|τ0:t−1,st,at] log Pr[rt|z, τ0:t−1, st, at]− EPr[rt|τ0:t−1,st,at] log Pr[rt|τ0:t−1, st, at]. (6)

The second expectation above is a constant with respect to z and so can be ignored during learning.
We further introduce a conditional distribution ω(rt|τ0:t−1, st, at) parametrized by an energy-based
function f : Ω 7→ R:

ω(rt|z, τ0:t−1, st, at) ∝ ρ(rt) exp {f(rt, z, τ0:t−1, st, at)}, (7)

where ρ is some fixed sampling distribution of rewards. In practice, we set ρ to be the marginal dis-
tribution of rewards in the dataset. Hence we express the first term of Equation 6 via an optimization
over ω, i.e.,

max
ω

EPr[rt,z|τ0:t−1,st,at] [logω(rt|τ0:t−1, st, at)]

=max
f

EPr[rt,z|τ0:t−1,st,at]

[
f(rt, z, τ0:t−1, st, at)− logEρ(r̃) [exp{f(r̃, z, τ0:t−1, st, at)}]

]
.

Combining this (together with the analogous derivation for MI(st+1; z|τ0:t−1, st, at)) with Equa-
tion 4 via the Lagrangian, we can learn π and q(z|τ) by minimizing the final DoC objective:

LDoC(π, q) = max
f

Eτ∼D,z∼q(z|τ)

[
H∑
t=0

− log π(at|τ0:t−1, st, z)

]

+β ·
H∑
t=0

Eτ∼D,z∼q(z|τ)
[
f(rt, st+1, z, τ0:t−1, st, at)− logEρ(r̃,s̃′) [exp{f(r̃, s̃′, z, τ0:t−1, st, at)}]

]
.

(8)
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Algorithm 1 Inference with Dichotomy of Control

Inputs Policy π(·|·, ·, ·), prior p(·), value function V (·), initial state s0, number of samples hy-
perparameter K.
Initialize z∗;V ∗ ▷ Track the best latent and its value.
for k = 1 to K do

Sample zk ∼ p(z|s0) ▷ Sample a latent from the learned prior.
if V (zk) > V ∗ then
z∗ = zk; V ∗ = V ▷ Set best latent to the one with the highest value.

return π(·|·, ·, z∗) ▷ Policy conditioned on the best z∗.

DoC Inference. As is standard in RCSL approaches, the policy learned by DoC requires an appro-
priate conditioning input z to be chosen during inference. To choose a desirable z associated with
high return, we propose to (1) enumerate or sample a large number of potential values of z, (2) es-
timate the expected return for each of these values of z, (3) choose the z with the highest associated
expected return to feed into the policy. To enable such an inference-time procedure, we need to add
two more components to the method formulation: First, a prior distribution p(z|s0) from which we
will sample a large number of values of z; second, a value function V (z) with which we will rank
the potential values of z. These components are learned by minimizing the following objective:

Laux(V, p) = Eτ∼D,z∼q(z|τ)

[
(V (z)−R(τ))2 +DKL(stopgrad(q(z|τ))∥p(z|s0))

]
. (9)

Note that we apply a stop-gradient to q(z|τ) when learning p so as to avoid regularizing q with the
prior. This is unlike the VAE approach, which by contrast advocates for regularizing q via the prior.
See Algorithm 1 for inference pseudocode (and Appendix D for training pseudocode).

5 CONSISTENCY GUARANTEES FOR DICHOTOMY OF CONTROL

We provide a theoretical justification of the proposed learning objectives LDoC and Laux, showing
that, if they are minimized, the resulting inference-time procedure will be sound, in the sense that
DoC will learn a V and π such that the true value of πz in the environment M is equal to V (z).
More specifically we define the following notion of consistency:

Definition 1 (Consistency). A future-conditioned policy π and value function V are consistent for a
specific conditioning input z if the expected return of z predicted by V is equal to the true expected
return of πz in the environment: V (z) = VM(πz).

To guarantee consistency of π, V , we will make the following two assumptions:

Assumption 2 (Data and environment agreement). The per-step reward and next-state transi-
tions observed in the data distribution are the same as those of the environment. In other words,
for any τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0, we have Pr[r̂t = rt|τ0:t−1, st, at,D] =
R(r̂t|τ0:t−1, st, at) and Pr[ŝt+1 = st+1|τ0:t−1, st, at,D] = T (ŝt+1|τ0:t−1, st, at) for all r̂t, ŝt+1.

