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Abstract: Collaborative perception learns how to share information among multi-1

ple robots to perceive the environment better than individually done. Past research2

on this has been task-specific, such as object detection and semantic segmenta-3

tion. However, this may lead to different information sharing for different tasks,4

which could hinder the large-scale deployment of collaborative perception. We5

propose the first task-agnostic collaborative perception paradigm that learns a sin-6

gle collaboration module in a self-supervised manner for different downstream7

tasks. This is done by a novel task termed collaborative scene completion, where8

each individual robot learns to effectively share information for reconstructing a9

complete scene viewed by all robots. Moreover, we propose a spatial-temporal-10

aware autoencoder that amortizes over time the communication cost by spatial11

sub-sampling and temporal mixing when sharing information. We conduct exten-12

sive experiments with various baselines to validate our method’s effectiveness on13

scene completion and collaborative perception tasks in autonomous driving.14

Keywords: Multi-Robot Perception, Scene Completion, Representation Learning15

1 Introduction16

Single robot perception has been widely studied on different tasks, such as object detection [1]17

and semantic segmentation [2]. However, it suffers from various challenges such as occlusion and18

sparsity in raw observations. Collaborative perception is promising to alleviate those issues. It pro-19

vides more environment observations from different perspectives by information sharing to improve20

perception performance and robustness. Amongst different collaboration strategies, feature-level21

collaboration [3, 4, 5] transmits the intermediate representations generated by deep neural networks22

(DNNs) of each robot. Since these intermediate features are easy to compress and can preserve23

contextual information of the scene, feature-level collaboration demonstrates better performance-24

bandwidth trade-off compared to raw-data-level and output-level collaboration [6, 7].25

However, existing feature-level collaboration methods [8, 4, 3] are fully supervised by task-specific26

losses to learn the entire model including a feature extractor, a collaboration module, and a decoder,27

as shown in Fig. 1 (a). Such a task-specific framework requires re-training the whole model for28

different perception tasks. Besides, existing collaborative perception requires training data record-29

ings to be synchronized among all robots in time, which is more demanding than data collection30

in single-robot perception. How can we design a collaborative perception framework that is (1)31

independent from downstream tasks and (2) trainable from asynchronous dataset?32

To answer this question, we propose a novel self-supervised learning task termed collaborative scene33

completion (CSC). It enables multiple robots to collaboratively use an autoencoder to reconstruct a34

complete scene based on latent features shared between each other. The completed scene could then35

be fed into various downstream tasks without additional training, as shown in Fig. 1 (b). This allows36

us to decouple the collaboration training from downstream task learning. Moreover, it seamlessly37
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Figure 1: Task-specific vs Task-agnostic collaboration. Previous methods are all task-specific. As
shown in (a), such a paradigm learns different models with different losses for each task. However,
in our paradigm in (b), the model learns to directly reconstruct the complete multi-robot scene based
on each robot’s message, which is independent from yet still usable by all downstream tasks.

supports both synchronous and asynchronous training datasets by different learning objectives: com-38

plete scene reconstruction if synchronous, and individual view reconstruction if asynchronous.39

Yet naive autoencoders are not designed to balance between scene reconstruction performance and40

communication volume, which is an established criteria to evaluate collaborative perception. To41

address this challenge, we further design a spatio-temporal-aware autoencoder (STAR), inspired by42

the recent masked autoencoders (MAE) [9]. It reconstructs a scene using a spatial-temporal mixture43

of patch tokens: some tokens encoded from randomly sub-sampled patches in the current frame,44

others cached from the past. The sampling ensures that all patches in the mixture could jointly cover45

the whole spatial region while being self-disjoint. This allows each robot to only transmit the sub-46

sampled tokens in the current frame instead of the entire latent feature maps, leading to orders of47

magnitude lower of communication bandwidth than prior works. Our key insight behind such an48

amortized communication cost is that features of many patches (e.g., static or nearly static) do not49

need to be shared in every frame.50

In summary, our main contributions are threefold:51

• We propose a brand-new task-agnostic collaborative perception framework based on scene com-52

pletion, which decouples the collaboration learning from downstream tasks. Also, our method53

does not need synchronous multi-robot perception training data.54

• We develop a novel spatio-temporal-aware autoencoder (STAR) that reconstructs scenes based55

on temporally mixed information. It amortizes the spatial communication volume over time to56

