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Abstract

Independent reinforcement learning algorithms have no theoretical guarantees for1

finding the best policy in multi-agent settings. However, in practice, prior works2

have reported good performance with independent algorithms in some domains3

and bad performance in others. Moreover, a comprehensive study of the strengths4

and weaknesses of independent algorithms is lacking in the literature. In this5

paper, we carry out an empirical comparison of the performance of independent6

algorithms on four PettingZoo environments that span the three main categories7

of multi-agent environments, i.e., cooperative, competitive, and mixed. We show8

that in fully-observable environments, independent algorithms can perform on par9

with multi-agent algorithms in cooperative and competitive settings. For the mixed10

environments, we show that agents trained via independent algorithms learn to11

perform well individually, but fail to learn to cooperate with allies and compete12

with enemies. We also show that adding recurrence improves the learning of13

independent algorithms in cooperative partially observable environments.14

1 Introduction15

One of the simplest ways to apply reinforcement learning in multi-agent settings is to assume that16

all agents are independent of each other. In other words, every other agent is seen as part of the17

environment from any agent’s perspective. Independent algorithms (i.e., single-agent algorithms)18

face the issue of non-stationarity in the multi-agent domain due to the violation of the Markovian19

property in a Markov Decision Process [1]. As a result, independent algorithms lack convergence20

guarantees, and are not theoretically sound in the multi-agent setting [2]. Despite these shortcomings,21

independent algorithms have the advantage of requiring lower computational resources and being22

easier to scale to large environments than traditional multi-agent algorithms which perform exact23

opponent modelling of each agent. In practice, prior works have reported mixed performance for24

independent algorithms in different multi-agent domains [3]–[9]. However, a study of the strengths25

and weaknesses of independent algorithms across various categories within the multi-agent domain is26

lacking in the literature.27

In this paper, we investigate the empirical performance of independent algorithms in multi-agent28

settings, and compare them to various multi-agent algorithms under the Centralized Training and De-29

centralized Execution scheme [10], [11]. We evaluate these algorithms on 4 multi-agent environments30

from the PettingZoo library [12], which span the 3 main categories of multi-agent environments (i.e.,31

cooperative, competitive and mixed) [13]–[16]. We show that independent algorithms can perform on32

par with multi-agent algorithms in the cooperative, fully-observable setting, and adding recurrence33

allows them to perform well compared to multi-agent algorithms in partially observable environments.34

In the competitive setting, we show that parameter sharing alongside the addition of agent indicators35

allow independent algorithms to outperform some multi-agent algorithms, such as Multi-Agent36

Proximal Policy Optimization [17], and Multi-Agent Deep Deterministic Policy Gradient [8], in37



fully-observable environments. For the mixed setting, we show that agents of independent algorithms38

learn to perform well individually, but fail in learning to cooperate with allies and compete against39

enemies.40

2 Background Information41

In this section, we provide readers with a brief overview of the various concepts and algorithms that42

are used throughout the paper.43

2.1 Reinforcement Learning44

In Reinforcement Learning (RL), an agent interacts with the environment by making sequential45

decisions [18]. At every time step, denoted as t, the agent observes a state st from the environment,46

and takes an action at. This action is executed in the environment, which returns a reward rt and the47

next state st+1 that are determined by the reward function R(st, at) and the transition probability,48

P (st+1|st, at), respectively. Critically, R(st, at) and P (st+1|st, at) are part of the environment, and49

are usually unknown to the agent of a model-free RL algorithm. Since the transition probability50

P (st+1|st, at) conditions the next state st+1 purely on the current state st and action at, it satisfies51

the Markov property [19]. This interaction between the agent and the environment is called a Markov52

Decision Process (MDP) [20]. The objective of an RL agent is to learn a policy π(at|st), which maps53

a state to an action that maximizes the expected cumulative reward it receives from the environment.54

This is written as
∑

t γ
trt, where γ ∈ [0, 1) represents a discount factor on future rewards.55

2.2 Multi-Agent Reinforcement Learning56

The single-agent MDP framework is extended to the Multi-Agent Reinforcement Learning (MARL)57

setting in the form of stochastic games [21]. In an N -agent stochastic game, at every time step,58

each of the n agents, identified by j ∈ {1, 2, . . . , n} across all agents, takes an action ujt . The joint59

action ut , {u1t , . . . , uNt } determines the rewards obtained by each agent. State transitions of the60

environment are determined by the transition probability P (st+1|st, ut), which conditions on the61

state and the joint action at timestep t.62

2.3 Centralized Training and Decentralized Execution63

While it is technically possible to learn a centralized controller that maps a state to a distribution64

over the joint action space, the number of possible combinations of actions grows exponentially65

with the number of agents. This makes centralized control intractable for environments with many66

agents. Therefore, this paper is mainly focused on multi-agent algorithms which correspond to a67