Assumption 3 (No optimization or approximation errors). DoC yields policy π and value function
V that are Bayes-optimal with respect to the training data distribution and q. In other words,
V (z) = Eτ∼Pr[·|z,D] [R(τ)] and π(â|τ0:t−1, st, z) = Pr [â = at|τ0:t−1, st, z,D].

Given these two assumptions, we can then establish the following consistency guarantee for DoC.

Theorem 4. Suppose DoC yields π, V, q with q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (10)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumptions 2 and 3, V and π are
consistent for any z with Pr[z|q,D] > 0.

For proof, see Appendix A.

Consistency in Markovian environments. While the results above are focused on environments
and policies that are non-Markovian, one can extend Theorem 4 to Markovian environments and
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policies. This result is somewhat surprising, as the assignments of z to episodes τ induced by q
are necessarily history-dependent, and projecting the actions appearing in these clusters to a non-
history-dependent policy would seemingly lose important information. However, a Markovian as-
sumption on the rewards and transitions of the environment is sufficient to ensure that no ‘important’
information will be lost, at least in terms of the satisfying requirements for consistency in Defini-
tion 1. Alternative notions of consistency are not as generally applicable; see Appendix C.

We begin by stating our assumptions.
Assumption 5 (Markov environment). The rewards and transitions of M are Markovian; i.e.,
R(τ0:t−1, st, at) = R(τ̃0:t−1, st, at) and T (τ0:t−1, st, at) = T (τ̃0:t−1, st, at) for all τ, τ̃ , st, at.
We use the shorthandR(st, at), T (st, at) for these history-independent functions.
Assumption 6 (Markov policy, without optimization or approximation errors). The policy learned
by DoC is Markov. This policy π as well as its corresponding learned value function V are
Bayes-optimal with respect to the training data distribution and q. In other words, V (z) =
Eτ∼Pr[·|z,D] [R(τ)] and π(â|st, z) = Pr [â = at|st, z,D].

With these two assumptions, we can then establish the analogue to Theorem 4, which relaxes the
dependency on history for both the policy π and the MI constraints:
Theorem 7. Suppose DoC yields π, V, q with q satisfying the MI constraints:

MI(rt; z|st, at) = MI(st+1; z|st, at) = 0, (11)

for all st, at with Pr[st, at|D] > 0. Then under Assumptions 2, 5, and 6, V and π are consistent for
any z with Pr[z|q,D] > 0.

For proof, see Appendix B.

6 EXPERIMENTS

We conducted an empirical evaluation to ascertain the effectiveness of DoC. For this evaluation,
we considered three settings: (1) a Bernoulli bandit problem with stochastic rewards, based on a
canonical ‘worst-case scenario’ for RCSL (Brandfonbrener et al., 2022); (2) the FrozenLake do-
main from (Brockman et al., 2016), where the future VAE approach proves ineffective; and finally
(3) a modified set of OpenAI Gym (Brockman et al., 2016) environments where we introduced en-
vironment stochasticity. In these studies, we found that DoC exhibits a significant advantage over
RCSL/DT, and outperforms future VAE when the analogous to “one-step” RL is insufficient. For DT,
we use the same implementation and hyperparameters as Chen et al. (2021). Both VAE and DoC are
built upon the DT implementation and additionally learn a Gaussian latent variable over succeeding
20 future steps. See experiment details in Appendix E and additional results in Appendix F.

6.1 EVALUATING STOCHASTIC REWARDS IN BERNOULLI BANDIT

r ∼ Bern(1 − p)

a1

a2
πD(a2) = 1 − p

πD(a1) = p

r ∼ Bern(p)

Figure 2: [Left] Bernoulli bandit where the better arm
a1 with reward Bern(1− p) for p < 0.5 is pulled with
probability πD(a1) = p in the offline data. [Right] Av-
erage rewards achieved by DoC and baselines across 5
environment seeds. RCSL is highly suboptimal when p
is small, whereas DoC achieves close to Bayes-optimal
performance (dotted line) for all values of p.