improve the performance-bandwidth trade-off.57

• We conduct extensive experiments to verify our method’s effectiveness in autonomous driving58

settings, in terms of scene completion and downstream perception tasks.59

2 Related Works60

Collaborative perception. Collaborative perception has been proposed to improve the flexibility,61

resilience, and efficiency of the individual perception with limited field of view. With recent ad-62

vances in deep learning, researchers have developed feature-level collaborative perception in which63

intermediate representations produced by deep neural networks (DNNs) from multiple viewpoints64

are propagated in a team of robots, e.g., a swarm of drones [8, 3] or a group of vehicles [4, 6]. Exist-65

ing works commonly consider a specific downstream task, and use the corresponding loss function66
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to learn a collaboration module, e.g., graph neural network (GNN) [4, 3], attention network [8, 10],67

and convolutional neural network [5]. Several downstream tasks have been investigated in collabo-68

rative scenarios, such as object detection [4], semantic segmentation [8], and depth estimation [3].69

In this work, we develop a task-agnostic collaborative perception paradigm based on a geometrical70

task of collaborative scene completion, where multiple robots need to reconstruct full view based on71

the shared intermediate features from the collaborators.72

Scene completion. Autonomous navigation [11] requires robots to understand geometry and se-73

mantics of 3D scenes. However, vision sensors solely capture partial observations because of limited74

field of view as well as sparse sensing, leading to an incomplete spatial representation. To solve this,75

scene completion (SC) has been proposed to infer the complete 3D scene geometry given sparse76

2D/3D observations [12, 13, 14]. Following scene completion, semantic scene completion (SSC)77

has been introduced to jointly estimate both geometry and semantic information based on partial78

observation [2, 15, 16]. On one hand, single robot scene completion is able to rely on semantic prior79

knowledge to complete the partially-observed objects. On the other hand, it is unrealistic to hallu-80

cinate the totally invisible objects. Different from single robot scene completion, the proposed CSC81

task does not consider invisible structure for the robot team to avoid unreasonable hallucination.82

Masked autoencoders. Self-supervised representation learning aims to provide powerful features83

without the need for massive annotated datasets, thereby receiving extensive attention [17]. Masked84

autoencoder (MAE) achieves state-of-the-art self-supervised representation learning performance85

with a simple reconstruction objective [9]. Specifically, MAE employs an asymmetric architecture86

with a large encoder that only process unmasked patches and a lightweight decoder that reconstructs87

the masked patches from the latent representation and mask tokens, which speeds up pre-training.88

Recent works extend MAE into multimodal representation learning [18, 19], and video representa-89

tion learning [20, 21]. Meanwhile, there are several attempts to utilize MAE on downstream tasks90

such as 2D image completion [22].91

3 Collaborative Scene Completion: Formulation and Evaluation92

We provide an overview of collaborative scene completion (CSC) in this section: first, we define93

the multi-robot scene completion problem, which is to reconstruction the full view based on each94

robot’s incomplete observation. Then, we introduce how each individual observation is encoded and95

communicated between robots; our method only communicates intermediate features. Next, we will96

present how features are decoded in each robot and how the loss is computed. Finally, we will talk97

about evaluation metrics for the proposed task.98

Problem definition. We consider that N robots present in the same geographical location are simul-99

taneously perceiving the 3D environment such as a fleet of autonomous vehicles located at a certain100

crossroad. In order to understand the surrounding environment better, these robots communicate101

with each other about their observations. Each robot is equipped with a 3D sensor such as a LiDAR102

to generate a binary occupany grid map Mi ∈ {0, 1}H×W×C defined in its local coordinate, where103

H , W , and C respectively denote the length, width, and height resolution.104

Feature extraction. We aim to achieve intermediate collaboration with better performance-105

bandwidth trade-off [5]. Each robot encodes its individual observation into a feature map denoted106

by Fi = Θ(Mi), where Θ denotes a feature extractor. Now Fi ∈ RH̄×W̄×C̄ has lower spatial107

resolution H̄ × W̄ , while keeping a higher feature dimension C̄ compared to the original feature108

map H × W × C. Then, each robot will broadcast Fi to its peers as well as its pose ξi ∈ se(3)109

defined in the global coordinate.110

Feature decoding. The robot i receives the messages from the neighboring robots {Fj , ξj}j ̸=i,111

and then uses a decoder and a pose-aware aggregator (collectively denoted by Φ for simplicity) to112

aggregate the messages, and output a completed occupancy grid map Ŷi = Φ(Fi, ξi, {Fj , ξj}j ̸=i),113

where Ŷi has the same dimension and describe the same spatial range as Mi yet is a more compre-114

hensive spatial representation for the scene.115
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Loss function. We treat such kind of scene completion task as a binary classification problem and116

use cross entropy loss to train a neural network composed of Θ and Φ. Specifically, the ground-truth117

