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Abstract

The leap in performance in state-of-the-art computer vision methods is attributed1

to the development of deep neural networks. However it often comes at a com-2

putational price which may hinder their deployment. To alleviate this limitation,3

structured pruning is a well known technique which consists in removing channels,4

neurons or filters, and is commonly applied in order to produce more compact5

models. In most cases, the computations to remove are selected based on a relative6

importance criterion. At the same time, the need for explainable predictive models7

has risen tremendously and motivated the development of robust attribution meth-8

ods that highlight the relative importance of pixels of an input image or feature9

map. In this work, we discuss the limitations of existing pruning heuristics, among10

which magnitude and gradient-based methods. We draw inspiration from attribu-11

tion methods to design a novel integrated gradient pruning criterion, in which the12

relevance of each neuron is defined as the integral of the gradient variation on a13

path towards this neuron removal. Furthermore, we propose an entwined DNN14

pruning and fine-tuning flowchart to better preserve DNN accuracy while removing15

parameters. We show through extensive validation on several datasets, architectures16

as well as pruning scenarios that the proposed method, dubbed SInGE , significantly17

outperforms existing state-of-the-art DNN pruning methods.18

1 Introduction19

Deep neural networks (DNNs) are ubiquitous in modern solutions for most computer vision problems20

such as image classification [1], object detection [2] and semantic segmentation [3]. However, this21

performance was achieved at the price of high computational requirements and memory foot-print.22

As such, over-parameterization [4] is a common trait of well performing DNNs that may hinder their23

deployment on mobile and embedded devices. Furthermore, in the case of deployment on a cloud24

environment, latency and energy consumption are of paramount importance.25

Consequently, compression and acceleration techniques aim at tackling the issue of DNN deployment.26

Among these methods, pruning approaches consist in removing individual weights (unstructured27

pruning) or entire computational blocks, such as neurons channels or filters (structured pruning)28

[5, 6, 7, 8]. The sparsity induced by pruning reduces both the computational cost and the memory29

foot-print of neural networks. To do so, there exists a wide variety of heuristics behind such pruning30

techniques. A few examples are: pruning at initialization [9], grid search [10, 11], magnitude-based31

[12] or redundancy based [7, 13] approaches. Among such heuristics, magnitude-based pruning32

remains the favoured one [14, 15, 16]. It consists in defining a metric to assess the relevance of33

each neuron in the network, with the goal to remove the least important ones while still preserving34

the predictive function as much as possible. An important limitation of these methods lies in the35

choice of this importance criterion: magnitude-based criteria [17] do not take into account the whole36

computations performed in the network (e.g. within the other layers) and gradient-based [18] criteria37
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are intrinsically local within the neighborhood of a current value or set thereof: from this perspective,38

setting a value abruptly to zero might break this locality property.39

To craft a better criterion, we borrow ideas from the field of DNN attribution [19]. These methods40

aim at understanding the behavior of a neural network, i.e., in the case of a computer vision model,41

by providing visual cues of the most relevant regions in a image for the prediction of a network.42

Tools developed to explain individual predictions are also often called visual explanation techniques43

[20, 21, 22, 23, 24]. One example of such model is the Integrated Gradient method [24] that consists44

in defining the contribution of each input by the influence of marginal local changes in the input on45

the final prediction. This provides a fine-grained evaluation of the importance of each pixel of the46

image (alternatively, of an intermediate feature map) in the final decision.47

Our work is based on the idea that DNN pruning and attribution methods share an important notion,48

namely that they both rely on the definition of an importance metric to compare several variables of a49

multidimensional prediction system: for pruning, to remove the least important DNN parameters,50

and, for attribution, to highlight the most important pixels. With this in mind, we propose to adapt the51

integrated gradient method for pruning purposes. Specifically, for each parameter (or set thereof, if52

we consider structured sparsity), we define its importance as an integral of the product between the53

norm of this weight and its attribution along a path between this weight value and a baseline (zero)54

value. By doing so, we avoid pathological cases which less sophisticated gradient-based methods are55

subjected to such as weights that can be reduced but not zeroed-out without harming the accuracy56

of the model. Furthermore, we embed the proposed integrated gradient method within a re-training57

framework to maximize the accuracy of the pruned DNN. We name our method SInGE , standing for58

