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Abstract Sparse Neural Networks (SNNs) can potentially demonstrate similar performance to their 4

dense counterparts while saving significant energy and memory at inference. However, 5

the accuracy drop incurred by SNNs, especially at high pruning ratios, can be an issue in 6

critical deployment conditions. While recent works mitigate this issue through sophisticated 7

pruning techniques, we shift our focus to an overlooked factor: hyperparameters and 8

activation functions. Our analyses have shown that the accuracy drop can additionally 9

be attributed to (i) Using ReLU as the default choice for activation functions unanimously, 10

and (ii) Fine-tuning SNNs with the same hyperparameters as dense counterparts. Thus, 11

we focus on learning a novel way to tune activation functions for sparse networks and 12

combining these with a separate hyperparameter optimization (HPO) regime for sparse 13

networks. By conducting experiments on popular DNNmodels (LeNet-5, VGG-16, ResNet-18, 14

and EfficientNet-B0) trained on MNIST, CIFAR-10, and ImageNet-16 datasets, we show that 15

the novel combination of these two approaches, dubbed Sparse Activation Function Search, 16

short: SAFS, results in up to 15.53%, 8.88%, and 6.33% absolute improvement in the accuracy 17

for LeNet-5, VGG-16, and ResNet-18 over the default training protocols, especially at high 18

pruning ratios.
1

19

1 Introduction 20

Deep Neural Networks, while having demonstrated strong performance on a variety of tasks, are 21

computationally expensive to train and deploy. When combined with concerns about privacy, 22

energy efficiency, and the lack of stable connectivity, this led to an increased interest in deploying 23

DNNs on resource-constrained devices like micro-controllers and FPGAs (Chen and Ran, 2019). 24

Recent works have tried to address this problem by reducing the enormous memory footprint 25

and power consumption of DNNs. These include quantization (Zhou et al., 2017), knowledge 26

distillation (Hinton et al., 2015), low-rank decomposition (Jaderberg et al., 2014), and network 27

sparsification using unstructured pruning (a.k.a. Sparse Neural Networks) (Han et al., 2015). 28

Among these, Sparse Neural Networks (SNNs) have shown considerable benefit through their 29

ability to remove redundant weights (Hoefler et al., 2021). However, they suffer from accuracy 30

drop, especially at high pruning ratios; e.g., Mousavi et al. (2022) report ≈54% reduction in top-1 31

accuracy for MobileNet-v2 (Sandler et al., 2018) trained on ImageNet as compared to non-pruned. 32

While significant blame for this accuracy drop goes to sparsification itself, we identified two 33

underexplored, pertinent factors that can additionally impact it: (i) The activation functions of the 34

sparse counterparts are never optimized, with the Rectified Linear Unit (ReLU) (Nair and Hinton, 35

2010) being the default choice. (ii) The training hyperparameters of the sparse neural networks are 36

usually kept the same as their dense counterparts. 37

A natural step, thus, is to understand how the activation functions impact the learning process 38

for SNNs. Previously, Jaiswal et al. (2022) and Tessera et al. (2021) have demonstrated that ReLU 39

reduces the trainability of SNNs since sudden changes in gradients around zero result in blocking 40

gradient flow. Additionally, Apicella et al. (2021) have shown that a ubiquitous activation function 41

cannot prevent typical learning problems such as vanishing gradients. While the field of Automated 42
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Machine Learning (AutoML) (Hutter et al., 2019) has previously explored optimizing activation 43

functions of dense DNNs (Ramachandran et al., 2018; Loni et al., 2020; Bingham et al., 2020), most of 44

these approaches require a huge amount of computing resources (up to 2000 GPU hours (Bingham 45

et al., 2020)), resulting in a lack of interest in activation function optimization for various deep 46

learning problems. On the other hand, attempts to improve the accuracy of SNNs either use sparse 47

architecture search (Fedorov et al., 2019; Mousavi et al., 2022) or sparse training regimes (Srinivas 48

et al., 2017). To our knowledge, there is no efficient approach for optimizing activation functions 49

on SNN training. 50

Paper Contributions: (i) We analyze the impact of activation functions and training hyper- 51

parameters on the performance of sparse CNN architectures. (ii) We propose a novel AutoML 52

approach, dubbed SAFS, to tweak the activation functions and training hyperparameters of sparse 53

neural networks to deviate from the training protocols of their dense counterparts. (iii) We demon- 54

strate significant performance gains when applying SAFS with unstructured magnitude pruning to 55

LeNet-5 on the MNIST (LeCun et al., 1998) dataset, VGG-16 and ResNet-18 networks trained on the 56