Centralized Training and Decentralized Execution (CTDE) scheme [10], [11]. A CTDE algorithm68

has two phases. During the control phase, where policies are deployed in the environment, rather69

than using a centralized controller to take actions for all agents, decentralized agents make decisions70

based on their individual observations. During the prediction phase, centralized training is performed,71

which allows for extra information (e.g. the state) to be utilized, as long as this is not required during72

the control phase.73

2.4 Cooperative, Competitive and Mixed74

This paper follows the convention of classifying every multi-agent algorithm and environment studied75

into one of three categories – cooperative, competitive, or mixed (cooperative-competitive) [13]–[16].76

In the cooperative setting, agents collaborate with each other to achieve a common goal. As a result,77

it is very common for all agents to share the same reward function (i.e., a team goal) [22]. Also78

known as the multi-agent credit assignment problem, every agent has to deduce its own contributions79

from the team reward [22]. Algorithms studied in this paper that explicitly address the multi-agent80

credit-assignment problem include QMIX [9] and Counterfactual Multi-Agent Policy Gradients81

(COMA) [7]. Additionally, the CommNet [23] extension on top of COMA is utilized for specific82

cooperative environments. Other multi-agent algorithms that are considered for the cooperative83

scenario include Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [8] and Multi-Agent84

Proximal Policy Optimization (MAPPO) [17].85
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(a) Space In-
vaders (Atari,
cooperative)

(b) Simple Reference
(MPE, cooperative)

(c) Pong (Atari,
competitive)

(d) Simple Tag
(MPE, mixed)

Figure 1: The four PettingZoo environments used in the experiments. All figures were obtained from
https://pettingzoo.ml/

In the competitive setting, agents play a zero-sum game, where one agent’s gain is another agent’s86

loss. In other words,
∑

a r(s, u, a) = 0∀s, u. Algorithms that are studied specifically in this paper87

include Deep Reinforcement Opponent Network (DRON) [24], MADDPG and MAPPO. MADDPG88

and MAPPO learn a separate critic for every agent, which gives the algorithms flexibility to learn89

different behaviours for agents with different reward functions.90

In a mixed or cooperative-competitive setting, environments are neither zero-sum (competitive) nor91

cooperative, and they do not necessarily need to be general-sum either. A common setting would92

be environments that require every agent to cooperate with some agents, and compete with others93

[13]–[15]. MADDPG and MAPPO are used here for the same reason as the competitive setting.94

2.5 Independent Algorithms and Non-Stationarity95

One naive approach for applying single-agent RL to the multi-agent setting would be the use of96

independent learners, where each agent treats every other agent as part of the environment, and learns97

purely based on individual observations. In a multi-agent setting, the transition probability P and98

reward function R are conditioned on the joint action u. Since all agents in the environment are99

learning, their policies constantly change. Therefore, from each independent learner’s perspective, the100

transition probability and reward function appear non-stationary, due to the lack of awareness of other101

agents’ actions. This violates the Markovian property of an MDP, which then causes independent102

algorithms to be slow to adapt to other agents’ changing policies, and as a result, face difficulties in103

converging to a good policy [24]–[26].104

In this paper, we chose to use a popular off-policy algorithm, Deep Q-Network (DQN) [27], and105

an on-policy algorithm, Proximal Policy Optimization (PPO) [28]. In specific partially observable106

environments, Deep Recurrent Q-Network (DRQN) [29] is also utilized. Following the work of107

Gupta et al. [30], parameter sharing is utilized for all independent algorithms, such that experiences108

from all agents are trained simultaneously using a single network. This allows the training to be more109

efficient [30]. The aforementioned independent algorithms are tested in all 3 categories of multi-agent110

environments.111

3 Experimental Setup112

In this section, we introduce the environments used for the experiments, specify the various prepro-113

cessing that were applied, and other relevant implementation details.114

3.1 Environments115

The experiments were performed on multiple multi-agent environments from the PettingZoo library116

[12], which contains the Multi-Agent Particle Environments (MPE) [8], [31] and multi-agent variants117

of the Atari 2600 Arcade Learning Environment (ALE) [32], [33].118

For the cooperative setting, experiments were performed on a modified version of the 2-player119

