
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Better Practices for Domain Adaptation

Anonymous ICCV submission

Paper ID ****

Abstract

Distribution shifts are all too common in real-world
applications of deep learning. Domain adaptation (DA)
aims to address this by providing various frameworks for
adapting models to the deployment data without using la-
bels. However, the domain shift scenario raises a second
more subtle challenge: the difficulty of performing hyper-
parameter optimisation (HPO) for these adaptation algo-
rithms without access to a labelled validation set. The un-
clear validation protocol for DA has led to bad practices
in the literature, such as performing HPO using the tar-
get test labels when, in real-world scenarios, they are not
available. This has led to over-optimism about DA research
progress compared to reality. In this paper, we devise a
more rigorous framework for future work, by benchmarking
a suite of candidate validation criteria and using them to as-
sess popular adaptation algorithms. We show that there is
a challenge across all three branches of the domain adap-
tation literature including Unsupervised Domain Adapta-
tion (UDA), Source-Free Adaptation (SFDA), and Test Time
Adaptation (TTA). In each case, there is a large gap between
oracle HPO and achievable performance given real com-
putable validators. Additionally we highlight the impor-
tance of using proper validation splits in order to reliably
estimate target generalisation performance. Finally, we find
previously unexplored validation metrics that are widely ap-
plicable across all settings. Altogether, our improved prac-
tices covering data, training, validation and hyperparam-
eter optimisation form a new rigorous pipeline to improve
benchmarking, and hence research progress, within the field
going forward.

1. Introduction
Supervised deep learning models achieve impressive re-

sults when training and testing data are identically dis-
tributed. However, perhaps the main failure mode of com-
puter vision and pattern recognition systems in practice is
due to the near-ubiquitous distribution shift between data
curated for model training, and real-world data encountered

during deployment [1]. This distribution shift issue has mo-
tivated a tremendous amount of work in the area of unsu-
pervised domain adaptation (UDA) [1]. UDA methods aim
to alleviate domain shift by collecting freely available unla-
belled data during deployment to a target domain and adapt-
ing vision models based on this unlabelled data.

Hundreds of unsupervised adaptation algorithms have
now been proposed based on various principles from dis-
tribution alignment [10], to domain adversarial learning [4]
and much more. However, without exception, a key chal-
lenge for every one of these algorithms is how to tune hyper-
parameters and conduct model selection? In conventional
supervised learning, hyperparameters and model selection
(stopping criteria) are handled systematically by maximis-
ing accuracy on a validation split of the training set. In un-
supervised domain adaptation there is no such straightfor-
ward solution because the target domain has no labels with
which to compute accuracy, and the source domain is not
representative of the target domain.

Despite the importance of this issue—upon which any
practical application of domain adaptation hinges—there
has been relatively little systematic study of validation pro-
tocols and algorithms for UDA [29, 2, 18]. Worse, a recent
meta-review and re-evaluation of the domain adaptation lit-
erature found that most published code did not use consis-
tent or fair model selection criteria [12], and furthermore
when evaluated under consistent and fair model selection
criteria most existing results can not be replicated [12]. This
mini “replication crisis” in domain adaptation highlights the
need for studying validation protocols for UDA, and for fair
benchmarking to drive reliable progress.

The few existing fair model selection criteria for UDA
are based on diverse intuitions such as simply applying
UDA algorithm objectives on the validation split of the un-
labelled target set, priors on the expected distribution of la-
bels [2, 18], or relying on the validation accuracy in the
source domain [29]. However there is little first principles
justification to pick among these reasonable intuitions, and
there is little empirical evaluation to understand which are
best, and how close they come to the performance of an or-
acle validator, which has been the basis of many reported

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

results in the literature [12].
These challenges exist throughout the domain adapta-

tion literature. They arise across all three popular branches
of adaptation for recognition: Unsupervised Domain Adap-
tation (UDA) [4, 21, 23], Source-Free Domain Adaptation
(SFDA) [8, 28] and Test Time Adaptation (TTA) [26, 30].
They also arise across different kinds of learning problems
from classification [?] to regression [?], dense prediction
[?], and detection [?].

To address this issue, we conduct a large-scale bench-
mark of 5 domain adaptation algorithms with 9 different
validation criteria and three DA settings (UDA, SFDA,
TTA). We identify which DA validators can be applied to
each setting, and characterise the size of the challenge in
each case in terms of the gap between practically achiev-
able and best-case DA performance. We identify effective
practices in terms of using validation splits to estimate tar-
get performance. Finally, we report which are the best exist-
ing validators. This data point should drive future practice
both in DA research – which should use these validators,
rather than unrealistic oracle HPO; and in validator research
– which should aim to develop validators which surpass the
best that we report.

2. Related Work

2.1. Domain Adaptation

There are now too many domain adaptation algorithms
to review here, and we refer the reader to good surveys
such as [1, 13]. Most deep UDA algorithms proceed by
performing supervised learning on the source domain data,
and some kind of unsupervised objective on the target do-
main data. Representative families of approach include ob-
jectives that penalise misalignment between the source and
target domain feature distributions [10], train a domain clas-
sifier that can then be used adversarially to penalise dis-
tinguishable source and target domain features [4], or pe-
nalise deviation from a prior on the expected target label
distribution [20]. However, all algorithms have a number
of hyper-parameters, such as stopping iteration and strength
of the weighting factor for supervised vs unsupervised loss
components. How to set these hyper-parameters is not clear
given the lack of a labelled target domain validation set in
UDA applications.

The long-established mainstream setting for unsuper-
vised domain adaptation (UDA) assumes that source and
target data are accessed simultaneously for training. Two
related problem variants have more recently gained rapid
popularity, namely source-free domain adaptation (SFDA)
and Test Time Adaptation (TTA). SFDA refers to the con-
dition where pre-trained source models should be adapted
to the target data without revisiting the source data [8] – for
example, by unsupervised fine-tuning. TTA [25, 22] simi-

larly adapts a pre-trained model without access to the source
data, but assumes that the test data arrives in mini-batches,
providing the opportunity to adapt to each mini-batch be-
fore making decisions on their labels. Both of these settings
obviously still have many hyperparameters (e.g., learning
rate, number of iterations, regularisation strengths) for the
proposed algorithms, and hence suffer from the lack of a
clear validation protocol in a DA context. None of the sem-
inal studies in this area show valid HPO criteria in their pa-
pers or code.