CIFAR-10 (Krizhevsky et al., 2014) dataset, and ResNet-18 and EfficientNet-B0 networks trained 57

on the ImageNet-16 (Chrabaszcz et al., 2017) dataset, when compared against the default training 58

protocols, especially at high levels of sparsity. 59

2 Related Work 60

To the best of our knowledge, SAFS is the first automated framework that tweaks the activation 61

functions of sparse neural networks using a multi-stage optimization method. Our study also 62

sheds light on the fact that tweaking the hyperparameters plays a crucial role in the accuracy of 63

sparse neural networks. Improving the accuracy of sparse neural networks has been extensively 64

researched in the past. Prior studies are mainly categorized as (i) recommending various criteria for 65

selecting insignificant weights, (ii) pruning at initialization or training, and (iii) optimizing other 66

aspects of sparse networks apart from pruning criteria. In this section, we discuss these methods 67

and compare them with SAFS, and briefly review state-of-the-art research on optimizing activation 68

functions of dense networks. 69

2.1 Sparse Neural Network Optimization 70

Pruning InsignificantWeights. A number of studies have proposed to prune the weight parameters 71

below a fixed threshold, regardless of the training objective (Han et al., 2015; Li et al., 2016; Zhou 72

et al., 2019). Recently, Azarian et al. (2020) and Kusupati et al. (2020) suggested layer-wise trainable 73

thresholds for determining the optimal value for each layer. 74

Pruning at Initialization or Training. These methods aim to start sparse instead of first pre- 75

training a dense network and then pruning it. To determine which weights should remain active 76

at initialization, they use criteria such as using the connection sensitivity (Lee et al., 2018) and 77

conservation of synaptic saliency (Tanaka et al., 2020). On the other hand, Mostafa and Wang 78

(2019); Mocanu et al. (2018); Evci et al. (2020) proposed to leverage information gathered during the 79

training process to dynamically update the sparsity pattern of kernels. 80

Miscellaneous Sparse Network Optimization. Evci et al. (2019) investigated the loss landscape 81

of sparse neural networks and Frankle et al. (2020) addressed how it is impacted by the noise of 82

Stochastic Gradient Descent (SGD). Finally, Lee et al. (2020) studied the effect of weight initialization 83

on the performance of sparse networks. While our work also aims to improve the performance of 84

sparse networks and enable them to achieve the same performance as their dense counterparts, we 85

instead focus on the impact of optimizing activation functions and hyperparameters of the sparse 86

neural networks in a joint HPO setting. 87
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2.2 Activation Function Search 88

Inappropriate selection of activation functions results in information loss during forward prop- 89

agation and the vanishing and/or exploding gradient problems during backpropagation (Hayou 90

et al., 2019). To find the optimal activation functions, several studies automatically tuned activation 91

functions for dense DNNs, being based on either evolutionary computation (Bingham et al., 2020; 92

Basirat and Roth, 2021; Nazari et al., 2019), reinforcement learning (Ramachandran et al., 2018), or 93

gradient descent for devising parametric functions (Tavakoli et al., 2021; Zamora et al., 2022). 94

Despite the success of these methods, automated tuning of activation functions for dense 95

networks is unreliable for the sparse context since the search spaces for activation functions for 96

dense networks are not optimal for sparse networks (Dubowski, 2020). The same operations that 97

are successful in dense networks can drastically diminish network gradient flow in sparse networks 98

(Tessera et al., 2021). Additionally, existing methods suffer from significant search costs; e.g., 99

Bingham et al. (2020) required 1000 GPU hours per run on NVIDIA
®
GTX 1080Ti. Jin et al. (2016) 100

showed the superiority of SReLU over ReLU when training sparse networks as it improves the 101

network’s gradient flow. However, SReLU requires learning four additional parameters per neuron. 102

In the case of deploying networks with millions of hidden units, this can easily lead to considerable 103

computational and memory overhead at inference time. SAFS, on the other hand, unifies local 104

search on a meta-level with gradient descent to create a two-tier optimization strategy and obtains 105

superior performance with faster search convergence compared to the state-of-the-art. 106

3 Preliminaries 107

In this section, we develop notations for the later sections by formally introducing the two problems 108

that we address: Network Sparsification and Hyperparameter Optimization. 109

3.1 Network Sparsification 110

Network sparsification is an effective technique to improve the efficiency of DNNs for applications 111

with limited computational resources. Zhan and Cao (2019) reported that network sparsification 112

could facilitate saving ResNet-18 inference time trained on ImageNet on mobile devices by up to 113

29.5×. Network sparsification generally consists of three stages: 114

1. Pre-training: Train a large, over-parameterized model. Given a loss metric L𝑡𝑟𝑎𝑖𝑛 and network 115

parameters 𝜽 , this can be formulated as the task of finding the parameters 𝜽★
𝑝𝑟𝑒 that minimize 116

L𝑡𝑟𝑎𝑖𝑛 on training data D𝑡𝑟𝑎𝑖𝑛 : 117

𝜽★
𝑝𝑟𝑒 ∈ argmin

𝜽 ∈𝚯

[
L𝑡𝑟𝑎𝑖𝑛 (𝜽 ;D𝑡𝑟𝑎𝑖𝑛)

]
(1)

2. Pruning: Having trained the dense model, the next step is to remove the low-importance weight 118

tensors of the pre-trained network. This can be done layer-wise, channel-wise, and network- 119

wide. The usual mechanisms either simply set a certain percentage of weights (pruning ratio) to 120

zero, or learn a Boolean mask 𝒎★
over the weight vector. Both of these notions can be generally 121

captured in a manner similar to the dense training formulation but with a separate loss metric 122