Sparsity via Integrated Gradients Estimation of neuron relevance. In short, the contributions of this59

paper are the following:60

• We discuss the limitations of existing pruning heuristics, among which magnitude and gradi-61

ent based methods. We draw inspiration from attribution methods to design an integrated62

gradient criterion for estimating the importance of each DNN weight.63

• We entwine the updates of the importance measurement within the fine-tuning flowchart to64

preserve the better DNN accuracy while pruning.65

• The proposed approach, dubbed SInGE, achieves superior accuracy v.s. pruning ratio on66

every tested dataset and architecture, compared with recent state-of-the-art approaches.67

2 Related Work68

2.1 Pruning69

Pruning methods are often classified as either structured [25, 26, 27, 10, 28] (filters, channels or70

neurons are removed) or unstructured [15, 29, 30, 31] (single scalar weight values are set to zero).71

In practice, the former offers straightforward implementation for inference and immediate runtime72

benefits but at the price of a lower number of parameters removed. For instance, in GDP [32], weights73

are pruned with a learned gate that zeroes-out some channels for easier pruning post-training. In CCP74

[33], sparsity is achieved by evaluating the inter-channel dependency and the joint impact of pruned75

and preserved channels on the final loss function. In HAP [34], authors replace less sensitive channels76

based on the trace of the Hessian of predictive function with respect to the weights. Generally77

speaking, these methods rely on defining a criterion to estimate and compare the importance of78

weights in the networks, and remove the least important such candidates. A limitation of these79

methods is that the proposed criteria are usually only relevant within the neighborhood of the current80

value for a considered weight, which can be problematic since abruptly setting this weight value81

might violate this locality principle. In this work, we address this limitation by borrowing ideas from82

the DNN attribution field.83

2.2 Attribution84

Attribution methods, also referred to as visual explanation methods [20, 21, 22, 23, 24] measure85

the importance of each input feature on the prediction. Their use was motivated by the need for86

explainable models [19] as well as constrained learning [35]. We can classify attribution as either87

occlusion-based or gradient-based. The latter usually offers satisfactory results at a much lower88
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Figure 1: Illustration of possible limitations of traditional pruning criteria for 3 distinct cases and neurons (a,b,c).
For a neuron n at layer l we plot the weights norm ||µswnl || and corresponding gradients norm ||∇µswnl ||
of different neurons (a, b and c) for different powers of µs ∈]0; 1[ corresponding to a path towards zeroing
out this neuron. Magnitude-based approaches (a) remove low magnitude neurons regardless of the sensitivity
(gradient norm) of the predictive function w.r.t. these neurons. Gradient-based approaches (b) are limited
by the intrinsic locality of the gradient, and abruptly setting a neuron weights to zero may break this locality
principle. Conversely, our integrated gradient-based approach (c) will prune neuron although it initially has a
high magnitude and gradient, integrating its gradient variations along a path down to zero magnitude.

computational cost. Considering that most DNNs for classification are derivable, Grad-CAM [36]89

computes the gradients of the predictive function with respect to feature maps and weights these90

gradients by the features. The resulting importance maps are then processed by a ReLU function to91

extract the features that should be increased in order to increase the value of the target class. Another92

gradient-based attribution of interest is Integrated-Gradients [24]. In this work, Sundararajan et93

al. propose to sum the gradients of the predictive function with respect to the feature maps over94

a uniform path in the feature space between feature at hand and a reference point. The resulting95

attribution maps are usually sharper than maps obtained by Grad-CAM. In the proposed method, we96

draw inspiration from these methods as we propose to integrate the (local) evolution of the pruning97

criteria throughout a path going from the current weight value down to a baseline (zero) value. This98

way, we can smoothly bring the most irrelevant weights down to zero even using intrinsically local99

criteria such as gradients or gradients per weight norm products.100

3 Methodology101

Let F : D 7→ Rno be a feed forward neural network defined over a domain D ⊂ Rni (e.g. the102

training dataset in most instances) and an output space Rno . The operation performed by a layer fl,103

for l ∈ {1, . . . , L}, is defined by the corresponding weight tensor Wl ∈ Anl−1×nl where A is simply104

R in the case of fully-connected layers and Rk×k in the case of a k × k convolutional layer. For the105

sake of simplicity, we assume in what follows that A = R, i.e. we remove neurons as represented by106

their weight vectors.107

3.1 Simple baseline pruning criteria108

One major component of pruning methods lies in the definition of an importance measurement for109

each neuron. The most straightforward such criterion is based on the magnitude of the weight vectors.110