2.2. Validation Approaches for DA

Comparatively few papers have systematically studied
validation criteria for UDA, given the importance of this is-
sue for practical application of UDA. Typical solutions ap-
plied by UDA algorithm papers include: (1) Oracle risk.
Many papers use the target test set for hyperparameter se-
lection [12], which is obviously incorrect as it can not be
used in real applications; (2) Source risk. Evaluating the
adapted model on the source validation set is reasonable but
may not be a good validation criterion due to domain shift
between source and target domains; (3) Evaluating another
UDA algorithm objective (such as InfoMax [20] and MMD
[10]) on an unlabelled validation split of the target set; (4)
Validation domain. Use of a held-out labelled validation do-
main, as used in the VisDA challenge [14], is fair. However,
this assumes multiple labelled domains, which may not be
available in practice, and also raises additional questions of
whether the optimal hyperparameters for the validation do-
main are representative of the optimal hyperparameters for
the target domain.

Besides the above strategies, a few purpose-designed
validation criteria have been proposed: Deep embedding
validation (DEV) [29] weights the source validation risk by
the probability that each sample belongs to the source do-
mains. Meanwhile, Silhouette Score [15], Batch nuclear-
norm minimisation (BNM) [2], and soft neighbourhood
density (SND) [18] criteria that boil down to evaluating the
adapted models’ posterior label distribution on the target
domain under different notions of a prior for the expected
target domain label distribution. Mean ensemble-based val-
idation (ENS) [15] considers a linear combination of the
above criteria in an attempt to improve performance. How-
ever, overall it is unclear which to prefer for UDA.

2.3. Benchmarking Domain Adaptation

There have been two major benchmarking exercises in
UDA. The VisDA competition challenge [14] provides a
labelled validation domain for model selection and hyper-
parameter optimisation (HPO). However, validation do-
mains may not be available in practice—-and if they are,
they may not be representative of the target domain. Thus,
the vast majority of research literature on UDA has not used

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

this approach. A recent empirical evaluation [12, 11] anal-
ysed the GitHub repositories of a number of UDA methods
and found that: (1) In practice different methods used very
different validation criteria for empirical evaluation, making
published results incomparable with each other; (2) A large
number of prior studies used the oracle risk as a validation
criterion, meaning that their results are not representative
of how well domain adaptation would work in reality using
validation criteria that can be implemented in practice; (3)
Variation in existing validation criteria was high compared
to variation across adaptation algorithms, and none of them
were strongly correlated with recognition performance. Our
evaluation extends this early study but goes beyond it in
considering all three major branches of DA research (UDA,
SFDA, TTA), considering a wider variety of validators, and
demonstrating how validator performance can be improved
through proper use of validation splits within the target do-
main.

3. Background
3.1. Problem Setup

Unsupervised Domain Adaptation: In the UDA setup,
one typically trains a model fθ : X 7→ Y on a labelled
dataset, DS = {xi,yi}NS

i=1, consisting of data sampled from
a source domain, pS . The goal is then to adapt fθ using an
unlabelled dataset, DT = {xi}NT

i=1, sampled from a target
domain, pT . The general learning objective to be minimised
w.r.t. to θ can be simplified as follows,

L(fθ,DS ,DT) = Lsup(fθ,DS) + Lda(fθ,DS ,DT), (1)

where Lsup(·) is typically the cross-entropy loss for clas-
sification and mean square error for regression problems,
and Lda(·) is the adaptation loss, such as MMD [23],
CORAL [21] and DANN [4] losses,
Source-Free Domain Adaptation: The SFDA setting aims
to adapt a pre-trained source domain model to the target do-
main, relaxing the assumption of joint occurrence of source
and target domain data in UDA. So first, a source model will
be optimized using source domain data

θ̂ = argmin
θ

Lsup(fθ,DS) (2)

then trained source model θ̂ will be adapted to the target
domain by

θ∗ = argmin
θ̂

Lsfda(fθ̂,DT). (3)

where now Lsfda is typically an unsupervised loss, such
as pseudo labelling [?], information maximization [?] and
clustering [?] losses.
Test-Time Adaptation: Unlike SFDA, TTA assumes the
batch-wise target domain data X ∼ DT comes in a stream

and adapts a pre-trained source model for each minibatch
X as

θ∗ = argmin
θ̂

Ltta
X∼DT

(fθ̂, X), (4)

where Ltta is commonly the unsupervised loss, such as self-
supervised learning and entropy minimisation losses.

3.2. Model Selection

The de facto model selection is that the best candidate
model configured by a hyperparameter set (h ∈ H, H is
the pool of hyperparameter sets) will be selected based on
their evaluation score, d(fθ,DV)

1, where DV is a validation
dataset. The process can be formalised as

h∗ = argmax
h

d(fθ∗
h
,DV),

s.t. θ∗
h = argmin

θ
L(fθ,DS ,DT ;h).

(5)

However, two things in UDA complicate this process: 1)
determining how to select the validation set DV ; and 2)
deciding which evaluation metric should be used if DV =
{xi}NV

i=1 is an unlabelled set from the target domain.
A recent work systematically investigated the possible

validation criteria for UDA, which we summarise below us-
ing ŷ to denote the one-hot predictions of the model and y
as the one-hot ground truth labels.

Source accuracy: d is simply the accuracy metric and
DV can be a training or validation set from a source do-
main.

d(fθ,DV) =
1

NV

NV∑
i=1

1(ŷ = y), (6)

where 1(·) is the indicator function that evaluates to one if
its argument is true and zero otherwise.

Entropy: Entropy has been used in an adaptation
loss [26] as well as for model selection. In this case, d com-
putes the confidence of the model predictions, as measured
by the entropy of the predicted label distribution, and DV

is typically the training or validation set from an unlabelled
target domain. We further investigate the effect when DV

comes from the source domain.

d(fθ,DV) =
1

NV

NV∑
i=1

H(pi),pi = fθ(xi), (7)

where

H(p) = −
K∑
j=1

p[j]logp[j], (8)

computes the entropy of the categorical distribution, p.
1Assuming the model performance is a monotonically decreasing func-

tion of the output of d(·,DV).

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Information maximisation (IM): IM is often used as an
adaptation loss as well [20] to maximise the diversity of
prediction in addition to confidence.

d(fθ,DV) = H(
1

NV

NV∑
i=1

pi)−
1

Nv

Nv∑
i=1

H(pi). (9)

Adjusted Mutual Information (AMI): This is the ad-
justed mutual information between predicted and cluster la-
bels.

d(fθ,DV) = AMI(p,CL(DV)) (10)

where CL(DV) is the cluster labels for validation set DV ,
which can be the target training or validation set.