L𝑝𝑟𝑢𝑛𝑒 . The objective here is to obtain a pruning mask 𝒎★
, where ⊙ represents the masking 123

operation and 𝑁 represents the size of the mask: 124

𝒎★ ∈ argmin

𝒎∈{0,1}𝑁

[
L𝑝𝑟𝑢𝑛𝑒 (𝜽★

𝑝𝑟𝑒 ⊙ 𝒎;D𝑡𝑟𝑎𝑖𝑛)
]

s.t. ∥𝒎★∥0 ≤ 𝜖 (2)

where 𝜖 is a threshold on the minimal number of masked weights. 125
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3. Fine-tuning: The final step is to retrain the pruned network to regain its original accuracy using 126

a fine-tuning
2
loss L𝑓 𝑖𝑛𝑒 , which can either be the same as the training loss, or a different kind: 127

𝜽★
𝑓 𝑖𝑛𝑒

∈ argmin

𝜽 ∈𝚯

[
L𝑓 𝑖𝑛𝑒 (𝜽 ;𝜽★

𝑝𝑟𝑒 ⊙ 𝒎★,D𝑡𝑟𝑎𝑖𝑛)
]

(3)

For the pruning stage, SAFS uses the popular magnitude pruning method (Han et al., 2015) by 128

removing a certain percentage of weights that have a lower magnitude. Compared to structured 129

pruning methods (Liu et al., 2018), the magnitude pruning method provides higher flexibility and a 130

better compression rate

(
|𝜽★

𝑓 𝑖𝑛𝑒
|

|𝜽★
𝑝𝑟𝑒 |

× 100

)
. Crucially, SAFS is independent of the pruning algorithm; 131

thus, it can optimize any sparse network. 132

3.2 Hyperparameter Optimization (HPO) 133

We denote the hyperparameter space of the model as Λ out of which we sample a hyperparameter 134

configuration 𝝀 = (𝜆1, . . . , 𝜆𝑑 ) to be tuned by some HPO methods. We assume 𝑐 : 𝝀 → R to be a 135

black-box cost function that maps the selected configuration 𝝀 to a performance metric, such as 136

model-error
3
. HPO’s goal can then be summarized as the task of finding an optimal configuration 137

𝝀★
minimizing 𝑐 . Given the fine-tuned parameters 𝜽★

𝑓 𝑖𝑛𝑒
obtained in Equation (3), we define the 138

cost as minimizing a loss Lℎ𝑝 on validation dataset D𝑣𝑎𝑙 as a bi-level optimization problem: 139

𝝀★ ∈ argmin

𝝀∈Λ
𝑐 (𝝀) = argmin

𝝀∈Λ

[
Lℎ𝑝 (𝜽★

𝑓 𝑖𝑛𝑒
(𝝀);D𝑣𝑎𝑙 )

]
(4)

s.t.

𝜽★
𝑓 𝑖𝑛𝑒

(𝝀) ∈ argmin

𝜽 ∈𝚯

[
L𝑓 𝑖𝑛𝑒 (𝜽 ;𝜽★

𝑝𝑟𝑒 ⊙ 𝒎★,D𝑡𝑟𝑎𝑖𝑛,𝝀)
]

We note that in principle HPO could also be applied to the training of the original model 140

(Equation (1)), but we assume that the original is given and we care only about sparsification. 141

4 Finding Activation Functions for Sparse Networks 142

The aim of SAFS is to find an optimal hyperparameter configuration for pruned networks with a 143

focus on activation functions. Given the HPO setup described in Section 3.2, we now explain how 144

to formulate the activation function search problem and what is needed to solve it. 145

4.1 Modelling Activation Functions 146

Using optimization techniques requires creating a search space containing promising candidate 147

activation functions. Extremely constrained search spaces might not contain novel activation 148

functions (expressivity) while searching in excessively large search spaces can be difficult (size) 149

(Ramachandran et al., 2018). Thus, striking a balance between the expressivity and size of the 150

search space is an important challenge in designing search spaces. 151

To tackle this issue, we model parametric activation functions as a combination of a unary 152

operator 𝑓 and two learnable scaling factors 𝛼, 𝛽 . Thus, given an input 𝑥 and output𝑦, the activation 153

function can be formulated as 𝑦 = 𝛼 𝑓 (𝛽𝑥), which can alternatively be represented as a computation 154

graph shown in Figure 3a. 155

Figure 1 illustrates an example of tweaking the 𝛼 and 𝛽 learnable parameters of the 𝑆𝑤𝑖𝑠ℎ 156

activation function. We can intuitively see that modifying the suggested learnable parameters for a 157

2
We use the term fine-tuning interchangeably with re-training

3
For reasonably sized datasets and models, we estimate this error using k-fold cross-validation.
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Figure 1: Modifying (a) 𝛼 and (b) 𝛽 learnable scaling factors of the 𝑆𝑤𝑖𝑠ℎ activation function.

sample unary operator provides the sparse network additional flexibility to fine-tune activation 158

functions (Godfrey, 2019; Bingham and Miikkulainen, 2022). Examples of activation functions that 159

we consider in this work have been listed in Appendix E. 160

For sparse networks, this representation allows efficient implementation as well as effective 161

parameterization. As we explain further in Section 4.2, by treating this as a two-stage optimization 162

process, where the search for 𝑓 is a discrete optimization problem and the search for 𝛼, 𝛽 is 163

interleaved with fine-tuning, we are able to make the search process efficient while capturing the 164

essence of input-output scaling and functional transformations prevalent with activation functions. 165