Bernoulli Bandit. Consider a two-
armed bandit as shown in Figure 2 (left).
The two arms, a1, a2, have stochastic
rewards drawn from Bernoulli distri-
butions of Bern(1 − p) and Bern(p),
respectively. In the offline dataset, the a1
arm with reward Bern(1 − p) is pulled
with probability πD(a1) = p. When p is
small, this corresponds to the better arm
only being pulled occasionally. Under this
setup, πRCSL(a1|r = 1) = πRCSL(a2|r =
1) = 0.5, which is highly suboptimal
compared to always pulling the optimal
arm a1 with reward Bern(1 − p) for
p < 0.5.

Results. We train tabular DoC and base-
lines on 1000 samples where the superior
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arm with r ∼ Bern(1− p) is pulled with
probability p for p ∈ {0.1, ..., 0.5}. Fig-
ure 2 (right) shows that RCSL and percentage BC (filtered by r = 1) always result in policies that
are indifferent in the arms, whereas DoC is able to recover the Bayes-optimal performance (dotted
line) for all p values considered. Future VAE performs similarly to DoC for small p values, but is
sensitive to the KL regularization coefficient when p is close to 0.5.

6.2 EVALUATING STOCHASTIC TRANSITIONS IN FROZENLAKE

FrozenLake. Next, we consider the FrozenLake environment with stochastic transitions where
the agent taking an action has probability p of moving in the intended direction, and probability
0.5·(1−p) of slipping to either of the two sides of the intended direction. We collect 100 trajectories
of length 100 using a DQN policy trained in the original environment (p = 1

3 ) which achieves an
average return of 0.7, and vary p during data collection and evaluation to test different levels of
stochasticity. We also include uniform actions with probability ϵ to lower the performance of the
offline data so that BC is highly suboptimal.

Results. Figure 3 presents the visualization (left) and results (right) for this task. When the offline
data is closer to being expert (ϵ = 0.3), DT, future VAE, and DoC perform similarly with better
performance in more deterministic environments. As the offline dataset becomes more suboptimal
(ϵ = 0.5), DoC starts to dominate across all levels of transition stochasticity. When the offline data
is highly suboptimal (ϵ = 0.7), DT and future VAE has little advantage over BC, whereas DoC
continues to learn policies with reasonable performance.

6.3 EVALUATING STOCHASTIC GYM MUJOCO

Environments. We now consider a set of Gym MuJoCo environments including Reacher, Hop-
per, HalfCheetah, and Humanoid. We additionally consider AntMaze from D4RL (Fu et al., 2020).
These environments are deterministic by default, which we modify by introducing time-correlated
Gaussian noise to the actions before inputing the action into the physics simulator during data collec-
tion and evaluation for all but AntMaze environments. Specifically, the Gaussian noise we introduce
to the actions has 0 mean and standard deviation of the form (1− e−0.01·t) · sin(t) · σ where t is the
step number and σ ∈ [0, 1]. For AntMaze where the dataset has already been collected in the de-
terministic environment by D4RL, we add gaussian noise with 0.1 standard deviation to the reward
uniformly with probability 0.1 (both to the dataset and during evaluation).

Results. Figure 4 shows the average performance (across 5 seeds) of DT, future VAE, and DoC on
these stochastic environments. Both future VAE and DoC generally provide benefits over DT, where
the benefit of DoC is more salient in harder environments such as HalfCheetah and Humanoid. We
found future VAE to be sensitive to the β hyperparameter, and simply using β = 1 can result in the
falure case as shown in Reacher-v2.

U

D

L R

T(s′ |s, a) = p

 random in  = 0.3ϵ D  random in  = 0.5ϵ D  random in  = 0.7ϵ D

Figure 3: [Left] Visualization of the stochastic FrozenLake task. The agent has a probability p of
moving in the intended direction and 1− p of slipping to either sides. [Right] Average performance
(across 5 seeds) of DoC and baselines on FrozenLake with different levels of stochasticity (p) and
offline dataset quality (ϵ). DoC outperforms DT and future VAE, where the gain is more salient
when the offline data is less optimal (ϵ = 0.5 and ϵ = 0.7).
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Figure 4: Average performance (across 5 seeds) of DoC and baselines on modified stochastic Gym
MuJoCo and AntMaze tasks. DoC and future VAE generally provide benefits over DT, where DoC
provide more benefits on harder tasks such as Humanoid. Future VAE can be sensitive to the KL
coefficient β, which can result in the failure mode shown in Reacher-v2 if not tuned properly.