V-Measure: Similarly to AMI, this is a metric defined
over clustering labels and predictions. It is defined as the
harmonic mean between homogeneity and completeness
[16].

Other clustering measures: Along with AMI and V-
Measure, we compute several other related clustering mea-
sures, namely, adjusted Rand index, Fowlkes–Mallows in-
dex, silhouette score, Davies–Bouldin index and Calinski-
Harabasz index.

RankMe: Originally proposed for estimating the transfer-
ability of self-supervised representations [5], RankMe ap-
proximates the rank of the feature matrix on pre-training
data. We investigate its application to both source and tar-
get domain data.

CORAL: CORAL is an adaptation algorithm that aligns
the feature distributions of the source and target data by
minimising second-order statistics [21]. Their loss can be
used as a validator and is defined as the difference between
the covariance matrices of the two domains, CS and CT .

d(fθ,DV) = CORAL(DS ,DT)

=
1

4d2
∥CS − CT ∥2F

(11)

Maximum mean discrepancy (MMD): A common met-
ric used to compute the discrepancy of feature distributions
from source and target domains [23], which can be used
with the assumption that the trained model may have a good
target performance when the source and target domain fea-

tures are aligned.

d(fθ,DV) = MMD(DS ,DT)

=
1

NS(NS − 1)

NS∑
i=1

NS∑
j ̸=i

k(vs.i, vs.j ; fθ)

+
1

NT (NT − 1)

NT∑
i=1

NT∑
j ̸=i

k(ti, tj)

− 2

NSNT

NS∑
i=1

NT∑
j=1

k(vs.i, tj),

k(a, b) = exp

{
−∥a− b∥22

e

}
,

(12)

where vs. and t are the features extracted for the data from
source and target domains, respectively. And additionally,
the Class-wise MMD which computes the MMD distance
between source and target domains from the same classes
separately.

d(fθ,DV) = CW-MMD(DS ,DT)

=
1

C

C∑
i=1

MMD(DS |y=i,DT |y=i)
(13)

When MMD is used for validation, the validation set com-
bines the train sets or validation sets of source and target
domains.

Soft neighbourhood density (SND): SND computes the
entropy based on the gram matrix of the validation features.

d(fθ,DV) = H(α(X, τ)),

X = vTv,
(14)

where v are the data features, α(.) and τ are softmax func-
tion and temperature. Here DV can be the train or validation
set of source or target domains.

Batch nuclear-norm maximization (BNM): BNM was
originally a UDA algorithm, which maximizes the nuclear
norm of the prediction matrix in a batch, being repurposed
as a validation criterion.

d(fθ,DV) = ∥P ∥∗,P = fθ(DV) (15)

where P ∈ RNV ×C the prediction matrix of whole data in
DV using fθ. And ∥∥∗ computes the nuclear norm.

4. Evaluation
Our evaluation extends the benchmark of [12]. We make

their setup more rigorous by splitting the target domain into

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. How the source and target domains are split and how each
split is used for (1) the source-only model and (2) adaptation algo-
rithms.

Source Target

Train Val Train Val Test

Source-only Train Validate - - Test
Adaptors Adapt - Adapt Validate Test

Table 2. Summary of adaptation algorithms considered
Algorithm Approach

U
D

A

ATDOC [9] Pseudo-labelling
BNM [3] SVD loss
DANN [4] Adversarial
MCC [7] Information maximisation
MCD [19] Classifier discrepancy
MMD [10] Feature distance

SF
D

A AAD [28] Clustering
NRC [27] Graph clustering
SHOT [8] Information maximisation

T
TA TENT [25] Entropy minimisation

TTT++ [22] Self-supervised learning

train/val/test sets. Previous works often compute target per-
formance on the same data that the algorithms adapt to, or
the same data that the validators use. This fails to properly
measure generalisation performance as we will show later.
Ours splits and how we use them are detailed in Table 1.

In order to compare different validation criteria, we
collect a large set of model checkpoints that span sev-
eral datasets, algorithms, feature layers and hyperparameter
choices. We want the optimal validator to behave similarly
to the target domain test performance of the corresponding
algorithm. We measure the quality of each validator in two
ways: 1) computing the Spearman rank correlation between
validator scores and oracle test accuracy, 2) using the val-
idator to select the best model for an algorithm/task pair and
comparing the test performance of it against the best model
as selected by the oracle.

4.1. Unsupervised Domain Adaptation

4.1.1 Setup

Datasets: We gather model checkpoints from a wide range
of UDA benchmark datasets: MNIST-M [4] which consists
of one setup from standard MNIST to a modified version;
VisDA2017-C which contains train, validation and test do-
mains — we consider the shifts train → validation and
train → test; Office31 [17] which consists of three domains:
amazon, dslr and webcam; and OfficeHome [24] with four
domains: art, clipart, product and real.
Algorithms: We consider six representative domain adap-
tation algorithms, spanning both recent and classic meth-
ods and a variety of underlying principles. These include
the pseudo-label based ATDOC [9]; domain-adversarial

Table 3. Summary of validation criteria considered

Criterion Approach

BNM [3] Label prior
AMI [11, 15] Label prior
ARI Label prior
V-Measure Label prior
FMI Label prior
Silhouette [11, 15] Label prior
DBI Label prior
CHI Label prior
MMD [10] Domain Alignment
CORAL [21] Domain Alignment
SND [18] Label prior
InfoMax [20] Label prior
Entropy Label prior
Source Accuracy

learning with the seminal DANN [4]; domain-alignment
with MMD [10]; BNM and MCC which optimise the tar-
get label distribution under nuclear norm prior and mini-
mum class confusion priors respectively, and the classifier-
discrepancy-based MCD [19].

We start by finetuning a network on the source task.
We take ResNet50 weights pretrained on ImageNet [6] for
all datasets apart from MNIST-M where a smaller CNN is
used. The final classification layer is replaced by an MLP
head consisting of two blocks of {Linear, ReLU, Dropout}
followed by a final Linear layer. We finetune only this
head on the source task using a standard categorical cross-
entropy loss. 10 models are trained with learning rates sam-
pled uniformly at random from a logarithmic scale between
10−5 − 10−1. These runs form the set of checkpoints for
the source-only model. They are not used for evaluating the
validation criteria, but we report performances at times for
comparison.