Note that SAFS falls under the category of adaptive activation functions due to introducing trainable 166

parameters (Dubey et al., 2022). These parameters allow the activation functions to smoothly 167

adjust the model with the dataset complexity (Zamora et al., 2022). In contrast to popular adaptive 168

activation functions such as PReLU and Swish, SAFS automates activation function tuning across a 169

diverse family of activation functions for each layer of the network with optimized hyperparameters. 170

4.2 Optimization Procedure 171

SAFS performs the optimization layer-wise i.e. we intend to find the activation functions for each 172

layer. Given layer indices 𝑖 = 1, . . . , 𝐿 of the network of depth 𝐿 an optimization algorithm needs 173

to be able to select a unary operator 𝑓 ★𝑖 and find appropriate scaling factors (𝛼★𝑖 , 𝛽★𝑖 ). We formu- 174

late these as two independent objective functions, solved in a two-stage optimization procedure 175

combining discrete and stochastic optimization. Figure 2 shows an overview of the SAFS pipeline. 176

Dtrain Ltrain
𝜽★
pre

Lprune 𝒎★ Ltrain 𝜓★ Lfine
𝜽★
fine

,𝜓 ′★

Lhp 𝝀★Dval

Figure 2: Overview of the entire SAFS pipeline.

Stage 1: Unary Operator Search. The first stage is to find the unary operators after the network has 177

been pruned. Crucially, the fine-tuning step happens only after this optimization for the activation 178

function has been completed. We model the task of finding optimal unary operators for each layer 179

as a discrete optimization problem. Given a pre-defined set of functions 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, we 180

define a space F of possible sequences of operators𝜓 = ⟨𝑓𝑖 | 𝑓𝑖 ∈ 𝐹 ⟩𝑖∈{1,...,𝐿} ∈ F of size 𝐿. Our task 181

is to find a sequence𝜓 after the pruning stage (Item 2). Since the pre-trained network parameters 182

𝜽★
𝑝𝑟𝑒 and the pruning mask 𝒎★

have already been discovered, we keep them fixed and use them as 183

an initialization point for activation function optimization. The task is formulated as finding the 184
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(a)

(b)

Figure 3: (a) SAFS unary activation graph. (b) An example of a solution representing activation func-

tions of each layer in the network.

optimal operators given the network parameters, as shown in Equation (5). During this step, 𝛼 and 185

𝛽 parameters are set to 1 to focus on the function class first. 186

𝜓★ ∈ argmin

𝜓 ∈F

[
L𝑡𝑟𝑎𝑖𝑛 (𝜽★

𝑝𝑟𝑒 ⊙ 𝒎★,𝜓 ;D𝑡𝑟𝑎𝑖𝑛)
]

(5)

Given the discrete nature of Equation (5), we use Late Acceptance Hill Climbing (LAHC) (Burke 187

and Bykov, 2017) to iteratively solve it (Please refer to Appendix A for comparison against other 188

search algorithms). LAHC is a Hill Climbing algorithm that uses a record of the history - History 189

Length - of objective values of previously encountered solutions in order to decide whether to 190

accept a new solution. It provides us with two benefits: (i) Being a semi-local search method, LAHC 191

works on discrete spaces and quickly searches the space to find unary operators. (ii) LAHC extends 192

the vanilla hill-climbing algorithm (Selman and Gomes, 2006) by allowing worse solutions in the 193

hope of finding a better solution in the future. We represent the design space of LAHC using 194

a chromosome that is a list of activation functions corresponding to each layer of the network. 195

Figure 3b shows an example of a solution in the design space. The benefit of this representation is 196

its flexibility and simplicity. For generating a new search candidate (mutation operation), we first 197

swap two randomly selected genes from the chromosome, and then, we randomly changed one 198

gene from the chromosome with a new candidate from the list. 199

Appendix E lists unary operators considered in this study. To avoid instability during training, 200

we ignored periodic operators (e.g., 𝑐𝑜𝑠 (𝑥)) and operators containing horizontal (𝑦 = 0) or vertical 201

(𝑥 = 0) asymptotes (e.g., 𝑦 = 1

𝑥
). 202

The process of selecting operators to form the chromosome is repeated for a predefined number 203

of iterations (refer to Appendix E for the configuration of LAHC). Given that we have only two 204

mutations per each search iteration, the entire chromosome is not significantly affected. Based 205

on trial runs, we determined a budget of 20 search iterations to provide decent improvement 206

alongside reducing the search cost. Each iteration consists of training the network using the 207

selection activation functions and measuring the training loss L𝑡𝑟𝑎𝑖𝑛 as a fitness metric that needs 208

to be minimized. 209

A downside of this process is the need to retrain the network for each search iteration, which 210

can be intensive in time and compute resources. We circumvent this issue by leveraging a lower 211

fidelity estimation of the final performance. Given that the network performance does not vary 212

after a certain number of epochs, we leverage the work by Loni et al. (2020) and only train the 213

network up to a certain point after which the performance should remain stable. 214

Stage 2: Scaling Factor and HPO Given a learned sequence of optimal operators𝜓 , the next 215

step is to find a sequence 𝜓 ′ = ⟨(𝛼𝑖 , 𝛽𝑖) | 𝛼𝑖 , 𝛽𝑖 ∈ R⟩𝑖∈{1,...,𝐿} representing the scaling factors for 216

each layer. We perform this process jointly with the fine-tuning stage (Equation (3)) and HPO to 217

discover the fine-tuning parameters 𝜽★
𝑓 𝑖𝑛𝑒

and hyperparameters 𝝀★
as shown in Equation (6). 218
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𝝀★ ∈ argmin