In such a case, the importance criterion CLp based on the Lp norm ‖ · ‖p, is defined as:111

CLp : (Wl, F,D) 7→ (‖Wn
l ‖p)n∈{1,...,nl} (1)

where Wn
l is the nth column of Wl, corresponding to the weight values associated with the nth neuron112

of layer fl. The transformation CLp operates layer per layer and independently of the rest of network113

F and the domain D. Intuitively, CLp assumes that the least important neurons are the smallest in114

norm because such neurons have a lower impact on the predictions of F . Such a simple criterion115

however face limitations: consider for instance the two first neurons (a) and (b) depicted in Figure116

1 by the purple stars in two-dimensional spaces as function of their magnitude and gradient norm117

respectively denoted ‖Wn
l ‖ and ‖∇Wn

l ‖, for simplicity. However, we can clearly see how these118

local measurements provide a wrong evaluation of the cost of pruning these neurons. In such a case,119
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pruning according to CLp will remove neuron (a) regardless of the fact that the predictive function120

F will be very sensitive to small modification of this neuron, as indicated by the large value of its121

gradients. This is however not the case with the gradient-based pruning criterion C∇p defined as:122

C∇p : (Wl, F,D) 7→
(∥∥∇Wn

l
F (X ∈ D)

∥∥
p

)
n∈{1,...,nl}

(2)

where ∇Wn
l
F (X ∈ D) is the gradient of F with respect to Wl, evaluated on X a sample from D.123

Intuitively, the latter measurement puts more emphasis on neurons that can be modified without124

directly altering the predictive function F . However, a neuron may have a low gradient norm and still125

strongly contribute to the predictive function, e.g. in the case where the weight is large as in the case126

of neuron (b) on Figure 1. To handle this, the norm × gradient criterion CLp×∇p straightforwardly127

combines the best of both worlds:128

CLp×∇p : (Wl, F,D) 7→
(
‖Wn

l ‖p ×
∥∥∇Wn

l
F (X ∈ D)

∥∥
p

)
n∈{1,...,nl}

(3)

3.2 Integrating gradients towards neuron removal129

The importance criterion CLp×∇p in Equation (3) faces another kind of limitation. due to the local130

nature of gradient information: if we consider neuron (b) on Figure 1, this neuron may initially131

(i.e. within a neighborhood of the purple star) have a low gradient norm or even low magnitude132

per gradient norm product. However, the gradient becomes larger as we bring this value down to 0.133

This is due to the fact that ∇Wn
l
F (X ∈ D) only holds within a neighborhood of Wn

l current value,134

and abruptly setting this neuron weights to zero may very well violate this locality principle. Thus,135

inspired from attribution methods, we propose a more global integrated gradient criterion. Formally,136

for neuron n of a layer, l, we define Inl as the following integral:137

Inl =

∫ 1

µ=0

‖∇µWn
l
F (X ∈ D)‖pdµ (4)

Intuitively, we measure the cost of progressively decaying the weights of neuron n and integrating138

the gradient norm throughout. In practice, we approximate Inl with the following Riemann integral:139

CIGp : (Wl, F,D) 7→

(
S∑
s=0

‖µsWn
l ‖p ×

∥∥∇µsWn
l
F (X ∈ D)

∥∥
p

)
n∈{1,...,nl}

(5)

where µ ∈]0; 1[ denotes an update rate parameter. CIGp approximates (Inl )n∈{1,...,nl} up to a140

multiplicative constant. Practically, this criterion measures the cost (as expressed by its gradients) of141

progressively bringing Wn
l down to 0 by S successive multiplication with the update rate parameter142

µ: the higher µ, the more precise the integration at the expanse of increasing number of computations143

S. Also note that, similarly to Equation 2, we can get rid of the weight magnitude term in Equation 5144

to obtain criterion CSGp , based on the sum of gradient norms. Explicitly, we get CSGp : (Wl, F,D) 7→145 (∑S
s=0

∥∥∇µsWn
l
F (X ∈ D)