We use a diverse set of state-of-the-art adaptation al-
gorithms (see Table 2) to collect our checkpoints. When
training each adaptation algorithm, we use the source-only
model weights as initialisation for both the backbone and
MLP head. The specific source-only checkpoint used as
initialisation is the one with the highest source validation
accuracy and in case of ties we select the checkpoint trained
for the fewest amount of epochs.

We generate a set of feature checkpoints using 6 algo-
rithms, 20 datasets, 10 hyperparameter samples, 2 feature
layers, and record 20 different checkpoints during training.
This gives us a total of 48,000 checkpoints.
Validators: We compare our two new validators to a large
number of existing criteria, listed in Table 3.
Questions: Using the setup above, we aim to answer the
following questions: (i) How well do the various validation
criteria correlate with true testing performance? (ii) Which
validation criterion leads to the best generalisation perfor-

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Weighted spearman correlation with oracle

Class V-Measure (Source Val + Target Val Logits)
Class V-Measure (Source Val + Target Val Features)

ClassAMI (Source Val + Target Val Features)
ClassAMI (Source Val + Target Val Logits)
ClassARI (Source Val + Target Val Logits)

ClassARI (Source Val + Target Val Features)
ClassFMI (Source Val + Target Val Logits)

ClassARI (Source Val + Target Train Features)
ClassFMI (Source Val + Target Val Features)
ClassARI (Source Val + Target Train Logits)

Class V-Measure (Source Val + Target Train Features)
ClassAMI (Source Val + Target Train Features)

Class V-Measure (Source Val + Target Train Logits)
ClassAMI (Source Val + Target Train Logits)

ClassFMI (Source Val + Target Train Features)
Accuracy (Source Val)

ClassFMI (Source Val + Target Train Logits)
Accuracy (Source Train)

IM (Target Val)
IM (Source Val + Target Val)

BNM (Target Val)
BNM (Source Val + Target Val)
IM (Source Val + Target Train)

IM (Target Train)
BNM (Source Val + Target Train)

Entropy (Source Val + Target Val)
Entropy (Target Val)

BNM (Target Train)
Entropy (Source Val + Target Train)

MMD (Source Val + Target Val Preds)
Entropy (Target Train)

MMDPerClass (Source Val + Target Val Preds)
MMD (Source Val + Target Train Preds)

MMD (Source Val + Target Train)
MMDPerClass (Source Val + Target Train Preds)

MMD (Source Val + Target Val)
MMD (Source Val + Target Train Logits)

MMDPerClass (Source Val + Target Val Logits)
MMD (Source Val + Target Val Logits)

Class Silhouette (Source Val + Target Train Logits)
Class Silhouette (Source Val + Target Val Logits)

Class Silhouette (Source Val + Target Train Features)
Class Silhouette (Source Val + Target Val Features)

MMDPerClass (Source Val + Target Train Logits)
MMDPerClass (Source Val + Target Val)

MMDPerClass (Source Val + Target Train)
ClassBDI (Source Val + Target Train Features)

ClassBDI (Source Val + Target Val Features)
-SND (Target Val)

-SND (Target Train)
CORALPerClass (Source Val + Target Train Preds)

ClassBDI (Source Val + Target Train Logits)
CORALPerClass (Source Val + Target Train)

CORALPerClass (Source Val + Target Val Preds)
CORALPerClass (Source Val + Target Val)

CORAL (Source Val + Target Train)
CORAL (Source Val + Target Train Preds)

CORALPerClass (Source Val + Target Train Logits)
ClassBDI (Source Val + Target Val Logits)

CORALPerClass (Source Val + Target Val Logits)
CORAL (Source Val + Target Train Logits)

CORAL (Source Val + Target Val)
CORAL (Source Val + Target Val Logits)
CORAL (Source Val + Target Val Preds)

ClassCHI (Source Val + Target Train Features)
ClassCHI (Source Val + Target Train Logits)

ClassCHI (Source Val + Target Val Features)
SND (Target Train)

ClassCHI (Source Val + Target Val Logits)
SND (Target Val)

0 10 20 30 40
Mean accuracy gap between best models,

 as selected by validator and oracle

ClassAMI (Source Val + Target Val Logits)
Class V-Measure (Source Val + Target Val Features)

Class V-Measure (Source Val + Target Val Logits)
ClassAMI (Source Val + Target Val Features)

Class V-Measure (Source Val + Target Train Features)
ClassAMI (Source Val + Target Train Features)

Accuracy (Source Val)
Class V-Measure (Source Val + Target Train Logits)

ClassAMI (Source Val + Target Train Logits)
IM (Source Val + Target Val)

Accuracy (Source Train)
BNM (Source Val + Target Val)

IM (Target Val)
IM (Source Val + Target Train)

IM (Target Train)
BNM (Source Val + Target Train)

ClassARI (Source Val + Target Val Features)
BNM (Target Train)

BNM (Target Val)
ClassARI (Source Val + Target Val Logits)

Entropy (Source Val + Target Train)
ClassFMI (Source Val + Target Val Features)

ClassARI (Source Val + Target Train Features)
Entropy (Target Train)

Entropy (Source Val + Target Val)
ClassFMI (Source Val + Target Val Logits)

ClassARI (Source Val + Target Train Logits)
Entropy (Target Val)

MMD (Source Val + Target Train Preds)
ClassFMI (Source Val + Target Train Features)

ClassFMI (Source Val + Target Train Logits)
MMD (Source Val + Target Val Preds)

ClassBDI (Source Val + Target Train Features)
MMD (Source Val + Target Train)

ClassBDI (Source Val + Target Val Features)
MMD (Source Val + Target Train Logits)

MMDPerClass (Source Val + Target Train Logits)
MMD (Source Val + Target Val)

MMDPerClass (Source Val + Target Train)
-SND (Target Train)

-SND (Target Val)
MMD (Source Val + Target Val Logits)

Class Silhouette (Source Val + Target Train Features)
MMDPerClass (Source Val + Target Val Logits)

Class Silhouette (Source Val + Target Train Logits)
MMDPerClass (Source Val + Target Val)

Class Silhouette (Source Val + Target Val Features)
Class Silhouette (Source Val + Target Val Logits)

ClassBDI (Source Val + Target Train Logits)
MMDPerClass (Source Val + Target Train Preds)

MMDPerClass (Source Val + Target Val Preds)
ClassBDI (Source Val + Target Val Logits)