𝝀∈Λ
𝑐 (𝝀;D𝑣𝑎𝑙 ) s.t. 𝜓 ′★, 𝜽★

𝑓 𝑖𝑛𝑒
(𝝀) ∈ argmin

𝜃 ∈𝚯,𝜓 ′∈R(2,𝐿)

[
L𝑓 𝑖𝑛𝑒

(
(𝜽 | 𝜽★

𝑝𝑟𝑒 ⊙ 𝒎★),𝜓 ′
;𝜓,D𝑡𝑟𝑎𝑖𝑛

) ]
(6)

Due to the continuous nature of this stage, we use the Stochastic Gradient Descent (SGD) for 219

solving Equation (6), and use the validation accuracy as a fitness metric for the hyperparameter 220

configuration. 221

Treating the scaling factors as learnable parameters allows us to learn them during the fine- 222

tuning state. Thus, the inner optimization in this step has nearly no overhead costs. The only 223

additional cost is that of HPO, which we demonstrate in our experiments to be important and worth 224

it since the hyperparameters from training the original model might not be optimal for fine-tuning. 225

5 Experiments 226

We categorize the experiments based on the research questions this work aims to answer. Section 5.1 227

introduces the experimental setup. Section 5.2 motives the problem of tuning activation functions 228

for SNNs. Section 5.3 introduces the need for HPO with activation tuning for SNNs. In Section 5.4, 229

we compare SAFS against different baselines. Appendix C provides an accuracy improvement vs. 230

compression ratio trade-off to compare SAFS with state-of-the-art network compression methods. 231

In Section 5.5 we compare the performance of SAFS for various pruning ratios. In Section 5.6 we 232

provide insights on the activation functions learned by SAFS. Finally, we ablate SAFS in Section 5.7 233

to determine the impact of different design choices. 234

5.1 Experimental Setup 235

Datasets. To evaluate SAFS, we use MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2014) 236

and ImageNet-16 (Chrabaszcz et al., 2017) public classification datasets. Note that ImageNet-16 237

includes all images of the original ImageNet dataset, resized to 16×16 pixels. All HPO experi- 238

ments were conducted using SMAC3 (Lindauer et al., 2022). Appendix E presents the rest of the 239

experimental setup. 240

5.2 The Impact of Tweaking Activation Functions on the Accuracy of SNNs 241

To validate the assumption that activation functions indeed impact the accuracy, we investigated 242

whether activation functions currently used for dense networks (Evci et al., 2022) are still reliable in 243

the sparse context. Figure 4a shows the impact of five different activation functions on the accuracy 244

of sparse architectures with various pruning ratios. To measure the performance during the search 245

stage, we use a three-fold validation approach. However, we report the test accuracy of SAFS to 246

compare our results with other baselines. 247

Our conclusions from this experiment can be summarised as follows: (i) ReLU does not perform 248

the best in all scenarios. We see that SRS, Swish, Tanh, Symlog, FLAU, and PReLU outperform 249

ReLU on higher sparsity levels. Thus, the decision to use ReLU unanimously can limit the potential 250

gain in accuracy. (ii) As we increase the pruning ratio to 99% (extremely sparse networks), despite 251

the general drop in accuracy, the difference in the sparse and dense networks’ accuracies vary 252

greatly depending on the activation function. Thus, the choice of activation function for highly 253

sparse networks becomes an important parameter. We need to mention that despite the success of 254

SAFS in providing higher accuracy, it needs 47 GPU hours in total for learning activation functions 255

and optimal HPs. On the other hand, refining a sparse neural network takes ≈ 3.9 GPU hours. 256

5.3 The Difficulty of Training Sparse Neural Networks 257

Currently, most algorithms for training sparse DNNs use configurations customized for their dense 258

counterparts, e.g., starting from a fixed learning scheduler. To validate the need for optimizing the 259
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training hyperparameters of the sparse networks, we used the dense configurations as a baseline 260

against hyperparameters learned by an HPO method. Figure 4b shows the curves of fine-tuning 261

sparsified VGG-16 with 99% pruning ratio trained on CIFAR-10. The training has been performed 262

with the hyperparameters of the dense network (Blue), and training hyperparameters optimized 263

using SMAC3 (Orange). 264

We optimized the learning rate, learning rate scheduler, and optimizer hyperparameters with 265

the range specified in Appendix E (Table 4). The type and range of hyperparameters are selected 266

based on recommended ranges from deep learning literature (Simonyan and Zisserman, 2014; 267

Subramanian et al., 2022; Zimmer et al., 2021), SMAC3 documentation (Lindauer et al., 2022), and 268

from the various open-source libraries
4
used to implement VGG-16. To prevent overfitting on the 269

test data, we optimized the hyperparameters on validation data and tested the final performance 270

on the test data. The poor performance (7.17% accuracy reduction) of the SNN learning strategy 271

using dense parameters motivates the need for a separate sparsity-aware HPO regime. 272
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Figure 4: (a) CIFAR-10 test accuracy on sparse VGG-16 with various activation functions customized

for dense networks with a 3-fold cross-validation procedure. The bold line represents the

mean across the folds, while the shaded area represents the Confidence Intervals across the

folds. (b) Fine-tuning sparse VGG-16 on CIFAR-10 with different training hyperparameters

with three different random seeds. The pruning ratio is 99%. As shown, fine-tuning with

dense hyperparameters results in inefficient training of SNNs.