∥∥
p

)
n∈{1,...,nl}

. In the case depicted on Figure 1, we will prune neuron146

(c) as its gradient quickly diminishes as its magnitude becomes lower, despite high initial values for147

both magnitude and gradient. Thus, the proposed integrated gradients criterion CIGp allows to take148

into account both the magnitude of a neuron’s weights and the sensitivity of the predictive function149

w.r.t. small (local) variations of these weights. Furthermore, it measures the cost of removing this150

neuron by smoothly decaying it, re-estimating the gradient value at each step, hence preserving the151

local nature of gradients.152

3.3 Entwining neuron pruning and fine-tuning153

In order to preserve the accuracy of the network F , we alternate between removing the neurons and154

fine-tuning the pruned network using classical stochastic optimization updates. More specifically,155

given ρ a global pruning target for the whole network F , we define layer-wise pruning objectives156
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(ρl)l∈{1,...,L} such that
∑L
l=1 ρl×Ω(Wl) = ρ×Ω(F ) where Ω(Wl) and Ω(F ) denote the number of157

parameters in Wl and F , respectively. Similarly to [13], we tested several strategies for the per-layer158

pruning rates and kept their per-block strategy. Then, we sequentially prune each layer, starting159

from the first one, by first evaluating the relevance of each neuron (CIGp(Wl, F,D))n∈{1,...,nl} (with160

parameter µ) in layer l. We then rank the neurons by ascending numbers of importance and select161

the first, least important one. Notice at this point that if we remove neuron n we have to recompute162

the criterion CIGp for all other neurons: in fact, during the first pass, the gradients ∇µsWn
l
F (X ∈ D)163

were computed withWn
l 6= 0 and are bound to be altered with the removal of neuron n, thus affecting164

the order of the nl − 1 remaining neuron importance. Last but not least, once layer l is pruned, we165

perform O finetuning steps (which corresponds to O gradient descent optimization steps) to retain166

the network accuracy. This method, dubbed SInGE for Sparsity via Integrated Gradients Estimation167

of neuron importance, is summarized in Algorithm 1.168

Algorithm 1 SInGE Algorithm

Require: neural network F , hyper-parameters : O, µ and (ρl)l∈{1,...,L} and dataset D
for l ∈ {1, . . . , L} do

while pruning_rate(Wl) ≤ ρl do . wait until we reach the goal
evaluate M ← CIGp(Wl, F,D) . magnitude estimation
find n = arg min{M} . find the neuron to prune
set Wn

l ← 0 . the pruning is performed here
for o ∈ {1, . . . , O} do

finetune the whole network F over a batch from D
end for

end while
end for

Empirically, as we show through a variety of experiments that the proposed integrated gradients-based169

neuron pruning, along with efficient entwined fine-tuning allows to achieve superior accuracy vs.170

pruning rate trade-offs, as compared to existing methods.171

4 Experiments172

First, we introduce our experimental setup, including the datasets and architectures as well as the173

implementation details to ensure reproducibility of the results. Second, we validate our approach174

on Cifar10 dataset by showing the interest of the proposed integrated gradient criterion, as well as175

the entwined pruning and fine-tuning scheme. We also compare our results with existing approaches176

on Cifar10. Last but not least, we demonstrate the superior performance of our SInGE method on177

several architectures on ImageNet compared with state-of-the-art approaches for both structured and178

unstructured pruning.179

4.1 Experimental setup180

Datasets and Architectures: we evaluate our models on the two de facto standard datasets for181

architecture compression, i.e. Cifar10 [37] and ImageNet [38]. We use the standard evaluation182

metrics for pruning, i.e. the % of removed parameters as well as the % of removed Floating-point183

operations (FLOPs). We apply our approach on ResNet 56 ([1] with 852K parameters and accuracies184

93.46%) on Cifar10 and ResNet 50 ([1] with 25M parameters and 76.17 accuracy on ImageNet), as185

well as MobileNet v2 [39] backbone on ImageNet with 71.80 accuracy and 3.4M parameters.186

Implementation Details: our implementations are based on tensorflow and numpy python libraries.187

We measured the different pruning criteria using random batches X of 64 training images for both188

Cifar10 and ImageNet and fine-tuned the pruned models with batches of size 128 and 64 for Cifar10189

and ImageNet, respectively. The number of optimization steps varies from 1k to 5k on Cifar10190

and from 5k to 50k on ImageNet, while the original models were trained with batches of size 128191

and stochastic gradient descent of 78k and 2m steps on Cifar10 and ImageNet, respectively. All192

experiments were performed on NVidia V100 GPU. We evaluate our approach both for structured193

and unstructured pruning: for the former, we use µ = 0.9 and µ = 0.95 for ImageNet and Cifar10,194
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layer : l=1 layer : l=25

Figure 2: Visualization, for 5 random neurons and two different layers of a ResNet 56 trained on Cifar10, of the
evolution of

∥∥∇µsWn
l
F (X ∈ D)

∥∥
p

(y axis) as the magnitude ‖µsWn
l ‖p (x axis) is brought to 0.