CORALPerClass (Source Val + Target Val Preds)
CORALPerClass (Source Val + Target Train Preds)

CORALPerClass (Source Val + Target Val Logits)
CORALPerClass (Source Val + Target Train Logits)

CORAL (Source Val + Target Train Logits)
CORAL (Source Val + Target Train Preds)

CORAL (Source Val + Target Val Logits)
CORAL (Source Val + Target Val Preds)

CORALPerClass (Source Val + Target Train)
ClassCHI (Source Val + Target Train Features)

CORALPerClass (Source Val + Target Val)
CORAL (Source Val + Target Train)

CORAL (Source Val + Target Val)
ClassCHI (Source Val + Target Train Logits)

ClassCHI (Source Val + Target Val Features)
ClassCHI (Source Val + Target Val Logits)

SND (Target Train)
SND (Target Val)

0 20 40 60 80 100
Max accuracy gap between best models,

 as selected by validator and oracle

Accuracy (Source Val)
IM (Target Train)

IM (Target Val)
BNM (Source Val + Target Train)

IM (Source Val + Target Train)
Accuracy (Source Train)

BNM (Target Train)
BNM (Target Val)

BNM (Source Val + Target Val)
IM (Source Val + Target Val)

Class V-Measure (Source Val + Target Train Logits)
Class V-Measure (Source Val + Target Val Logits)

Class V-Measure (Source Val + Target Val Features)
ClassAMI (Source Val + Target Val Logits)

ClassAMI (Source Val + Target Train Logits)
ClassAMI (Source Val + Target Val Features)

ClassAMI (Source Val + Target Train Features)
Class V-Measure (Source Val + Target Train Features)

-SND (Target Train)
-SND (Target Val)

ClassARI (Source Val + Target Val Features)
ClassFMI (Source Val + Target Val Features)

ClassARI (Source Val + Target Val Logits)
Entropy (Source Val + Target Train)

Entropy (Target Train)
Entropy (Target Val)

Entropy (Source Val + Target Val)
ClassFMI (Source Val + Target Val Logits)

MMD (Source Val + Target Train)
MMD (Source Val + Target Train Logits)
MMD (Source Val + Target Train Preds)

ClassARI (Source Val + Target Train Logits)
ClassARI (Source Val + Target Train Features)

ClassFMI (Source Val + Target Train Logits)
ClassFMI (Source Val + Target Train Features)

Class Silhouette (Source Val + Target Train Logits)
Class Silhouette (Source Val + Target Val Features)

Class Silhouette (Source Val + Target Train Features)
Class Silhouette (Source Val + Target Val Logits)

ClassBDI (Source Val + Target Train Features)
ClassBDI (Source Val + Target Train Logits)

MMD (Source Val + Target Val Preds)
MMD (Source Val + Target Val)

MMD (Source Val + Target Val Logits)
ClassBDI (Source Val + Target Val Features)

CORALPerClass (Source Val + Target Train Logits)
CORALPerClass (Source Val + Target Train Preds)

ClassCHI (Source Val + Target Train Features)
ClassCHI (Source Val + Target Train Logits)

ClassBDI (Source Val + Target Val Logits)
CORALPerClass (Source Val + Target Val Logits)

ClassCHI (Source Val + Target Val Logits)
CORALPerClass (Source Val + Target Val Preds)
MMDPerClass (Source Val + Target Train Logits)

MMDPerClass (Source Val + Target Val)
MMDPerClass (Source Val + Target Train Preds)

MMDPerClass (Source Val + Target Train)
MMDPerClass (Source Val + Target Val Logits)
MMDPerClass (Source Val + Target Val Preds)

CORAL (Source Val + Target Val Logits)
CORAL (Source Val + Target Train Logits)

CORAL (Source Val + Target Train)
CORAL (Source Val + Target Val)

CORALPerClass (Source Val + Target Train)
CORALPerClass (Source Val + Target Val)

SND (Target Train)
CORAL (Source Val + Target Val Preds)

ClassCHI (Source Val + Target Val Features)
SND (Target Val)

CORAL (Source Val + Target Train Preds)

Figure 1. Left: Correlations with target test accuracy on UDA benchmarks (individual domain plots in ??). Error bars are standard error
across domains. Middle: Average gap between the best model as selected by each validator and the oracle. Right: Maximum gap between
the best model as selected by each validator and the oracle.

mance when used for model selection? (iii) What is the im-
pact of validating on the training set versus an independent
validation split?

4.1.2 How well do validation criteria correlate with
testing performance?

Using our 48,000 model checkpoints, we compute the true
target domain testing performance for each; as well as each
checkpoint’s score under the various validation criteria. The
results, aggregated across all pairs of source and target do-
mains in the Office31 dataset, are shown in Figure 1; and
broken down across each pair of source and target domains
in Figure ??.

4.1.3 Which validation criterion leads to the best gen-
eralisation performance when used for model se-
lection?

We next use the various scores to perform model selection
and hyperparameter optimisation for each of the base DA
algorithms.

4.1.4 What is the impact of validating on training vs
validation splits?

As discussed in [12, 11], while prior work that validates on
the source domain has fairly consistently used the source
validation set; prior work that validates on the unlabelled
target domain has been inconsistent with regard to choice
of validation on the target train set or an independent target
val set. Our normative theory for validation requires vali-
dation on the target val set. However, because prior criteria
are often intuitively motivated there is also not an obvious
answer about which is preferred. To analyse this issue, we
compare using the train vs validation split for evaluating cri-
teria. From the results in Table 5 we see that for almost all
the criteria the val split is preferred. While this result might
seem unsurprising in retrospect, we emphasise that the use
of a val split is NOT standard practice in the literature, even
in thorough recent evaluations [11].