Yi ∈ {0, 1}H×W×C defined in the coordinate of robot i represents a multi-view occupancy voxel118

grid with two classes, i.e., free and occupied. Therefore, the loss can be computed by:119

L = −
N−1∑
i=0

L−1∑
k=0

1∑
c=0

yi,k,clog(
eŷi,k,c∑
c e

ŷi,k,c
), (1)

where i is the robot index, k is the voxel index, L is the total number of the voxel (L = H×W ×C),120

c is number of class (2 in our case), ŷi,k,c is the predicted logits for the k-th voxel belonging to class121

c, yi,k,c is the k-th element of Yi and is a one-hot vector (yi,k,c = 1 if voxel k of robot i belongs122

to class c). Here we show the training using synchronous multi-robot data yet this task can also be123

supervised by individual view reconstruction on asynchronous data (will be shown in Section 4).124

Evaluation metrics. We follow the evaluation protocol in single-robot scene completion [14, 23]125

which uses the voxel-level intersection over union (IoU) between predicted voxel labels Ŷi and126

ground truth labels Yi for each robot. Note that only non-empty voxels are evaluated.127

4 STAR: Spatio-Temporal-Aware Autoencoder128

In addition to the collaborative scene completion task, we also propose a novel architecture called129

Saptio-Temporal-Aware autoencodeR (STAR) to tackle this problem. We will present our key de-130

sign motivation, detailed modules, training and inference procedures, respectively.131

4.1 Design desiderata132

We build our brand-new architecture based on a few high-level desiderata explained as follows.133

Partially broadcasting. Inspired by the idea of ”masking” in MAE [9], we employ a similar asym-134

metric design as MAE yet with different purposes: MAE is to design a nontrivial self-supervisory135

task for pre-training via randomly masking, while the goal of STAR is to reduce the communication136

volume in multi-robot systems via partial broadcasting. More specifically, STAR deploys an encoder137

at the sender robot to map the entire observation to an intermediate feature representation which is138

only selectively transmitted to lower the bandwidth. Meanwhile, STAR deploys a decoder at the139

receiver robot that reconstructs the original observation from the received partial representation.140

Temporal amortization. Directly applying random masking of partial observations does not work141

for our case. Unlike MAE which is mainly for object-level image recognition, we aim at large-142

scale dynamic scene modeling. Once objects are completely masked during encoding, it is not143

possible for the decoder to hallucinate the corresponding objects without such kind of knowledge. To144

solve this problem, we propose to exploit historical tokens to replace mask tokens during decoding.145

Essentially, we amortize the communication cost over the temporal domain by spatial sub-sampling146

and temporal mixing, and such operation ensures that all patches in the mixture could jointly cover147

the whole spatial region.148

Synchronization-free training. Traditional collaborative perception approaches consider a syn-149

chronization training strategy which requires synchronous (potentially with a small temporal la-150

tency) multi-robot recordings, in order to train a feature-space collaboration strategy with task-151

specific loss functions [4, 5]. In contrast, we try to realize synchronization-free training which152

doesn’t require perception data being simultaneously captured by multiple robots. Specifically, we153

use single-view observation as the supervision, and aggregate the reconstructed results of each view154

for the final output.155

4.2 Architecture156

We consider a homogeneous set of robots deploying the same neural network following [4, 5]. Each157

robot serves as both message sender and receiver during collaboration, and each robot is equipped158
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Figure 2: Asynchronous training. Illustrated in the top right, the asynchronous training trains the
model to reconstruct the scene observations and does not require communication between robots,
as opposed to the synchronous training shown in the bottom right where robots communicate
intermediate representations and optimized with respect to each specific task loss. The synchronous
inference is illustrated on the left. The sender robots transmit encoded representations from their
encoders (TX) to the receiver robot’s decoders (RX). The receiver robots use a mixture of spatio-
temporal tokens to complete the multi-view scene observation.
with our model composed of an encoder for observation abstraction, and a decoder for view recon-159