7 CONCLUSION

Despite the empirical promise of return- or future-conditioned supervised learning (RCSL) with
large transformer architectures, environment stochasticity hampers the application of supervised
learning to sequential decision making. To address this issue, we proposed to augment supervised
learning with the dichotomy of control principle (DoC), guiding a supervised policy to only con-
trol the controllable (actions). Theoretically, DoC learns consistent policies, guaranteeing that they
achieve the future or return they are conditioned on. Empirically, DoC outperforms RCSL in highly
stochastic environments. While DoC still falls short in addressing other RL challenges such as
‘stitching’ (i.e., composing sub-optimal trajectories), we hope that dichotomy of control serves as a
stepping stone in solving sequential decision making with large-scale supervised learning.
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Appendix
A PROOF OF THEOREM 4

The proof relies on the following lemma, showing that the MI constraints ensure that the observed
rewards and dynamics conditioned on z in the training data are equal to the rewards and dynamics
of the environment.

Lemma 8. Suppose DoC yields q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (12)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumption 2,

Pr [r̂ = rt | τ0:t−1, st, at, z,D] = R(r̂t | τ0:t−1, st, at), (13)
Pr [ŝt+1 = st+1 | τ0:t−1, st, at, z,D] = T (ŝt+1 | τ0:t−1, st, at), (14)

for all τ0:t−1, st, at, z and r̂, ŝt+1, as long as Pr[τ0:t−1, st, at, z|D] > 0.

Proof. We show the derivations relevant to reward, with those for next-state being analogous. We
start with the definition of mutual information:

MI(rt; z|τ0:t−1, st, at) = E(rt,z)∼Pr[·|τ0:t−1,st,at,D]

[
log

Pr [rt|τ0:t−1, st, at, z,D]
Pr [rt|τ0:t−1, st, at,D]

]
(15)

= Ez∼Pr[·|τ0:t−1,st,at,D] [DKL(Pr[r|τ0:t−1, st, at, z,D]∥Pr[r|τ0:t−1, st, at,D])] . (16)

The KL divergence is a nonnegative quantity, and it is zero only when the two input distributions are
equal. Thus, the constraint MI(rt; z|τ0:t−1, st, at) = 0 implies,

Pr [r|τ0:t−1, st, at, z,D] = Pr[r|τ0:t−1, st, at,D], (17)

for all τ0:t−1, st, at, z with Pr[z|τ0:t−1, st, at,D] > 0. From Assumption 2 we know

Pr[r|τ0:t−1, st, at,D] = R(r|τ0:t−1, st, at), (18)

and so we immediately have the desired result.

We will further employ the following lemma, which takes us most of the way to proving Theorem 4:

Lemma 9. Suppose DoC yields π, q with q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (19)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumptions 2 and 3, we have

Pr [τ | z,D] = Pr [τ | πz,M] , (20)

for all τ and all z with Pr[z|q,D] > 0.

Proof. We may write the probability Pr [τ | z,D] as,

Pr [τ | z,D] =
H∏
t=0

Pr [at | τ0:t−1, st, z,D]

·
H∏
t=0

Pr [rt | τ0:t−1, st, at, z,D]

·
H−1∏
t=0

Pr [st+1 | τ0:t−1, st, at, z,D] . (21)

12
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Case 1: We begin by considering the case of τ satisfying Pr [τ | z,D] > 0. For such a τ , by
Assumption 3 we may write the first probability above as

Pr [at | τ0:t−1, st, z,D] = πz(at|τ0:t−1, st). (22)

Moreover, by Lemma 8 we may write the second and third probabilities as

Pr [rt | τ0:t−1, st, at, z,D] = R(rt|τ0:t−1, st, at) (23)
Pr [st+1 | τ0:t−1, st, at, z,D] = T (st+1|τ0:t−1, st, at). (24)