Table 1: Pruning and accuracy performance of the different pruning criterion on a ResNet 56 trained on Cifar10.
without fine-tuning. We also report the standard deviation over multiple runs.

Pruning target (% FLOPS / parameters) pruning criterion top-1 accuracy

0.0 / 0.0 baseline 93.46

73.03 / 75.00

magnitude CL1 42.01 ± 0.41
magnitude CL2 42.35 ± 0.38
gradients C∇2 77.68 ± 0.52
magnitude × grad CL2×∇2 92.36 ± 0.17
integrated gradients CSG2 93.01 ± 0.07
integrated magnitude × grad CIG2 93.23 ± 0.23

86.46 / 85.00

magnitude CL1 19.14 ± 0.82
magnitude CL2 19.13 ± 0.09
gradients C∇2 28.31 ± 1.75
magnitude × grad CL2×∇2 90.28 ± 0.18
integrated gradients CSG2 91.90 ± 0.15
integrated magnitude × grad CIG2 92.80 ± 0.30

88.10 / 90.00

magnitude CL1 10.00 ± 1<
magnitude CL2 10.00 ± 1<
gradients C∇2 10.00 ± 1<
magnitude × grad CL2×∇2 10.00 ± 1<
integrated gradients CSG2 75.38 ± 1.28
integrated magnitude × grad CIG2 84.54 ± 0.91

respectively. For unstructured pruning, we use µ = 0.8 for ImageNet. In all experiments we195

performed batch-normalization folding from [40] and measured the pruning ratio using the same196

metric as SOSP [41].197

4.2 Empirical Validation198

Pruning Criterion Validation: In Figure 2, we illustrate the evolution of
∥∥∇µsWn

l
F (X ∈ D)

∥∥
p

199

(y axis) as the magnitude ‖µsWn
l ‖p (x axis) is brought to 0. This observation confirms the limitations200

of gradient-based criteria pinpointed in Section 3.2: as the neuron magnitude is progressively decayed,201

the gradient norm (e.g. yellow curves on both plots, as well as red on the left and blue one on the202

right plot) for these neurons rise significantly, making these neurons bad choices for removal despite203

low initial gradient values. This empirical observation suggests that intuition behind the proposed204

criterion CIGp is valid. Table 1 draws a comparison between the different criteria introduced in205

Section 3, applied to prune a ResNet 56 on Cifar10. More specifically, given a percentage of removed206

operations (or equivalently, percentage of removed parameters), we compare the resulting accuracy207
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Table 2: Comparison between post-pruning and entwined pruning and fine-tuning on a ResNet 56 on Cifar10.
% Pruning target (% FLOPS / parameters) fine-tuning # steps top-1 accuracy

86.46 / 85.00

post-pruning 1000 92.59
entwined 1000 93.18

post-pruning 2000 92.66
entwined 2000 93.25

post-pruning 5000 93.13
entwined 5000 93.31

88.10 / 90.00

post-pruning 1000 77.2
entwined 1000 85.38

post-pruning 2000 80.89
entwined 2000 87.52

post-pruning 5000 86.39
entwined 5000 90.02

without fine-tuning. We observe similar trends for the 3 pruning targets: First, using euclidean norm208

performs slightly better than L1: thus, we set p = 2 in what follows. Second, using gradient instead of209

magnitude-based criterion allows to significantly improve the accuracy given a pruning target. Third,210

the magnitude × gradient criterion CL2×∇2 allows to better preserve the accuracy by combining211

the best of both worlds: for instance, with 85% parameters removed, applying CL2×∇2 increases212

the accuracy by 51.97 points compared with C∇2 . However, those simple criteria face limitations213

particularly in the high pruning rate regime (90% parameters removed), where the accuracy of the214

pruned network falls to chance level. Conversely, the proposed integrated gradient-based criteria215