struction. Since our model processes a spatial-temporal mixture of patch tokens, we call it spatio-160

temporal-aware autoencoder (STAR).161

STAR encoder. Different from MAE [9], the STAR encoder uses a vision transformer (ViT) [24]162

backbone which operates on all patches yet only sends out a subset. Specifically, the entire grid map163

for robot i at time t denoted by Mi,t is divided into multiple patches, and each patch is encoded164

with a linear projection with additional positional embedding (following ViT [24]), and then pro-165

cessed using a series of Transformer blocks to generate the final message Fi,t. Note that we adopt166

a complementary transmission strategy in the temporal domain regarding the patch index (i.e., the167

observed spatial locations), in order to avoid the loss of information for the dynamic scene.168

STAR decoder. Different from MAE using mask tokens to replace the missed patch embeddings,169

robot i as a receiver aggregates the historic tokens Fj,t−1 together with the current tokens Fj,t170

from robot j, which form a full observation towards the entire spatial range. Temporal embed-171

dings are added to the tokens from the respective timestamps to enhance the temporal awareness,172

before feeding these tokens into a series of Transformer blocks to obtain the robot j’ reconstruc-173

tion M̂j,t. Note that here we use a two-timestamp case as an example for simplicity reason.174

The STAR decoder is also able to process more historical timestamps. After decoding all robots’175

views denoted by {M̂j,t}j ̸=i, the ultimate prediction of the complete view could be created by176

Ŷi = Γ(Mi,t, {M̂j,t}j ̸=i), where Γ indicates aggregation with coordinate synchronization.177

4.3 Asynchronous training178

Training phase. The model is trained with single view ground-truth Mi, and adopt cross-entropy179

loss during training:180

L = −
N−1∑
i=0

L−1∑
k=0

1∑
c=0

mi,k,clog(
em̂i,k,c∑
c e

m̂i,k,c
), (2)
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where i is the robot index, k is the voxel index, L is the total number of the voxels, c = 2 is number181

of class, mi,k,c denotes the k-th element of Mi and is a one-hot vector same as yi,k,c in Eq. 1, m̂i,k,c182

is the prediction for the k-th voxel belonging to class c. Note that the training loss is calculated183

in a voxel-wise way, with respect to the self-supervision signal from each robot’s own single view184

observation. This design decouples our training phase from communication with other robots: the185

model on each robot does not require synchronous observations from neighbor robots in the training186

phase, making the training asynchronous (asynchronous training in Fig. 2). This is greatly different187

from the training framework in previous collaborative perception works such as [5] where robots188

will communicate and aggregate the features broadcasted by their neighbors , through which the189

collaborative perception is achieved (synchronous training in Fig. 2). Our training framework can190

relax the need of carefully-collected and hard-to-annotate multi-robot dataset, and can exploit the191

large amount of single-robot data to learn powerful as well as compact feature representations.192

Inference phase. During inference, each robot uses the same model equipped with the STAR en-193

coder and decoder. The sender robots’ encoders will encode and broadcast a subset of their current194

timestamp’s observation. Then, the decoders on the receiver side will leverage the transmitted in-195

termediate representation along with the pose information to reconstruct the corresponding view,196

optionally with historical features as described above. Then, the receivers use corresponding pose197

information to transform the single observations into a multi-view completed scene. We illustrated198

the pipeline on the left side of Fig. 2.199

5 Experimental Results200

5.1 Experimental setup201

Dataset. We conduct our experiments on the V2X-Sim Dataset [5]. It is a large-scale dataset that202

simulates urban multi-vehicle driving scenes with CARLA [25]. We use 8000 scenes as training set203

and 1000 scenes for testing. The dataset is sampled at 5 Hz. We preprocess the voxels grids with204

range [−32m, 32m] in x and y axis, and [−3m, 2m] in z axis. Finally we can get the voxel grids205

with a spatial resolution of 256× 256× 13.206

Implementation details. For scene completion, we use a modified FaFNet [26] as the convolutional207

neural network (CNN) baseline method, where we substitute the detection head with a classification208

head that outputs the logits for binary classification. A 12-block ViT encoder with hidden dimension209