Therefore, for any τ with Pr [τ | z,D] > 0 we have,

Pr [τ | z,D] =
H∏
t=0

πz(at|τ0:t−1, st) ·
H∏
t=0

R(rt|τ0:t−1, st, at) ·
H−1∏
t=0

T (st+1|τ0:t−1, st, at)

= Pr [τ | πz,M] . (25)

Case 2: To handle the case of Pr [τ | z,D] = 0 we will show that Pr [τ0:t | z,D] = 0 implies
Pr [τ0:t | πz,M] = 0 by induction on t. The base case of t = −1 is trivial. For t > −1, we may
write,

Pr [τ0:t | z,D] = Pr [τ0:t−1 | z,D] · Pr [st | τ0:t−2, st−1, at−1, z,D] · Pr [at | τ0:t−1, st, z,D] ·
Pr [rt | τ0:t−1, st, at, z,D] , (26)

Pr [τ0:t | πz,M] = Pr [τ0:t−1 | πz,M] · T (st|τ0:t−2, st−1, at−1) · πz(at|τ0:t−1, st)·
R(rt|τ0:t−1, st, at). (27)

Suppose, for the sake of contradiction, that Pr [τ0:t | z,D] = 0 while Pr [τ0:t | πz,M] > 0. By the
inductive hypothesis, Pr [τ0:t−1 | z,D] > 0. Thus, by Lemma 8 we must have

Pr [st | τ0:t−2, st−1, at−1, z,D] = T (st|τ0:t−2, st−1, at−1), (28)

and so T (st|τ0:t−2, st−1, at−1) > 0 implies that Pr [st | τ0:t−2, st−1, at−1, z,D] > 0. Thus, by
Assumption 3 we must have

Pr [at | τ0:t−1, st, z,D] = πz(at|τ0:t−1, st), (29)

and so πz(at|τ0:t−1, st) > 0 implies that Pr [at | τ0:t−1, st, z,D] > 0. Lastly, by Lemma 8 we must
have

Pr [rt | τ0:t−1, st, at, z,D] = R(rt|τ0:t−1, st, at), (30)
and so R(rt|τ0:t−1, st, at) > 0 implies that Pr [rt | τ0:t−1, st, at, z,D] > 0. Altogether, we find
that each of the three terms on the RHS of Equation 26 is strictly positive and so Pr [τ0:t | z,D] > 0;
contradiction.

A.1 THEOREM PROOF

We are now prepared to prove Theorem 4.

Using Assumption 3, we can express V (z) as,

V (z) =

∫
Pr [τ̂ = τ | z,D] ·R(τ̂) dτ̂ . (31)

By Lemma 9 we have,

V (z) =

∫
Pr [τ̂ = τ | z,D] ·R(τ̂) dτ̂ (32)

=

∫
Pr [τ̂ = τ | πz,M] ·R(τ̂) dτ̂ (33)

= VM(πz), (34)

as desired.
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B PROOF OF THEOREM 7

We begin by proving a result under stricter conditions, namely, when the MI constraints retain the
conditioning on history.

Lemma 10. Suppose DoC yields π, V, q with q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (35)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumptions 2, 5, and 6, V and π are
consistent for any z with Pr[z|q,D] > 0.

Proof. Let
πhist
z (â | τ0:t−1, st) = Pr [â = at | τ0:t−1, st, z,D] . (36)

By Lemma 9 and Theorem 4 we have

Pr [τ | z,D] = Pr
[
τ | πhist

z ,M
]
, (37)

for all τ and
V (z) = VM(πhist

z ), (38)

for all z with Pr[z | q,D] > 0.

It is left to show that VM(πhist
z ) = VM(πz). To do so, we invoke Theorem 5.5.1 in Puterman

(2014), which states that, for any history-dependent policy, there exists a Markov policy such that
the state-action visitation occupancies of the two policies are equal (and, accordingly, their values
are equal). In other words, there exists a Markov policy π̃z such that

Pr
[
ŝ = st, â = at | πhist

z ,M
]
= Pr [ŝ = st, â = at | π̃z,M] , (39)

for all t, ŝ, â, and
VM(πhist

z ) = VM(π̃z). (40)

To complete the proof, we show that π̃z = πz . By Equation 37 we have

Pr
[
ŝ = st, â = at | πhist

z ,M
]
= Pr [ŝ = st, â = at | z,D] . (41)