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Weighted spearman correlation with oracle

Class V-Measure (Target Val Logits)
Class V-Measure (Target Val Features)

IM (Target Val)
RankMe (Target Val Preds)

BNM (Target Val)
ClassAMI (Target Val Features)

RankMe (Target Train)
ClassAMI (Target Train Logits)

RankMe (Target Val)
ClassAMI (Target Val Logits)

Class V-Measure (Target Train Logits)
ClassAMI (Target Train Features)

Class V-Measure (Target Train Features)
ClassBDI (Target Train Features)
ClassARI (Target Train Features)

-SND (Target Val)
-SND (Target Train)

RankMe (Target Val Logits)
IM (Target Train)

ClassBDI (Target Train Logits)
ClassARI (Target Train Logits)

BNM (Target Train)
ClassBDI (Target Val Features)

RankMe (Target Train Preds)
ClassFMI (Target Train Features)

Entropy (Target Train)
RankMe (Target Train Logits)
ClassBDI (Target Val Logits)

ClassFMI (Target Train Logits)
ClassARI (Target Val Features)

ClassARI (Target Val Logits)
ClassFMI (Target Val Features)

Entropy (Target Val)
ClassFMI (Target Val Logits)

Class Silhouette (Target Train Features)
Class Silhouette (Target Train Logits)

Class Silhouette (Target Val Features)
Class Silhouette (Target Val Logits)

ClassCHI (Target Train Features)
ClassCHI (Target Train Logits)

SND (Target Train)
SND (Target Val)

ClassCHI (Target Val Features)
ClassCHI (Target Val Logits)

0 10 20 30 40 50
Mean accuracy gap between best models,

 as selected by validator and oracle

Class V-Measure (Target Val Features)
Class V-Measure (Target Train Features)

BNM (Target Val)
Class V-Measure (Target Train Logits)

RankMe (Target Val Preds)
Class V-Measure (Target Val Logits)

ClassAMI (Target Train Features)
RankMe (Target Train Preds)

BNM (Target Train)
IM (Target Train)

ClassAMI (Target Train Logits)
IM (Target Val)

-SND (Target Val)
-SND (Target Train)

RankMe (Target Val)
RankMe (Target Train)

RankMe (Target Val Logits)
ClassBDI (Target Train Features)

RankMe (Target Train Logits)
ClassAMI (Target Val Features)
ClassBDI (Target Train Logits)

ClassAMI (Target Val Logits)
ClassBDI (Target Val Features)

ClassBDI (Target Val Logits)
Entropy (Target Train)

Entropy (Target Val)
ClassARI (Target Train Features)

ClassARI (Target Train Logits)
ClassFMI (Target Val Features)
ClassARI (Target Val Features)

ClassFMI (Target Val Logits)
ClassARI (Target Val Logits)

ClassFMI (Target Train Logits)
ClassFMI (Target Train Features)

Class Silhouette (Target Train Logits)
Class Silhouette (Target Train Features)

Class Silhouette (Target Val Features)
ClassCHI (Target Train Features)

Class Silhouette (Target Val Logits)
ClassCHI (Target Train Logits)

SND (Target Train)
SND (Target Val)

ClassCHI (Target Val Features)
ClassCHI (Target Val Logits)

0 10 20 30 40 50 60 70 80
Max accuracy gap between best models,

 as selected by validator and oracle

Class V-Measure (Target Val Features)
RankMe (Target Val Preds)

Class V-Measure (Target Train Features)
Class V-Measure (Target Train Logits)

BNM (Target Train)
RankMe (Target Val)

BNM (Target Val)
IM (Target Train)

-SND (Target Train)
-SND (Target Val)

RankMe (Target Train)
RankMe (Target Train Preds)

RankMe (Target Val Logits)
RankMe (Target Train Logits)

ClassAMI (Target Train Features)
IM (Target Val)

Class V-Measure (Target Val Logits)
ClassAMI (Target Train Logits)

ClassBDI (Target Train Features)
ClassBDI (Target Train Logits)

ClassBDI (Target Val Features)
ClassAMI (Target Val Logits)

ClassAMI (Target Val Features)
Class Silhouette (Target Val Logits)

Class Silhouette (Target Val Features)
ClassFMI (Target Val Features)

ClassFMI (Target Val Logits)
ClassARI (Target Val Features)

Class Silhouette (Target Train Features)
ClassBDI (Target Val Logits)
ClassARI (Target Val Logits)

ClassARI (Target Train Logits)
ClassFMI (Target Train Logits)
ClassCHI (Target Train Logits)

ClassCHI (Target Train Features)
SND (Target Train)

SND (Target Val)
ClassARI (Target Train Features)
ClassFMI (Target Train Features)

Class Silhouette (Target Train Logits)
Entropy (Target Val)

ClassCHI (Target Val Features)
Entropy (Target Train)

ClassCHI (Target Val Logits)

Figure 2. Left: Correlations with target test accuracy on SFDA benchmarks (individual domain plots in ??). Error bars are standard error
across domains. Middle: Average gap between the best model as selected by each validator and the oracle. Right: Maximum gap between
the best model as selected by each validator and the oracle.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Weighted spearman correlation with oracle

RankMe (Preds)
ClassARI (Logits)
ClassFMI (Logits)

Class V-Measure (Logits)
ClassAMI (Logits)
RankMe (Logits)

BNM
RankMe

IM
Class Silhouette (Logits)

Class V-Measure (Features)
ClassFMI (Features)
ClassARI (Features)
ClassAMI (Features)
ClassBDI (Features)

Class Silhouette (Features)
-SND

Entropy
ClassCHI (Logits)

ClassCHI (Features)
ClassBDI (Logits)

SND
0 5 10 15 20 25 30 35 40

Mean accuracy gap between best models,
 as selected by validator and oracle

Class V-Measure (Logits)
ClassAMI (Logits)

RankMe (Preds)
ClassARI (Logits)

BNM
RankMe (Logits)

ClassFMI (Logits)
Class Silhouette (Logits)

ClassAMI (Features)
Class V-Measure (Features)

ClassFMI (Features)
ClassARI (Features)

IM
-SND

RankMe
ClassBDI (Features)

Class Silhouette (Features)
Entropy

ClassCHI (Logits)
ClassCHI (Features)

ClassBDI (Logits)
SND

0 20 40 60 80
Max accuracy gap between best models,

 as selected by validator and oracle

Class V-Measure (Logits)
ClassAMI (Logits)

RankMe (Preds)
ClassARI (Logits)

BNM
Class Silhouette (Logits)

ClassFMI (Logits)
ClassAMI (Features)

Class V-Measure (Features)
RankMe (Logits)

ClassFMI (Features)
ClassARI (Features)

IM
-SND

RankMe
ClassBDI (Features)
ClassCHI (Features)

ClassCHI (Logits)
SND

Class Silhouette (Features)
ClassBDI (Logits)

Entropy

Figure 3. Left: Correlations with target test accuracy on TTA benchmarks (individual domain plots in ??). Error bars are standard error
across domains. Middle: Average gap between the best model as selected by each validator and the oracle. Right: Maximum gap between
the best model as selected by each validator and the oracle.