CSG2 and, a fortiori CIG2 allows to preserve high accuracies in such a case. Overall, CIG2 is the best216

criterion, allowing to preserve near full accuracy with both 85% and 85% removed parameters, and217

85.38% accuracy with 90% removed parameters, outperforming the second best method by 8.18218

points. For this reason, we will use this criterion (CIG2 ) in the following experiments. As the pruning219

rate increases, the cost of removing a neuron increases and any ill-advised selection of neuron to220

remove has a growing impact on the accuracy. Consequently, the standard deviation increases as the221

pruning rate increases this is due to the network expressivity going down.222

Fine-tuning Protocol Validation: Table 2 validates our entwined pruning and fine-tuning approach223

with different pruning targets and number of fine-tuning steps. Specifically, for a given total number224

of fine-tuning step, we either perform all these steps at once post-pruning or alternatively spread them225

evenly after pruning each layer in an entwined fashion, as described in Section 3.3. First, we observe226

that simply increasing the number of fine-tuning steps vastly improves the accuracy of the pruned227

model, particularly in the high % removed parameters regime. Moreover, entwining pruning and228

fine-tuning performs consistently better than fine tuning after pruning. This suggests that recovering229

the accuracy is an easier task when performed frequently over small modifications rather than once230

over a significant modification.231

Comparison with state-of-the-art approaches on Cifar10: our approach relies on removing the232

least important neurons, as indicated by criterion CIG2 . We compare with similar recent approaches233

such as LP [42] and DPF [29] as well as other heuristics such as training neural networks in order234

to separate neurons for easier pruning post-training (HAP [34], GDP [32]) or similarity removal235

(RED [13] or LDI [31]). We report the results in Table 3 for two accuracy set-ups: lossless pruning236

(accuracy identical to the baseline model) and lossy pruning (≈ 2 points of accuracy drop). The237

proposed SInGE method significantly outperforms other existing methods by achieving 1.3% higher238

pruning rate in the lossy setup and a considerable 8.1% improvement in lossless pruning rate. As239

such, it bridges the gap with unstructured methods such as LP [42] and DPF [29]. This demonstrates240

the quality of the proposed method.241
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Table 3: State-of-the-art pruning methods performance on ResNet 56 on Cifar10.
top1 accuracy pruning method structured % parameters removed

91.5 ± 0.1

RED [13] 3 85.0
LP [42] 3 84.0
LP [42] 7 92.6
LDI [31] 3 88
DPF [29] 7 90.0
HAP [34] 3 90.0

SInGE (ours) 3 91.3 ± 0.27

93.5 ± 0.1
GDP [32] 3 65.6
HAP [34] 3 76.2

SInGE (ours) 3 84.3 ± 0.71

Table 4: Comparison between existing structured pruning performance on ResNet 50 on ImageNet. In both the
low (< 50% parameters removed) and high (> 50%) pruning regimes, SInGE achieves remarkable results.

Method % params rm % FLOPS rm accuracy

baseline 0.00 0.00 76.15
Hrank (CVPR 2020) [48] 36.67 43.77 74.98
RED (NeurIPS 2021) [13] 39.6 42.7 76.1
HAP (WACV 2022) [34] 44.59 33.82 75.12

SRR-GR (CVPR 2021) [28] - 45 75.76
SOSP (ICLR 2021) [41] 49 45 75.21

SRR-GR (CVPR 2021) [28] - 55 75.11
SInGE 50.80 ± 0.02 57.35 ± 0.11 76.05 ± 0.07

RED (NeurIPS 2021) [13] 54.7 55.0 71.1
SOSP (ICLR 2021) [41] 54 51 74.4
GDP (ICCV 2021) [32] - 55 73.6

HAP (WACV 2022) [34] 65.26 59.56 74.0
OTO (NeurIPS 2021) [43] 64.1 65.2 73.3

GFP (ICML 2021) [49] - 65.0 73.94
SInGE 63.78 ± 0.01 65.96 ± 0.21 74.7 ± 0.31

4.3 Performance on ImageNet242

Structured Pruning: Table 4 summarizes results obtained by current state-of-the-art approaches243

in structured pruning. For clarity we divided these results in the low (<50% parameters removed,244

where the methods are often lossless) and high pruning regime (>50% parameters removed with245

significant accuracy loss). In the low pruning regime, the proposed SInGE method manages to246

remove slightly more than 50% parameters (57.35% FLOPS) with nearly no accuracy loss, which247

significantly improves over existing approaches. Second, in the high pruning regime, other methods248

such as OTO [43] and HAP [34] recently improved the pruning rates by more than 10 points over249

other techniques such as GDP [32] and SOSP [41]. Nonetheless, SInGE is competitive with these250

methods and achieve a higher FLOP reduction while maintaining a higher accuracy.251