Thus, for any t, ŝ, â we have

π̃z(â = at|ŝ = st) =
Pr [ŝ = st, â = at | π̃z,M]

Pr [ŝ = st |π̃z,M]
(42)

=
Pr

[
ŝ = st, â = at | πhist

z ,M
]

Pr [ŝ = st | πhist
z ,M]

(43)

=
Pr [ŝ = st, â = at | z,D]

Pr [ŝ = st | z,D]
(44)

= πz(â = at|ŝ = st), (45)

where the first equality is Bayes’ rule, the second equality is due to Equation 39, the third equality
is due to Equation 41, and last equality is by definition of πz (Assumption 6).

Before continuing to the main proof, we present the following analogue to Lemma 8:

Lemma 11. Suppose DoC yields q satisfying the MI constraints:

MI(rt; z|st, at) = MI(st+1; z|st, at) = 0, (46)

for all st, at with Pr[st, at|D] > 0. Then under Assumptions 2 and 5,

Pr [r̂ = rt | st, at, z,D] = R(r̂t | st, at), (47)
Pr [ŝt+1 = st+1 | st, at, z,D] = T (ŝt+1 | st, at), (48)

for all st, at, z and r̂, ŝt+1, as long as Pr[st, at, z|D] > 0.

Proof. The proof is analogous to the proof of Lemma 8.
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B.1 THEOREM PROOF

We can now tackle the proof of Theorem 7. To do so, we start by interpreting the episodes τ in the
training data D as coming from a modified Markovian environment M†. Specifically, we define
M† as an environment with the same state space asM but with an action space consisting of tuples
(a, r, s′), where a is an action from the action space ofM, r is a scalar, and s′ is a state from the state
space ofM. We define the reward and transition functions ofM† to be deterministic, so that the
reward and next state associated with (a, r, s′) is r and s′, respectively. This way, we may interpret
any episode τ = (st, at, rt)

H
t=0 inM as an episode

τ † = (st, (at, rt, st+1), rt)
H
t=0 (49)

in the modified environment M†. Denoting D† as the training data distribution when interpreted
in this way, we note that the MI constraints of Lemma 10 hold, since rewards and transitions are
deterministic. Thus, the policy π† defined as

π†((â, r̂, ŝ′)|st, z) = Pr[(â, r̂, ŝ′) = (at, rt, st+1)|st, z,D†] (50)

satisfies
V (z) = VM†(π†

z). (51)

It is left to show that VM†(π†
z) = VM(πz). To do so, consider an episode τ † ∼ Pr[·|π†

z,M†]. For
any single-step transition in this episode,

(st, (at, rt, st+1), rt, st+1), (52)

we have, by definition of π†
z ,

Pr[â = at|st, π†
z] = Pr[â = at|st, z,D†] = πz(â|st). (53)

In a similar vein, by definition of π†
z and Lemma 11 we have,

Pr[r̂ = rt|st, at, π†
z] = Pr[r̂ = rt|st, at, z,D†] = R(r̂|st, at), (54)

Pr[ŝt+1 = st+1|st, at, π†
z] = Pr[ŝt+1 = st+1|st, at, z,D†] = T (ŝt+1|st, at). (55)

Thus, any τ † = (st, (at, rt, st+1), rt)
H
t=0 sampled from π†

z,M† can be mapped back to a τ =
(st, at, rt)

H
t=0 in the original environmentM, where Pr[τ †|π†

z,M†] = Pr[τ |πz,M]. It is clear that
R(τ †) = R(τ), and so we immediately have

VM†(π†
z) = VM(πz), (56)

as desired.

C INVALIDITY OF ALTERNATIVE CONSISTENCY FRAMEWORKS

Paster et al. (2022) propose a similar but distinct notion of consistency compared to ours (i.e., Def-
inition 1), and claim that it can be achieved with stationary policies in Markovian environments. In
this section, we show that this is, in fact, false, supporting the benefits of our framework. We begin
by rephrasing Theorem 2.1 of Paster et al. (2022) using our own notation:

(Incorrect) Theorem 2.1 of Paster et al. (2022). SupposeM is Markovian and D, q are given
such that

Pr[ŝt+1 = st | st, at, z,D] = Pr[ŝt+1 = st | st, at,D], (57)

for all st, at, z, ŝt+1 with Pr[st, at, z|q,D] > 0 and define a Markov policy π as

π(â|st, z) = Pr[â = at|st, z,D]. (58)

Then for any z with Pr[z|q,D] > 0 and any τ ,

Pr[τ | πz,M] > 0 if and only if Pr[τ | z,D] > 0. (59)
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Figure 5: Deterministic environment used in the counter-example described in Appendix C. Circles
represent states and squares represent actions; solid arrows represent choice of actions and dashed
arrows represent environment dynamics.