768 is used for the STAR encoder. Then an MLP is used to compress the intermediate representations210

to 32 dimension and feed them to the decoder, where they are projected back to 512 dimension and211

sent to a 8-layer transformer decoder. A FaFNet [26] is used for single-robot object detection. A212

UNet [27] serves the same purpose for the semantic segmentation task. Note that all the perception213

models take the three-dimensional voxel grid as input and output results in bird’s eye view (BEV),214

i.e., bounding boxes and semantic labels. Our models are all trained on the single-view data.215

Evaluation metrics. For the scene completion task, we measure the completion quality using the216

intersection-over-union (IoU) at three different scales by down-sampling the voxels accordingly.217

For the perception task, we report the average precision (AP) at threshold 0.5 and 0.7 for vehicle218

detection, and IoU for vehicle category and the overall mIoU for semantic segmentation.219

5.2 Quantitative results on scene completion220

We present quantitative results of multi-robot scene completion task in Table 1, including the IoU at221

different scales for the CNN baseline and STAR with different timestamps and spatial resolutions,222

as well as the corresponding communication bandwidth.223

Spatial resolution. We test three resolutions: 32×32, 16×16 and 8×8. We can see that in general224

a higher spatial resolution leads to a better completion quality: the spatial resolution 32× 32 which225

has a patch size of 8 achieves the best performance.226
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Timestamp IoU scale 1:1 IoU scale 1:2 IoU scale 1:4 Communication Bandwidth
32x32 16x16 8x8 32x32 16x16 8x8 32x32 16x16 8x8 32x32 16x16 8x8

STAR TS1 52.20 49.61 48.47 70.79 65.19 62.65 77.98 72.27 69.38 1.3MB/s 320.0KB/s 80.0KB/s
STAR TS2 50.66 49.54 48.72 67.38 64.67 62.66 74.01 71.20 69.08 640.0KB/s 160.0KB/s 40.0KB/s
STAR TS3 50.97 49.51 48.41 68.37 64.53 61.42 75.41 71.28 67.38 427.0KB/s 106.7KB/s 26.7KB/s
STAR TS4 49.36 48.83 48.03 64.87 63.32 61.16 71.45 69.87 67.25 320.0KB/s 80.0 KB/s 20.0KB/s

CNN backbone 55.37 77.17 83.51 155.0MB/s

Table 1: Quantitative results on scene completion and the communication bandwidth. Results
across different spatial resolutions and timestamps (TS) are presented.

Timestamp All Partial

1 65.19 -
2 64.68 61.36
3 64.53 63.77

(a) Patches to encode. All means encoding all the
patches for each timestamp before masking and
transmission. Encoding partial means masking is
done before encoding the patches.

Timestamp Decode Multi Decode Single

1 65.19 -
2 64.68 52.07
3 64.53 51.97

(b) Timestamps to decode. Performance for
timestamp 1, 2 and 3 are reported. For timestamp
1, decoding single timestamp is equivalent to de-
coding multi-timestamp.

Timestamp Temporal Emb.
w/ w/o

2 64.68 64.29
3 64.53 61.83

(c) Temporal embedding. W/ means temporal
embeddings are added to the patches in the de-
coder. W/o means not.

Strategy Timestamp
2(50%) 3(66%) 4(75%)

random 50.88 52.36 52.14
complementary 64.45 64.20 63.27

(d) Masking strategy. Timestamp 2(50%) means
that the random masking method removes 50% of
the patches for each timestamp, which is equiva-
lent to the ratio of complementary masking.

Table 2: Ablation studies. The performance is reported in IoU 1:2 for the spatial resolution 16x16.
The observation under other settings are consistent.

Timestamps. Our method allows the multi-robot system to amortize the spatial communication227

bandwidth over the temporal domain. We can see from the Table 1 that from timestamps 1 to 4, the228

performance only varies slightly while largely reducing the bandwidth.229

Bandwidth. Bandwidth is calculated to reflect the required data volume for communication per230

second. A trade-off between performance and communication is clear. We can see that though the231

CNN baseline can perform better than ViT baselines, it requires much higher bandwidth introduced232

by the skip connection in UNet. STAR requires much lower bandwidth, and a finer-grained spatial233

resolution with better performance requires a higher bandwidth.234

5.3 Ablation studies on scene completion235

We conduct several ablation studies to investigate the effectiveness of the key components in our236

method. Results are presented in the Table 2 and are discussed in details below.237