We also evaluated the proposed method on the more compact (thus generally harder to prune)252

MobileNet V2 architecture. Results and comparison with existing approaches are shown in Table 5.253

We consider three pruning goals of ≈ 30%, ≈ 40% and ≈ 50% parameters removed. First, with near254

lossless pruning, we achieve results that are comparable to ManiDP-A [44] and Adapt-DCP [45] with255

a marginal improvement in accuracy. Second, when targeting 40% parameters removed we improve256

by 0.89% the accuracy with 2.25% less parameters removed as compared to MDP [46]. Finally, in257

the higher pruning rates, we improve by 0.25% the accuracy with marginally more parameters pruned258

than Accs [47].259
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Table 5: Comparison with existing structured pruning methods on MobileNet V2 backbone for ImageNet.
goal Method % params rm % FLOPS rm accuracy

- baseline 0.00 0.00 71.80

30%

CBS (arxiv 2022) [50] 30.00 - 71.48
Adapt-DCP (TPAMI 2021) [45] 35.01 30.67 71.4
ManiDP-A (CVPR 2021) [44] - 37.2 71.6

SInGE 30.96 31.54 71.67 ± 0.06

40%
CBS (arxiv 2022) [50] 40.00 - 69.37

MDP (CVPR 2020) [46] 43.15 - 69.58
SInGE 40.90 42.30 70.47 ± 0.09

50%

CBS (arxiv 2022) [50] 50.00 - 62.96
Adapt-DCP (TPAMI 2021) - 45.0 64.13
ManiDP-A (CVPR 2021) - 48.8 69.62

Accs (arxiv 2021) [47] 50.00 - 69.76
GFP (ICML 2021) [49] - 50.0 69.16

SInGE 50.13 48.90 70.01 ± 0.22

Table 6: Comparison with existing unstructured pruning techniques on ResNet 50 on ImageNet.
Method % params rm % FLOPS rm top1 accuracy

DS (NeurIPS 2021) [51] 80.47 72.13 76.15
GMP (arxiv 2019) [52] 80.08 - 76.15
STR (ICML 2020) [53] 79.69 81.17 76.00
RigL (ICML 2020) [54] 80.08 58.92 75.00

SInGE 80.00 82.21 75.12
top SInGE 90.00 86.96 73.77

Unstructured Pruning: While being harder to leverage, unstructured pruning usually enables260

significantly higher pruning rates. Table 6 lists several state-of-the-art pruning methods evaluated on261

ResNet 50. We observe a common threshold in performance around 80% parameters and FLOPs262

removed among state-of-the-art techniques. However, the proposed SInGE method manages to263

achieve very good accuracy of 73.77% while breaking the barrier of pruning performance at 90%264

parameters removed and almost 87% FLOPs removed. These results in addition to the previous265

excellent results obtained on structured pruning confirm the versatility of the proposed criterion and266

method for both structured and unstructured pruning.267

5 Conclusion268

In this paper, we pinpointed some limitations of some classical pruning criteria for assessing neuron269

importance prior to removing them. In particular, we showed that magnitude-based approaches did not270

consider the sensitivity of the predictive function w.r.t. this neuron weights, and that gradient-based271

approaches were limited to the locality of the measurements. We drew inspiration on recent DNN272

attribution techniques to design a novel integrated gradients criterion, that consists in measuring the273

integral of the gradient variation on a path towards removing each individual neuron. Furthermore,274

we proposed to entwine this criterion within the fine-tuning steps. We showed through extensive275

validation that the proposed method, dubbed SInGE , achieved superior accuracy v.s. pruning276

ratio as compared with existing approaches on a variety of benchmarks, including several datasets,277

architectures, and pruning scenarios.278

Future work will involve introducing stochasticity in the model weights, similarly to [55], in order to279

smooth the decision function and ultimately the neuron relevance criterion. Lasty, we will combine280

our approach with existing similarity-based pruning methods as well as with other DNN acceleration281

techniques, e.g. tensor decomposition or quantization techniques.282
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