4.2. Source-free Domain Adapation

4.2.1 Setup

For SFDA we use the OfficeHome dataset as a benchmark,
covering all 12 domain shifts. The same source-only mod-
els that we produced for UDA are also used here for initial-
isation of the same architecture. Three recent SFDA algo-
rithms adapt the model on target domain data, AAD [28],
NRC [27] and SHOT [8]. For each algorithm, we sample
10 sets of hyperparameters and train for 200 epochs

Validators: As the source domain is not available in this
setting, we can only apply our validators to the target do-
main splits. Following our results in Section 4.1.4 we use
the target validation split for all validators. Questions:

4.3. Test-Time Adaptation

4.3.1 Setup

We adopt the TTA setting, where a pre-trained model adapts
on the test data as it comes, one batch at a time. In par-
ticular, we use the episodic setting where the model is re-
set after each batch. Datasets: We use the most com-
mon TTA benchmark of CIFAR-10-C, consisting of 15 ver-
sions of the CIFAR-10 test set with different corruptions
applied, including Gaussian noise, pixelation and fog. Al-
gorithms: We use the pre-trained CIFAR10 checkpoint of
[30] as our source-only model and initialisation for the TTA
algorithms. TENT [26] adapts by minimising the entropy
on its predictions on the test batch, and TTT++ [30] uses
a self-supervised auxiliary loss in addition to feature align-
ment via MMD and CORAL.

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 4. Comparison of validation criteria for model selection in UDA. We report the target test performance for the top models selected
by each validator.

RankMe AMI ARI V-Measure FMI Silhouette DBI CHI BNM MMD CORAL SND IM Entropy Accuracy Oracle

ATDOC 61.52 68.06 67.67 68.05 67.75 44.96 57.14 16.29 64.83 55.00 18.99 15.81 65.32 60.52 68.06 72.24
BNM 64.32 69.17 69.41 69.17 69.35 61.51 58.27 32.56 64.87 59.17 37.66 27.47 64.82 64.84 66.02 71.09
DANN 63.21 64.48 63.69 64.61 63.69 56.66 56.31 39.50 64.22 57.59 42.17 34.60 63.92 63.68 62.44 68.27
MCC 61.54 69.28 70.12 69.48 70.06 59.43 53.99 24.78 68.29 54.55 23.43 18.98 68.38 60.23 69.11 72.41
MCD 64.44 60.48 48.35 60.66 41.83 16.17 39.86 8.99 64.04 35.20 15.29 8.97 64.16 54.32 63.83 67.75
MMD 60.20 65.33 63.44 65.33 60.94 54.67 58.24 35.72 61.69 56.52 35.73 32.60 62.34 62.29 63.83 67.44

Avg. 62.54 66.13 63.78 66.22 62.27 48.90 53.97 26.31 64.66 53.01 28.88 23.07 64.82 60.98 65.55 69.87
Avg. Rank 7.17 3.17 4.08 2.83 5.08 11.17 11.00 13.83 5.50 10.83 13.17 15.00 5.17 7.50 4.50 -

Souce-only 65.60

Table 5. Comparison of split for evaluation of validation criteria. We report the average target test accuracy of selected models for each
validator when applied on (1) target train data and (2) target validation data.

RankMe AMI ARI V-Measure FMI Silhouette DBI CHI BNM MMD CORAL SND IM Entropy Accuracy

Train 61.77 65.43 62.15 65.59 58.27 50.56 55.23 29.19 64.32 54.76 28.97 24.12 64.53 62.14 64.50
Val 62.54 66.13 63.78 66.22 62.27 48.90 53.97 26.31 64.66 53.01 28.88 23.07 64.82 60.98 65.55

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Weighted spearman correlation with oracle

Class V-Measure

ClassAMI

ClassARI

ClassFMI

Source Accuracy

IM

BNM

RankMe (Preds)

Entropy

MMD

Class Silhouette

ClassCHI

SND

0.650

0.648

0.603

0.565

0.481

0.401

0.379

0.340

0.305

0.119

-0.022

-0.556

-0.668

0.541

0.541

0.568

0.491

0.394

0.358

0.338

0.261

0.294

0.129

-0.014

-0.450

-0.618

split
val
train

Figure 4. Weighted Spearman rank correlation. Comparison of
split for evaluation of validation criteria. We report the average
weighted Spearman rank correlation between each validator and
target test accuracy when using the following data splits for com-
puting validators: (1) target train data and (2) target validation
data. (G-Score uses source train/validation data and for those val-
idators that use both source and target, we always use the valida-
tion split in the source domain.)

Validators: As this setting only exposes a single batch to
the model at a time, both training and validation use the
same data. Questions: Results: In this setting, the top
validators manage to almost match the oracle performance,
indicating that ... However, it is worth noting that this is
an artificially constructed benchmark. It is likely that on
a more realistic dataset like OfficeHome, the trends would
be closer to that of SFDA. We leave this investigation for
future work.

5. Conclusion
We investigated the problem of model selection criteria

for unsupervised domain adaptation. Taking a normative
approach based on a target domain generalisation bound,
we derived two new principled model selection criteria.
Our exhaustive empirical evaluation showed that our cri-
teria both have the strongest correlation to the final testing
performance, and are also the most effective for maximising
performance when used for model selection. Uniquely, our
criteria are general bounds that can be instantiated for dif-
ferent kinds of inference problems, unlike prior work that
is restricted to classification. We showed successful instan-
tiations for both classification and regression problems. In
future work, we will instantiate them for structured predic-
tion problems such as semantic segmentation.