Space Invaders [32], [33], and the Simple Reference MPE environment [8], [31]. In Space Invaders120

(Fig. 1a), both agents share the common goal of shooting down all aliens. To make Space Invaders121

cooperative, we removed the (positive) reward that is given to a player whenever the other player122
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gets hit. Additionally, the environment rewards every agent individually by default. Since a number123

of cooperative multi-agent algorithms (e.g., QMIX and COMA) assume that only a team reward is124

given, we modified the reward function such that a team reward is given instead (i.e., both agents125

receive the sum of their individual rewards). This setup exemplifies the multi-agent credit assignment126

problem, the effect of which is studied more closely in the Section 4.1.1. On the other hand, in the127

Simple Reference environment (Fig. 1b), two agents are rewarded by how close they are to their128

target landmark. However, the target landmark of an agent is only known by the other agent, as a129

result communication is required for both agents to navigate successfully to their target landmarks.130

For the competitive setting, we performed experiments on the 2-player variant of the original Atari131

Pong environment (Fig. 1c). For the mixed setting, we opted for the Simple Tag MPE environment132

(Fig. 1d), which is a Predator-Prey environment [31]. This environment consists of 4 agents – 3133

predators and a prey. The prey travels faster and has to avoid colliding with the predators, while the 3134

predators travel slower and have to work together to capture the prey. The rewards received by the135

prey and a predator sum to 0 (i.e., the prey gets a negative reward for collision, while the predators get136

rewarded positively), and all predators receive the same reward. The prey is also negatively rewarded137

if it strays away from the predefined area (a 1 × 1 unit square). This environment is general-sum138

because it contains 3 predators and a single prey.139

3.2 Preprocessing140

For the MPE environments, no preprocessing was done, and default environment-parameters were141

used for all MPE experiments.142

For the Atari environments, following the recommendations of Marlos et al. [34], we performed the143

following preprocessing - reward clipping, sticky actions, frame skipping, and no-op resets. The144

number of steps per episode was also set to a limit of 200 for both Atari environments, as that145

yielded the best results in general. Furthermore, the action spaces for both Atari environments were146

shrunk to their effective action spaces in order to improve learning efficiency. For Pong specifically,147

we also concatenated a one-hot vector of the agent’s index to the observations so that independent148

algorithms can differentiate one from the other when parameter sharing is utilized. Further details of149

the preprocessing performed can be found in Appendix A.150

3.3 Implementation151

Implementations of all algorithms were based on open-sourced libraries/reference implementations.152

Default hyperparameters were used for all algorithms, and no hyperparameter tuning was performed.153

Details of implementations, alongside their hyperparameters, can be found in Appendix C.154

All experiments were performed across 5 different seeds. Parameter sharing was utilized for all155

algorithms throughout the experiments for all environments with homogeneous state and action156

spaces. For multi-agent algorithms that perform centralized training (e.g., QMIX, COMA, MADDPG157

etc.), the global states were represented by the concatenation of all agents’ local observations. We158

also used the 128-byte Atari RAM as state inputs, rather than visual observations. This allows the159

algorithms to focus their learning on control rather than on both control and perception, improving160

learning efficiency.161

4 Experiment Results162

In this section, we highlight the experiments performed on the four multi-agent environments (i.e.,163

Simple Reference, Space Invaders, Pong and Simple Tag), and provide discussions about the obtained164

results.165

4.1 Cooperative166

Simple Reference We ran the various algorithms on the Simple Reference environment for 240k167

episodes (6×106 steps). From Fig. 2a, it could be observed that all independent algorithms converged168

to a lower score, except for DRQN, whose recurrence allowed it to vastly outperform DQN and169

converge to a score on par with multi-agent algorithms. However, this trend was not observed170

when comparing MAPPO to its recurrent variant (i.e., RMAPPO), as MAPPO performs equally171
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(a) Simple Reference (b) Space Invaders

Figure 2: Training curves of various algorithms in two cooperative environments. For every algorithm,
the solid line represents the mean reward per episode, while the shaded region represents the 95%
confidence interval around the mean.

well as RMAPPO. We hypothesize that since MAPPO’s centralized critic learns based on the joint172

observation and action of both agents, this minimizes the amount of partial observability of every173

agent, and allows each agent to learn to communicate with other agents effectively without recurrence.174