Counter-example. A simple counter-example may be constructed by considering the Markovian
environment displayed in Figure 5. The environment has three states. The first state gives a choice
of two actions (a0 ∈ {0, 1}), and each action deterministically transitions to the same second state.
The second state again provides a choice of two actions (a1 ∈ {0, 1}), and each of these again deter-
ministically transitions to the same terminal state. Thus, episodes in this environment are uniquely
determined by choice of a0, a1. There are four unique episodes:

τ0 = ⟨a0 = 0, a1 = 0⟩, (60)
τ1 = ⟨a0 = 1, a1 = 1⟩, (61)
τ2 = ⟨a0 = 0, a1 = 1⟩, (62)
τ3 = ⟨a0 = 1, a1 = 0⟩. (63)

We now construct q as a deterministic function, clustering these four trajectories into two distinct z:

z0 = q(τ0) = q(τ1), (64)
z1 = q(τ2) = q(τ3). (65)

Suppose D includes τ0, τ1, τ2, τ3 with equal probability. Since the environment is deterministic, the
conditions of Theorem 2.1 in Paster et al. (2022) are trivially satisfied. Learning a policy π with
respect to z0 yields

π(·|s0, z0) = [0.5, 0.5], (66)
π(·|s1, z0) = [0.5, 0.5]. (67)

However, it is clear that interacting with π(·|·, z0) in the environment will lead to τ2, τ3 with non-
zero probability, while τ2, τ3 are never associated with z0 in the data D. Contradiction.

D PSEUDOCODE FOR DOC TRAINING

Algorithm 2 Training with Dichotomy of Control

Inputs Offline dataset D = {τ (m)}Mm=1 where τ (m) = (s
(m)
t , a

(m)
t , r

(m)
t )Ht=0 with initial states

{s(m)
0 }Mm=1 and initial return-to-go values {R(m)}Mm=1, a parametrized distribution qϕ(·), a policy

πθ1(·, ·), a value function Vθ2(·), a prior pψ(·), an energy function fw(·), a fixed distribution
ρ(r, s′), learning rates η, and training batch size B.
while training has not converged do

Sample batch {(τ = (st, at, rt)
H
t=0)

(m)}Bm=1 from D, for m = 1, . . . , B.
Sample z from qϕ(τ) with reparametrization.
Compute LDoC + Laux according to Equation 8 and Equation 9.
Update ϕ← ϕ− η∇ϕL̂, ψ ← ψ− η∇ψstopgrad(L̂, ϕ), w ← w+ η∇wL̂, θ1 ← θ1 − η∇θ1L̂,
θ2 ← θ2 − η∇θ1L̂.

return πθ1(·, ·), Vθ2(·), pψ(·)
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E EXPERIMENT DETAILS

E.1 HYPERPARAMETERS.

We use the same hyperparameters as the publically available Decision Transformer (Chen et al.,
2021) implementation. For VAE, we additionally learn a future and a prior both parametrized the
same as the policy using transformers with context length 20. All models are trained on NVIDIA
GPU P100.

Table 1: Hyperparameters of Decision Transformer, future-conditioned VAE, and Dichotomy of
Control.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Latent future dimension 128
Nonlinearity function ReLU
Batch size 64
Context length K 20 FrozenLake, HalfCheetah, Hopper, Humanoid, AntMaze

5 Reacher
Future length Kf Same as context length K
Return-to-go conditioning for DT 1 FrozenLake

6000 HalfCheetah
3600 Hopper
5000 Humanoid
50 Reacher
1 AntMaze

Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 105 training steps
β coefficient 1.0 for DoC, Best of 0.1, 1.0, 10 for VAE

E.2 DETAILS OF THE OFFLINE DATASETS

FrozenLake. We train a DQN (Mnih et al., 2013) policy for 100k steps in the original 4x4 Frozen-
Lake Gym environment with stochasticity level p = 1

3 . We then modify p to simulate environments
of different stochasticity levels, while collecting 100 trajectories of maximum length 100 at each
level using the trained DQN agent with probability ϵ of selecting a random action as opposed to the
action output by the DQN agent to emulate offline data with different quality.