5.4 Comparison with Magnitude Pruning Baselines 273

Table 1 shows the results of optimizing sparse VGG-16 activation functions trained on CIFAR-10 274

using SAFS with 99% pruning ratio. An average of three runs has been reported. Results show that 275

SAFS provides 8.88% absolute accuracy improvement for VGG-16 and 6.33% for ResNet-18 trained 276

on CIFAR-10 when compared against a vanilla magnitude pruning baseline. SAFS additionally 277

yields 1.8% absolute Top-1 accuracy improvement for ResNet-18 and 1.54% for EfficientNet-B0 278

trained on ImageNet-16 when compared against a vanilla magnitude pruning baseline. SReLU 279

(Jin et al., 2016) is a piece-wise linear activation function that is formulated by four learnable 280

parameters. Mocanu et al. (2018); Curci et al. (2021); Tessera et al. (2021) have shown SReLU 281

performs excellently for sparse neural networks due to improving the network’s gradient flow. 282

Results show that SAFS provides 15.99% and 19.17% higher accuracy compared to training VGG-16 283

and ResNet-18 with SReLU activation function on CIFAR-10. Plus, SAFS provides 0.88% and 1.28% 284

better accuracy compared to training ResNet-18 and EfficientNet-B0 with SReLU activation function 285

on the ImageNet-16 dataset. 286

4https://www.kaggle.com/datasets/keras/vgg16/code
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Table 1: Refining sparse neural network activation functions with different methods.

Magnitude Pruning CIFAR-10 (Top-1) ImageNet-16‡ (Top-1 / Top-5)
(Han et al., 2015) VGG-16 ResNet-18 ResNet-18 EfficientNet-B0

Original Model (Dense) 86.76% 89.86% 25.42% / 47.26% 18.41% / 37.45%

Vanilla Pruning (Baseline) 70.32% 77.55% 11.32% / 25.59% 10.96% / 25.62%

SReLU 63.21% 64.71% 12.24% / 26.89% 11.22% / 25.98%

SAFS (Ours) 79.2% (+8.88%) 83.88% (+6.33%) 13.12% (+1.8%) / 28.94% 12.5% (+1.54%) / 27.15%
‡
The Top-1 accuracy of WideResNet-20-1 on ImageNet-16 is 14.82% (Chrabaszcz et al., 2017).

5.5 Evaluation of SAFS with Various Pruning Ratios 287

Figure 4a compares the performance of VGG-16 fine-tuned by SAFS and the default training protocol 288

on CIFAR-10 over three different pruning ratios including 90%, 95%, and 99%. Results show that 289

SAFS is extremely effective by achieving 1.65%, 7.45%, and 8.88% higher accuracies compared to 290

VGG-16 with ReLU activation functions fine-tuned with the default training protocol at 90%, 95%, 291

and 99% pruning ratios. Plus, SAFS is better than activation functions designed for dense networks, 292

especially for networks with a 99% pruning ratio. 293

5.6 Insights on Searching for Activation Functions 294

Figure 5 presents the dominance pattern of each unary operator in the first learning stage (𝛼 = 𝛽 = 1) 295

for the CIFAR-10 dataset. The results are the average of three runs with different random seeds. 296

The unit of the color bar is the number of seeing a specific activation function across all search 297

iterations for the first learning stage. According to the results, it is evident that (i) Symexp and ELU 298

are unfavorable activation functions, (ii) Symlog and Acon are dominant activation functions while 299

being used in the early layers, and (iii) Overall Swish and HardSwish are good, but they mostly 300

appear in the middle layers. 301
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Figure 5: Frequency of Occurring unary operator in the first learning stage (𝛼 = 𝛽 = 1) for VGG-16

and ResNet-18 trained on CIFAR-10 with 99% pruning ratio.

5.7 Ablation Study 302

We study the effect of each individual optimization stage of SAFS on the performance of sparse VGG- 303

16 and ResNet-18 trained on CIFAR-10 in Table 2. Results show that each individual contribution 304

provides higher accuracy for both VGG-16 and ResNet-18. However, the maximum performance 305

is attained by SAFS (+15.53%, +8.88%, +6.33%, and +1.54% for LeNet-5, VGG-16, ResNet-18, and 306

EfficientNet-B0), where we first learn the most accurate unary operator for each layer and then 307

fine-tune scaling factors with optimized hyperparameters. 308
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Table 2: Ablation Study on optimizing activation functions of SNNs with 99% pruning ratio.

CNN Dense Magnitude Learning Activation Functions∓

Model★ Model Pruning (Stage 1)
†

(Stage 2)
‡ SAFS (Stage 1 + Stage 2)

LeNet-5 98.49% 46.69% 61.63% 60.2% 62.22% (+15.53%)
VGG-16 86.76% 70.32% 78.11% 80.97% 79.2% (+8.88%)
ResNet-18 89.86% 77.55% 79.34% 82.74% 83.88% (+6.33%)

EfficientNet-B0 18.41% 10.96% 11.84% 11.7% 12.5% (+1.54%)
★
Lenet-5, VGG-16, ResNet-18, and EfficientNet-B0 are trained on MNIST, CIFAR-10, CIFAR-10, and ImageNet-16, respectively.