References
[1] Gabriela Csurka, Timothy M Hospedales, Mathieu Salz-

mann, and Tatiana Tommasi. Visual domain adaptation in
the deep learning era. Synthesis Lectures on Computer Vi-
sion, 11(1):1–190, 2022. 1, 2

[2] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qing-
ming Huang, and Qi Tian. Towards discriminability and di-
versity: Batch nuclear-norm maximization under label insuf-
ficient situations. In CVPR, 2020. 1, 2

[3] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qing-
ming Huang, and Qi Tian. Towards Discriminability and
Diversity: Batch Nuclear-norm Maximization under Label
Insufficient Situations. In CVPR, 2020. 5

[4] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. 2016. 1, 2, 3, 5

[5] Quentin Garrido, Randall Balestriero, Laurent Najman, and
Yann Lecun. Rankme: Assessing the downstream perfor-
mance of pretrained self-supervised representations by their
rank, 2022. 4

8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 6. SFDA performance on Office-Home.
RankMe AMI ARI V-Measure FMI Silhouette DBI CHI BNM SND IM Entropy Oracle

AAD 61.73 53.94 1.82 60.19 1.80 1.73 45.42 1.79 59.99 2.08 59.30 1.86 65.69
NRC 57.66 39.94 6.51 62.73 6.86 2.34 21.48 1.58 59.74 1.34 51.54 35.40 64.93
SHOT 59.20 60.90 61.09 60.99 61.09 55.67 56.24 36.46 59.85 37.81 59.79 60.59 64.04

Avg. 59.53 51.59 23.14 61.30 23.25 19.91 41.05 13.28 59.86 13.74 56.88 32.61 64.89
Avg. Rank 4.00 4.67 6.50 2.00 6.50 10.67 7.33 11.33 3.67 10.00 5.00 6.33 -

Source-only 58.03

Table 7. Test-Time Adaptation on CIFAR-10-C. We use the episodic setup where the model is reset after each batch. Only the target domain
is available and it is used both for adaptation, validation and computing the oracle performance.

RankMe AMI ARI V-Measure FMI Silhouette DBI CHI BNM SND IM Entropy Oracle

TENT 83.91 84.01 84.06 84.01 84.06 83.85 28.28 50.68 83.85 20.31 83.85 58.96 84.19
TTT++ 80.16 80.05 79.84 80.05 79.71 79.90 59.77 67.29 80.00 58.83 78.98 68.75 80.65

Avg. 82.03 82.03 81.95 82.03 81.89 81.88 44.02 58.98 81.93 39.57 81.42 63.85 82.42
Avg. Rank 3.00 3.00 3.75 3.00 4.25 6.00 11.00 10.00 5.50 12.00 7.50 9.00 -

Source-only 69.71

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

[7] Ying Jin, Ximei Wang, Mingsheng Long, and Jianmin Wang.
Minimum Class Confusion for Versatile Domain Adaptation.
In ECCV, volume 12366 LNCS, 2020. 5

[8] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In International Conference
on Machine Learning, 2020. 2, 5, 7

[9] Jian Liang, Dapeng Hu, and Jiashi Feng. Domain Adaptation
with Auxiliary Target Domain-Oriented Classifier. In CVPR,
2021. 5

[10] Mingsheng Long, Yue Cao, Jianmin Wang, Michael I Jordan,
and Jordan@berkeley Edu. Learning Transferable Features
with Deep Adaptation Networks. arXiv, 2015. 1, 2, 5

[11] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. Bench-
marking validation methods for unsupervised domain adap-
tation. arXiv preprint arXiv:2208.07360, 2022. 3, 5, 6

[12] Kevin Musgrave, Cornell Tech, Serge Belongie, Ser-Nam
Lim, and Meta Ai. Unsupervised Domain Adaptation: A
Reality Check. In ECCV, 2020. 1, 2, 3, 4, 6

[13] V. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual domain
adaptation: A survey of recent advances. Signal Processing
Magazine, IEEE, 32(3):53–69, May 2015. 2

[14] Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang,
Judy Hoffman, and Kate Saenko. Visda: A synthetic-to-real
benchmark for visual domain adaptation. In ICCV Work-
shops, 2018. 2

[15] Luca Robbiano, Muhammad Rameez Ur Rahman, Fabio
Galasso, Barbara Caputo, and Fabio Maria Carlucci. Ad-
versarial branch architecture search for unsupervised domain
adaptation. In WACV, 2022. 2, 5

[16] Andrew Rosenberg and Julia Hirschberg. V-measure: A con-
ditional entropy-based external cluster evaluation measure.
In Conference on Empirical Methods in Natural Language
Processing, 2007. 4

[17] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell.
Adapting visual category models to new domains. In ECCV,
volume 6314 LNCS, 2010. 5

[18] Kuniaki Saito, Donghyun Kim, Piotr Teterwak, Stan
Sclaroff, Trevor Darrell, and Kate Saenko. Tune it the right
way: Unsupervised validation of domain adaptation via soft
neighborhood density. In ICCV, 2021. 1, 2, 5

[19] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum Classifier Discrepancy for Unsuper-
vised Domain Adaptation. In CVPR, 2018. 5

[20] Yuan Shi and Sha Fei. Information-Theoretical Learning of
Discriminative Clusters for Unsupervised Domain Adapta-
tion. In ICML, 2012. 2, 4, 5

[21] Baochen Sun and Kate Saenko. Deep coral: Correlation
alignment for deep domain adaptation. In ECCV 2016 Work-
shops, 2016. 2, 3, 4, 5

[22] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
ICML, 2020. 2, 5

[23] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and
Trevor Darrell. Deep domain confusion: Maximizing for
domain invariance. In CVPR, 2014. 2, 3, 4

[24] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. CoRR, 2017. 5

[25] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations, 2021. 2, 5

[26] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In ICLR, 2021. 2, 3, 7

[27] Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling
Jui, et al. Exploiting the intrinsic neighborhood structure for
source-free domain adaptation. Advances in neural informa-
tion processing systems, 34:29393–29405, 2021. 5, 7

9

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[28] Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, et al.
Attracting and dispersing: A simple approach for source-free
domain adaptation. In Advances in Neural Information Pro-
cessing Systems, 2022. 2, 5, 7

[29] Kaichao You, Ximei Wang, Mingsheng Long, and Michael
Jordan. Towards accurate model selection in deep unsuper-
vised domain adaptation. In ICML, 2019. 1, 2

[30] Bastien van Delft Baptiste Bellot-Gurlet Taylor Mordan
Alexandre Alahi Yuejiang Liu, Parth Kothari. Ttt++: When
does self-supervised test-time training fail or thrive? In
NeurIPS, 2021. 2, 7

10

	. Introduction
	. Related Work
	. Domain Adaptation
	. Validation Approaches for DA
	. Benchmarking Domain Adaptation

	. Background
	. Problem Setup
	. Model Selection

	. Evaluation
	. Unsupervised Domain Adaptation
	Setup
	How well do validation criteria correlate with testing performance?
	Which validation criterion leads to the best generalisation performance when used for model selection?
	What is the impact of validating on training vs validation splits?

	. Source-free Domain Adapation
	Setup

	. Test-Time Adaptation
	Setup

	. Conclusion