Patches to encode. As shown in Table 2a, only encoding the patches that will be transmitted could238

result in a minor drop of performance, while it can reduce some computations, thereby beneficial239

for computation-restricted robotic systems.240

Timestamps to decode. We investigate the effect of whether the decoder incorporates previous241

timestamps or just the current single timestamp combined with learnable mask tokens. Results in242

Table 2b indicates that historical information is essential.243

Temporal embedding. In the STAR decoder, we add temporal embedding to the patches of different244

timestamps respectively similar to the approach in [20, 21]. Ablation study in Table 2c shows that245

adding temporal embedding is beneficial.246

Masking strategy. We compared our complementary masking strategy with random masking strat-247

egy proposed in MAE [9] in Table 2d. Results show that switching from complementary to random248

masking leads to a degradation in the completion performance.249
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Paradigm Method Detection Semantic Segmentation
AP@IoU=0.5 AP@IoU=0.7 Vehicle mIoU

Single-robot perception Lower-bound 49.90 44.21 45.93 36.64

Task-specific multi-robot perception

When2com [8] 44.02 39.89 47.87 34.49
Who2com [10] 44.02 39.89 47.84 34.49

V2VNet [4] 68.35 62.83 58.35 41.17
DiscoNet [5] 69.03 63.44 55.84 41.34

Task-agnostic multi-robot perception
STAR 58.30 52.33 54.09 37.56

CNN baseline 59.85 54.05 54.61 38.32
Upper-bound 65.09 60.26 60.34 40.45

Table 3: Quantitative results on downstream perception tasks. Lower-bound is a single-robot
perception model trained using individual observations. The task-specific multi-robot perception
methods achieve excellent performance via the elaborate supervised learning with synchronous
multi-robot recordings. The task-agnostic methods are built on single-robot perception models con-
suming multi-robot observations (either original or reconstructed). In task-agnostic methods, the
upper-bound directly transmitting original point clouds requires a bandwidth of 32.5 MB/s. CNN
requires a bandwidth of 155.0 MB/s introduced by multi-scale feature maps. STAR achieves com-
parable performance with CNN yet with much lower bandwidth. Better completion performance or
applying a stronger single-robot backbone could further enhance the perception performance.

5.4 Quantitative results on downstream perception250

We directly feed the completed scenes to the single-robot perception model termed lower-bound251

without any fine-tuning, and the results are shown in Table 3. Our best STAR method improves the252

lower-bound by 18.4% and 17.8% in object detection (AP@IoU=0.7) and semantic segmentation253

(IoU of vehicle) respectively. Achieved by simply combining the completion model with off-the-254

shelf single-robot perception models, these improvements are promising because our framework:255

(1) has no knowledge about downstream tasks (task-agnostic); (2) does not require synchronous256

data in the training phase (synchronization-free); (3) is learned without manual annotations (self-257

supervised). We also investigate the performance of the single-robot perception model directly258

consuming original multi-view measurements without additional training, termed upper-bound. We259

find that it can achieve nearly comparable performance with DiscoNet [5] and V2VNet [4], both260

trained with full supervision using synchronous data for specific tasks. This demonstrates the poten-261

tial of CSC: when the completions approach the ground truth scenes, it can perform similarly to the262

upper-bound on many downstream tasks.263

6 Limitation264

The performance gap between our method and the upper-bound on the downstream perception is265

still significant, which could be mainly caused by the non-perfect scene completion (IoU=52.2 at266

scale 1:1). Further improving the scene completion may be achieved by training with synchronized267

datasets, which is left as a future work that will ultimately improve performances for all downstream268

tasks. We believe when trained with more single-robot recordings, our method will achieve stronger269

performance and outperform task-specific approaches while maintaining great flexibility. We also270

inherit the common limitation in most existing collaborative perception works that all experiments271

are on simulated dataset due to the lack of public real-world datasets. We further ignore the influence272

of pose noises, although previous works [5] already revealed reasonable robustness.273

7 Conclusion274

We propose the first task-agnostic collaborative perception paradigm, where a single collaboration275

module is learned and can be transferred to a wide range of downstream tasks. Our key observa-276

tion is that we can move communication between robots to temporal domain, which achieves great277

performance-bandwidth trade-off. Also, our self-supervised learning method sheds new lights into278

collaborative perception that reduces the importance of human annotations.279
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