∓
ReLU is the default activation function for Lenet-5, VGG-16, and ResNet-18. Swish is the default activation function for EfficientNet-B0.

†
Learning activation functions by only using the first stage of SAFS (𝛼 = 𝛽 = 1 and without using HPO).

‡
Learning 𝛼 and 𝛽 for the ReLU operator with optimized hyperparameters.

6 Conclusion 309

In this paper, we studied the impact of activation functions on training sparse neural networks 310

and use this to learn new activation functions. To this end, we demonstrated that the accuracy 311

drop incurred by training SNNs uniformly with ReLU for all units can be partially mitigated by a 312

layer-wise search for activation functions. We proposed a novel two-stage optimization pipeline 313

that combines discrete and stochastic optimization to select a sequence of activation functions 314

for each layer of an SNN, along with discovering the optimal hyperparameters for fine-tuning. 315

Our method SAFS provides significant improvement by achieving up to 8.88% and 6.33% higher 316

accuracy for VGG-16 and ResNet-18 on CIFAR-10 over the default training protocols, especially at 317

high pruning ratios. Crucially, since SAFS is independent of the pruning algorithm, it can optimize 318

any sparse network. 319

7 Limitations and Broader Impact 320

Limitations. The authors have determined that this work will have no negative impacts on society 321

or the environment. 322

Broader Impact and Future Work. Sparse Neural Networks (SNNs) enable the deployment of large 323

models on resource-limited devices by saving computational costs and memory consumption. In 324

addition, this becomes important in view of decreasing the carbon footprint and resource usage 325

of DNNs at inference time. We believe this opens up new avenues of research into methods that 326

can improve the accuracy of SNNs. We hope that our work motivates engineers to use SNNs 327

more than before in real-world products as SAFS provides SNNs with similar performance to dense 328

counterparts. Some immediate directions for extending our work are (i) leveraging the idea of 329

accuracy predictors (Li et al., 2023) in order to expedite the search procedure. (ii) SNNs have 330

recently shown promise in application to techniques for sequential decision-making problems such 331

as Reinforcement Learning (Vischer et al., 2022; Graesser et al., 2022). We believe incorporating 332

SAFS into such scenarios can help with the deployability of such pipelines. 333

SAFS has been evaluated on diverse datasets, including MNIST, CIFAR-10, and ImageNet-16, 334

and various network architectures such as LeNet-5, VGG-16, ResNet-18, and EfficientNet-B0. While 335

the current results demonstrate the general applicability of our method and signs of scalability, we 336

believe further experiments on larger datasets and more scalable networks would be an interesting 337

avenue for future work. 338
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A Evaluation of Various Search Algorithms 568

Figure 6 shows the trend of search performance for finding the best unary operators (Equation (5)) 569

over popular search algorithms, including Late-Acceptance-Hill-Climbing (LAHC), Simulated 570

Annealing (SA), Random Search (RS), and Bayesian Optimization (BO). VGG-16 is trained on CIFAR- 571

10 with a 99% pruning ratio. The bold line represents the mean across three random seeds, while 572

the shaded area represents the confidence intervals. Overall, the observation is that SAFS’s search 573

algorithm, LAHC, finds better activation functions than other counterparts with an equal search 574

budget. 575
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(a) Plotting Search Objective (Vali. Acc.) per Iteration (b) Search Trend

Figure 6: Comparison of different search algorithms (LAHC, SA, RS, BO) for finding the best unary

operators for sparse VGG-16 with 99% pruning ratio trained on CIFAR-10. The bold line rep-

resents the mean across three random seeds, while the shaded area represents the confidence

intervals. (a) Showing raw data. (b) Using a smoothing average function (logarithmic) for

representing the trend of data.

B Reporting the Computing Cost of SAFS 576

Table 3 compares the computing cost (GPU hours) of refining a sparse neural network with SAFS 577

and default vanilla pruning. Although SAFS is slower than the vanilla pruning method, we need to 578

pay this cost only once. Our results show that the significant improvements achieved by SAFS are 579

worth paying this cost. It is important to note that we have not used any multi-fidelity techniques 580

to speed up the first search stage, which is one reason for our slow speed. The use of search 581

acceleration techniques will be explored in the future. 582

Table 3: Reporting the required computing cost for learning sparse neural network activation functions.

Network Dataset
GPU Hours (without considering dense training and sparsification)

SAFS Vanilla Pruning
(with three-fold cross-validation) (with one-fold cross-validation)

LeNet-5 MNIST 6.4 0.16

VGG-16 CIFAR-10 47 3.8

ResNet-18 CIFAR-10 63 5.6

EfficientNet-B0 ImageNet-16 400 7.7

C Comparison of Accuracy-Compression Ratio Trade-off with State-of-the-Art 583

We study the effectiveness of SAFS in comparison with various state-of-the-art sparsification 584

and quantization methods in the context of a trade-off between compression ratio (𝑥-𝑎𝑥𝑖𝑠) and 585

performance improvement (𝑦-𝑎𝑥𝑖𝑠) compared to each method’s baseline (Figure 7). We examine 586

VGG-16 and ResNet-18 networks trained on CIFAR-10. Our results reveal that SAFS provides 6.24% 587
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higher accuracy and 2.18× more compression ratio for VGG-16 over the best counterparts. SAFS 588

achieves 2.42% higher accuracy than the best counterparts with similar compression ratios for 589

ResNet-18. 590
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Figure 7: Showing the accuracy improvement (%) vs. the number of network parameters (#Params) of

various compact networks trained on CIFAR-10.