Gym MuJoCo. We train SAC (Haarnoja et al., 2018) policies on the original set of Gym MuJoCo
environments for 100M steps. To simulate stochasticity in these environments, we modify the origi-
nal Gym MuJoCo environments by introducing noise to the actions before inputting the action to the
physics simulator to compute rewards and next states. The noise has 0 mean and standard deviation
of the form (1− e−0.01·t) · sin(t) ·σ where t is the step number and σ ∈ [0, 1]. We then collect 1000
trajectories of 1000 steps each for all environments except for Reacher (which has 50 steps in each
trajectory) in the stochastic version of the environment using the SAC policy to acquire the offline
dataset for training.

AntMaze. For the AntMaze task, we use the AntMaze dataset from D4RL (Fu et al., 2020), which
contains 1000 trajectories of 1000 steps each. We add gaussian noise with standard deviation 0.1
to the rewards in the dataset uniformly with probability 0.1 to both the offline dataset and during
environment evaluation to simulate stochastic rewards from the environment.
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F ADDITIONAL RESULTS

F.1 FROZENLAKE WITH DIFFERENT OFFLINE DATASET QUALITY.

 random in  = 0.1ϵ D  random in  = 0.2ϵ D  random in  = 0.3ϵ D

 random in  = 0.4ϵ D  random in  = 0.5ϵ D  random in  = 0.6ϵ D

 random in  = 0.7ϵ D  random in  = 0.8ϵ D  random in  = 0.9ϵ D

Figure 6: Average performance (across 5 seeds) of DoC and baselines on FrozenLake with different
levels of stochasticity (p) and offline dataset quality (ϵ). DoC outperforms DT and future VAE with
bigger gains the offline data is less optimal.

F.2 IMPROVEMENT OF DOC OVER RVS

To test the effect of applying the MI constraint to other future-conditioned supervised learning base-
lines, we evaluate RvS parametrized by MLP policies (Emmons et al., 2021) with VAE and DoC
modifications. In general, MLP parametrization performs worse than transformer parametrization,
but DoC is still able to provide significant benefit over vanilla RvS.

 random in  = 0.3ϵ D  random in  = 0.5ϵ D  random in  = 0.7ϵ D
U

D

L R

T(s′ |s, a) = p

Figure 7: Average performance (across 5 seeds) of DoC and baselines on FrozenLake with different
levels of stochasticity (p) and offline dataset quality (ϵ). DoC outperforms RvS and future VAE with
bigger gains the offline data is less optimal.
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G ADDITIONAL ABLATIONS

G.1 VAE WITH STOP GRADIENT

One difference between DoC and VAE is whether there is a stop gradient operation on the posterior
q(z|τ) when minimizing the KL-divergence between q(z|τ) and the prior p(z|s0). We conduct
the ablation below in Figure 8 where we also apply stop gradient to VAE, and observe that VAE’s
performance drops significantly.
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Figure 8: Average performance (across 5 seeds) of DoC and baselines on FrozenLake with different
levels of stochasticity (p) and offline dataset quality (ϵ). DoC outperforms RvS and future VAE with
bigger gains the offline data is less optimal.
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G.2 DOC WITH DIFFERENT REGULARIZATION STRENGTH (β)
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Figure 9: Average performance (across 5 seeds) of DoC with different regularization strength (β).
The effect of β is more pronounced when the dataset is highly optimal (e.g., ϵ random in D = 0.7),
for which we found a smaller β (e.g., 0.1) to generally perform better.

G.3 DOC WITH DIFFERENT NUMBER OF FUTURE SAMPLES (K)
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Figure 10: Average performance (across 5 seeds) of DoC with different number of samples during
inference (K). We found that higher number of samples leads to better performance as we expect,
and the gain beyound 100 samples is negligible.
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