In contrast, for independent algorithms, such as DQN, where the interactions between the agents are175

not explicitly learned (since all other agents are treated as part of the environment), adding recurrence176

could help mitigate some resulting partial observability, hence improving their performance, as177

described above.178

Space Invaders Unlike the Simple Reference environment, the Space Invaders environment seemed179

to favour non-recurrent variants of algorithms (Fig. 2b). MAPPO vastly outperformed RMAPPO, and180

similarly DQN outperformed DRQN. This is also likely the underlying reasoning behind the compar-181

atively poorer performance of the multi-agent algorithms, such as QMIX, COMA and CommNet, all182

of which were implemented with recurrent neural networks under the CTDE scheme.183

Additionally, since there is no unit collision in the Space Invaders environment (i.e., agents can move184

past each other without being blocked), they do not have to coordinate between themselves to achieve185

a high score in the environment; a good policy can be learned solely by having agents maximize their186

individual rewards. This explains the strong performance that was achieved by DQN. Also, since this187

is a cooperative task with both agents having identical goals, learning separate representations for188

individual agents is not very important; the learning of both agents assist each other. This is shown189

in Fig. 6b in Appendix B, where the addition of an agent indicator did not yield any performance190

improvement for DQN on Space Invaders.191

Given such circumstances, it is interesting to observe the stronger performance of MAPPO com-192

pared to the independent algorithms. By conditioning on the joint action, MAPPO’s critic has full193

observability into the joint action that resulted in the team reward. Therefore, the observed reward is194

unbiased, which allows the learning process to be more efficient. In contrast, independent algorithms195

have to learn from a noisy team reward signal, where an agent could receive a large positive team196

reward even when it did nothing. This relates to the problem of credit assignment in MARL, noted in197

prior works [35].198

4.1.1 Multi-Agent Credit Assignment Problem in Fully Observable Settings199

In this section, we attempt to study the effect of using a team reward signal, rather than individual200

reward signals on various independent and multi-agent algorithms in a fully observable environment.201

When team rewards are the only rewards given, these reward signals are noisy for independent202

algorithms because the agent, which treats every other agent as part of the environment, does not203

know the actions taken by other agents. This makes it difficult for independent algorithms’ agents to204

learn how their individual actions contribute to the team reward signal. We performed the experiments205

on Space Invaders, in which the default agents receive individual rewards from the environment. To206

5



(a) DQN (b) MAPPO

(c) RMAPPO

Figure 3: Training curves of various algorithms in Space Invaders, comparing when individual
rewards are given (blue) to when team rewards are given (orange).

study the effect of the multi-agent credit assignment problem, we performed two runs per algorithm,207

one with team rewards only, and the other with individual rewards only (i.e., agents are rewarded208

independently by the environment).209

For multi-agent algorithms, such as MAPPO (Fig. 3b) and RMAPPO (Fig. 3c), having a team reward210

does not have a large effect on the performance of the algorithms. This is expected because these211

algorithms have critics that learn from the joint action, which allow them to implicitly learn the212

estimated contribution of every agent without factorization.213

On similar lines, regarding independent algorithms, we observe that having team rewards instead of214

individual ones do not impact their performance adversely (Fig. 3a). A plausible explanation could215

be that since all agents receive the same reward for a given joint action, this allows the independent216

algorithms to correlate actions from different agents that produced similar (high) rewards.217

4.2 Competitive218

The 2-player Pong environment was used for the competitive setting. All algorithms were first trained219

using parameter sharing with the addition of agent indicators (the effect of which is detailed in220

Appendix B) for 60k episodes (1.2× 106 steps), their network parameters were then saved. Since221

Pong is a zero-sum game, we evaluated them by putting them head-to-head against each other for 3222

episodes for all possible combinations. After that, their positions were swapped, and the entire process223

was repeated. Swapping their positions is crucial for evaluation, because the first player (playing the224

right paddle) is always the serving player, therefore the first player always has an advantage over225

the second player (which plays the left paddle). This advantage is further exacerbated because the226

winning side always gets to serve subsequent openings. The entire evaluation process was repeated227

across all 5 seeds.228
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(a) Number of games won as the first player (b) Number of games won as the second player

(c) Overall win rate percentage

Figure 4: Performance of various algorithms when playing against other algorithms in Pong.