D Statement of Reproducibility 591

To foster reproducibility we address the following points: 592

Reproducibility analysis. Many works on AutoML have issues regarding reproducibility due to in- 593

trinsic stochasticity. To guarantee the reproducibility of results, we follow the Reproducibility 594

checklist proposed by Lindauer and Hutter (2020) (Section 8). 595

Code release. SAFS is an open-source project. Code is made available through 596

anon-github.automl.cc/r/SAFS-B67D. 597

Availability of database. In this study, we evaluated our networks using CIFAR-10 (Krizhevsky 598

et al., 2009) and ImageNet-16 (Chrabaszcz et al., 2017) datasets. Thus, this work does not 599

involve any new data collection or human subject evaluation. 600

Sustainability Analysis. The search process takes up to ≈47 GPU hours for VGG-16 trained on 601

CIFAR-10 on a single NVIDIA
®
RTX A4000 that produces 2.83 Kg 𝐶𝑂2. 602

E Details on Searching Networks 603

Table 4 shows the configuration details of Stage 1 and Stage 2 learning procedures. 604

Table 5 provides the configuration details for training the dense LeNet-5 model (baseline) with 605

ReLU activation functions trained on MNIST. 606

Table 6 provides the configuration details for training dense models (baseline) with ReLU 607

activation functions trained on CIFAR-10. 608

Table 7 provides the configuration details for training dense models (baseline) with ReLU 609

activation functions trained on ImageNet-16. 610

Table 8 presents specifications of hardware devices utilized for evaluating the performance of 611

SAFS. 612
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Table 4: Table showing the general hyperparameter configuration for SAFS learning procedures.

Stage 1: Learning Unary Operators

Unary Operators
∓

ReLU6 (Howard et al., 2017), Acon (Ma et al., 2021), TanhSoft-1 (Biswas et al., 2021)

SRS (Zhou et al., 2020), Symlog (Hafner et al., 2023), Symexp (Hafner et al., 2023)

Swish, Tanh, HardSwish, ELU, GELU, Softplus, LogisticSigmoid

History Length 3

Number of Iterations 20

Epochs for Evaluation 80

Stage 2: Scaling factors and HPO
HPO Library SMAC3

∗

Learning Rate 1𝑒−4 <lr< 1𝑒−1

Learning Rate Scheduler

constant, step, linear, cosine annealing (Loshchilov and Hutter, 2017)
{0.001 × (0.5𝑒𝑝𝑜𝑐ℎ%20)}, ReduceLROnPlateau†, CosineAnnealingWarmRestarts‡

Optimizer SGD, Adam, Fromage, TAdam (Ilboudo et al., 2020)

∓
(Dubey et al., 2022) explains in detail popular activation functions considered in this study.

∗ https://github.com/automl/SMAC3
† https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
‡ https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html

Table 5: Dense CNNs with training hyperparameters for MNIST dataset used in experiments.

Network‡ LeNet-5

Epoch (#) 100

Learning Rate (lr) 0.1

Learning Rate Scheduler None

Optimizer SGD

Train Time (GPU Hours) for One Model (One-fold) 0.16

‡
Original implementation of dense model: https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/train.py

Table 6: Dense CNNs with training hyperparameters for CIFAR-10 dataset used in experiments.

Network VGG-16 ResNet-18

Epoch (#) 200 200

Learning Rate (lr) 0.001 0.01

Learning Rate Scheduler 0.001 × (0.5𝑒𝑝𝑜𝑐ℎ%20) ReduceLROnPlateau‡:
{factor: 0.05, patience: 2, min_lr: 0, threshold: 0.0001, eps:1𝑒−8 }

Weight Decay 5𝑒−4 5𝑒−4

Momentum 0.9 0.9

Optimizer SGD SGD

Train Time (GPU Hours) for One Model (One-fold) 1.25 4.0

‡ https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

Table 7: Dense CNNs with training hyperparameters for ImageNet-16 dataset used in experiments.

Network EfficientNet-B0 ResNet-18

Epoch (#) 50 50

Learning Rate (lr) 0.01 0.1

Learning Rate Scheduler

CosineAnnealingWarmRestarts‡: CosineAnnealingWarmRestarts‡:
{#Iterations for first restart: 12, {#Iterations for first restart: 12,

Minimum learning rate:5𝑒−5 } Minimum learning rate:5𝑒−5 }
Weight Decay 5𝑒−4 5𝑒−4

Momentum 0.9 0.9

Optimizer SGD SGD

Train Time (GPU Hours) for One Model (One-fold) 18 16

‡ https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html
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Table 8: Hardware Specification for search & train.

Parameter Specification
GPU NVIDIA

®
RTX A4000 (735 MHz)

GPU Memory 16 GB GDDR6

GPU Compiler cuDNN version 11.1

System Memory 64 GB

Operating System Ubuntu 18.04

𝐶𝑂2 Emission/Day
†

1.45 Kg

† Calculated using the ML 𝐶𝑂2 impact framework (Lacoste et al., 2019).
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