From the stacked bar charts shown in Fig. 4, a similar trend across the number of games won as229

the first and second player can be observed (Fig. 4a and 4b). DRON is consistently the best player,230

closely followed by DQN. Both of these algorithms were also the only algorithms to have a win rate231

of greater than 50% for the games they have played (Fig. 4c).232

An interesting observation that can be made is the strong performance of independent algorithms,233

compared to other multi-agent algorithms. Since Pong is fully observable, critics that learn based on234

the joint observation of both agents do not necessarily provide any new information. Furthermore,235

since Pong is a highly reactive environment, an agent can learn a good policy solely by understanding236

how to position its paddle according to the trajectory of the ball (towards the agent). While learning237

on the joint action could allow agents to learn to better predict the incoming trajectory of the ball, it238

can be observed that the additional layer of complexity causes the sample efficiency to decrease and239

only yields diminishing returns.240

In addition to the above factors, it is possible that parameter sharing benefited agents of independent241

algorithms by allowing them to learn better representations of both players, since they were trained242

to play as both players simultaneously. Had these algorithms trained without parameter sharing,243

there would likely be a larger performance difference between independent algorithms and opponent244

modelling algorithms such as DRON. Instead of treating other agents as part of the environment,245

opponent modelling allows agents to adapt more quickly to the opponent’s changing strategies [24].246

However, the minimal improvement DRON has over DQN suggests that in the Pong environment,247

an agent’s policy may not be significantly affected by changes in the opponent agent’s policy (i.e.,248

individual agents can play the same way regardless of how their opponent played).249

4.3 Mixed250

In the Simple Tag (i.e., Predator-Prey) environment, the predators are incentivized to cooperate251

together to trap the prey, while the prey is incentivized to dodge the predators while staying within252

a predefined area. For our method of evaluation, we plot the training curves of the prey (Fig. 5b),253
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(a) Reward of a predator; all predators obtain the same
reward

(b) Reward of the prey

Figure 5: Training curves of various algorithms in the Simple Tag, a Predator-Prey environment

and one of the predators (Fig. 5a), since all predators receive the same reward. Since the observation254

and action spaces differ between the predators and the prey, none of the agents have their parameters255

shared. We chose not to share the parameters of the predators to ensure that bias towards the predators256

was not introduced (since they would have 3 times the amount of data to work with compared to the257

prey).258

In the case of DQN, the prey successfully learned to minimize the number of collisions with the259

predators, which can be observed by the strong performance achieved by the prey (Fig. 5b). However,260

similar to PPO, since the predators were trained completely independently (i.e., their parameters261

were not shared), they did not manage to learn how to cooperate with one another to capture the prey262

(Fig. 5a). It is interesting to observe that MADDPG converged to a policy similar to DQN, with263

the difference being that its predators have learned to cooperate better, thus getting slightly higher264

rewards compared to DQN’s predators (Fig. 5a). Subsequently, as a result of the higher rewards265

obtained by the predators, MADDPG achieves a slightly lower score for its prey (Fig. 5b).266

MAPPO and RMAPPO, on the other hand, learned a different strategy. As we can observe from267

the comparatively noisier curves obtained from their predators and preys (Fig. 5a and 5b), there is268

a constant tug-of-war between the prey and the predators - as the predators learn how to cooperate269

better, their scores increase, which subsequently causes the prey to learn how to dodge, decreasing270

the predators’ scores, and vice versa. Since the predators of MAPPO and RMAPPO achieves a much271

higher score compared to all other algorithms, this is indicative that the predators have successfully272

learned to cooperate to trap the prey.273

5 Conclusion274

Cooperative In the cooperative setting, for environments where individual agents have full observ-275

ability such as Space Invaders, we showed that independent algorithms can perform even better than276

certain multi-agent algorithms. Furthermore, we showed that independent algorithms are able to277

cope well with the multi-agent credit assignment problem in environments that are fully observable278

with a relatively small number of agents, and where every agent has the same task. On the other279

hand, in the Simple Reference environment where the need for agents to communicate induces280

partial observability, adding recurrence allowed independent algorithms to perform as well as other281

multi-agent algorithms. We also discussed the significance of learning on the joint observation and282

action, rather than individual ones, and showed that MAPPO performs as well as DRQN in the Simple283

Reference environment, without the need for an RNN. Moreover, in Space Invaders, MAPPO was284

able to consistently achieve the highest score amongst all other algorithms.285

Competitive In the Pong environment, we saw that DRON and DQN were able to outperform all286

other algorithms. We argued that this is due to the fully observable nature of the Pong environment,287

in addition to the diminishing returns that learning from joint actions could yield. Furthermore, we288
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showed that with the use of agent indicators, independent algorithms were able to learn robust policies289

for both competing agents using parameter sharing.290

Mixed In the Predator-Prey environment, we saw that since there were no parameter sharing to291

induce cooperation, predators from independent algorithms were unable to learn how to cooperate292

with each other to capture the prey. Conversely, in DQN we saw that its prey was able to achieve the293

highest score consistently, showing that the prey has learned to dodge the predators effectively while294

staying within the predefined area. Interestingly, we also saw how MADDPG’s training curve for295

its predators and prey shows resemblance to that of DQN, suggesting that it also faced difficulties296

in learning strategies for the predators to coordinate and capture the prey. MAPPO and RMAPPO,297

on the other hand, were the only algorithms that managed to achieve high scores for their predators,298

suggesting that their predators have learned how to collaborate with each other to hunt the prey.299

The noisiness of their graphs suggest that there is a constant tug-of-war between the prey and the300

predators, as one tries to outsmart the other.301

6 Future Work302

In this section, we highlight some future work that could potentially bring more insights into having303

a broader understanding of dealing with non-stationarity and partial observability for independent304

algorithms, both of which are common in the multi-agent setting. In the Space Invaders environment,305

we observed that independent algorithms were able to learn well with just a team reward. Future work306

could be done to determine if this was only the case for fully observable environments, or under what307

conditions would independent algorithms still be able to cope with the multi-agent credit assignment308

problem. It would also be interesting to study the performance of non-recurrent variants of multi-309

agent algorithms such as QMIX and COMA in fully observable environments. Since the experiments310

performed in this paper only included fully-observable competitive and mixed environments, future311

work can also include a more diverse set of environments, such as partially observable competitive312

and mixed environments.313
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S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto,329

J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang,330

Dota 2 with large scale deep reinforcement learning, 2019. arXiv: 1912.06680 [cs.LG].331

[7] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy332

gradients,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018.333

[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/11794.334

[8] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, Multi-agent actor-critic for mixed335

cooperative-competitive environments, 2020. arXiv: 1706.02275 [cs.LG].336

[9] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “QMIX: Mono-337

tonic value function factorisation for deep multi-agent reinforcement learning,” in Proceedings of the338

35th International Conference on Machine Learning, J. Dy and A. Krause, Eds., ser. Proceedings of339

Machine Learning Research, vol. 80, PMLR, Jul. 2018, pp. 4295–4304. [Online]. Available: http:340

//proceedings.mlr.press/v80/rashid18a.html.341

9

https://proceedings.neurips.cc/paper/1999/file/e8d92f99edd25e2cef48eca48320a1a5-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/e8d92f99edd25e2cef48eca48320a1a5-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/e8d92f99edd25e2cef48eca48320a1a5-Paper.pdf
https://arxiv.org/abs/1401.8074
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395
https://arxiv.org/abs/1912.06680
https://ojs.aaai.org/index.php/AAAI/article/view/11794
https://arxiv.org/abs/1706.02275
http://proceedings.mlr.press/v80/rashid18a.html
http://proceedings.mlr.press/v80/rashid18a.html
http://proceedings.mlr.press/v80/rashid18a.html


[10] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as a rehearsal for decentralized342

planning,” Neurocomputing, vol. 190, pp. 82–94, 2016, ISSN: 0925-2312. DOI: https://doi.org/343

10.1016/j.neucom.2016.01.031. [Online]. Available: https://www.sciencedirect.com/344

science/article/pii/S0925231216000783.345

[11] F. A. Oliehoek, M. T. J. Spaan, and N. A. Vlassis, “Optimal and approximate q-value functions for346

decentralized pomdps,” CoRR, vol. abs/1111.0062, 2011. arXiv: 1111 . 0062. [Online]. Available:347

http://arxiv.org/abs/1111.0062.348

[12] J. K. Terry, B. Black, M. Jayakumar, A. Hari, R. Sullivan, L. Santos, C. Dieffendahl, N. L. Williams,349

Y. Lokesh, C. Horsch, et al., “Pettingzoo: Gym for multi-agent reinforcement learning,” arXiv preprint350

arXiv:2009.14471, 2020.351

[13] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent reinforcement352

learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),353

vol. 38, no. 2, pp. 156–172, 2008. DOI: 10.1109/TSMCC.2007.913919.354

[14] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, and S. Spanò, “Multi-agent355

reinforcement learning: A review of challenges and applications,” Applied Sciences, vol. 11, no. 11, 2021,356

ISSN: 2076-3417. DOI: 10.3390/app11114948. [Online]. Available: https://www.mdpi.com/2076-357

3417/11/11/4948.358
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