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Abstract

Distribution shifts are all too common in real-world
applications of deep learning. Domain adaptation (DA)
aims to address this by providing various frameworks for
adapting models to the deployment data without using la-
bels. However, the domain shift scenario raises a second
more subtle challenge: the difficulty of performing hyper-
parameter optimisation (HPO) for these adaptation algo-
rithms without access to a labelled validation set. The un-
clear validation protocol for DA has led to bad practices
in the literature, such as performing HPO using the tar-
get test labels when, in real-world scenarios, they are not
available. This has led to over-optimism about DA research
progress compared to reality. In this paper, we devise a
more rigorous framework for future work, by benchmarking
a suite of candidate validation criteria and using them to as-
sess popular adaptation algorithms. We show that there is
a challenge across all three branches of the domain adap-
tation literature including Unsupervised Domain Adapta-
tion (UDA), Source-Free Adaptation (SFDA), and Test Time
Adaptation (TTA). In each case, there is a large gap between
oracle HPO and achievable performance given real com-
putable validators. Additionally we highlight the impor-
tance of using proper validation splits in order to reliably
estimate target generalisation performance. Finally, we find
previously unexplored validation metrics that are widely ap-
plicable across all settings. Altogether, our improved prac-
tices covering data, training, validation and hyperparam-
eter optimisation form a new rigorous pipeline to improve
benchmarking, and hence research progress, within the field
going forward.

1. Introduction
Supervised deep learning models achieve impressive re-

sults when training and testing data are identically dis-
tributed. However, perhaps the main failure mode of com-
puter vision and pattern recognition systems in practice is
due to the near-ubiquitous distribution shift between data
curated for model training, and real-world data encountered

during deployment [1]. This distribution shift issue has mo-
tivated a tremendous amount of work in the area of unsu-
pervised domain adaptation (UDA) [1]. UDA methods aim
to alleviate domain shift by collecting freely available unla-
belled data during deployment to a target domain and adapt-
ing vision models based on this unlabelled data.

Hundreds of unsupervised adaptation algorithms have
now been proposed based on various principles from dis-
tribution alignment [10], to domain adversarial learning [4]
and much more. However, without exception, a key chal-
lenge for every one of these algorithms is how to tune hyper-
parameters and conduct model selection? In conventional
supervised learning, hyperparameters and model selection
(stopping criteria) are handled systematically by maximis-
ing accuracy on a validation split of the training set. In un-
supervised domain adaptation there is no such straightfor-
ward solution because the target domain has no labels with
which to compute accuracy, and the source domain is not
representative of the target domain.

Despite the importance of this issue—upon which any
practical application of domain adaptation hinges—there
has been relatively little systematic study of validation pro-
tocols and algorithms for UDA [29, 2, 18]. Worse, a recent
meta-review and re-evaluation of the domain adaptation lit-
erature found that most published code did not use consis-
tent or fair model selection criteria [12], and furthermore
when evaluated under consistent and fair model selection
criteria most existing results can not be replicated [12]. This
mini “replication crisis” in domain adaptation highlights the
need for studying validation protocols for UDA, and for fair
benchmarking to drive reliable progress.

The few existing fair model selection criteria for UDA
are based on diverse intuitions such as simply applying
UDA algorithm objectives on the validation split of the un-
labelled target set, priors on the expected distribution of la-
bels [2, 18], or relying on the validation accuracy in the
source domain [29]. However there is little first principles
justification to pick among these reasonable intuitions, and
there is little empirical evaluation to understand which are
best, and how close they come to the performance of an or-
acle validator, which has been the basis of many reported
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results in the literature [12].
These challenges exist throughout the domain adapta-

tion literature. They arise across all three popular branches
of adaptation for recognition: Unsupervised Domain Adap-
tation (UDA) [4, 21, 23], Source-Free Domain Adaptation
(SFDA) [8, 28] and Test Time Adaptation (TTA) [26, 30].
They also arise across different kinds of learning problems
from classification [?] to regression [?], dense prediction
[?], and detection [?].

To address this issue, we conduct a large-scale bench-
mark of 5 domain adaptation algorithms with 9 different
validation criteria and three DA settings (UDA, SFDA,
TTA). We identify which DA validators can be applied to
each setting, and characterise the size of the challenge in
each case in terms of the gap between practically achiev-
able and best-case DA performance. We identify effective
practices in terms of using validation splits to estimate tar-
get performance. Finally, we report which are the best exist-
ing validators. This data point should drive future practice
both in DA research – which should use these validators,
rather than unrealistic oracle HPO; and in validator research
– which should aim to develop validators which surpass the
best that we report.

2. Related Work

2.1. Domain Adaptation

There are now too many domain adaptation algorithms
to review here, and we refer the reader to good surveys
such as [1, 13]. Most deep UDA algorithms proceed by
performing supervised learning on the source domain data,
and some kind of unsupervised objective on the target do-
main data. Representative families of approach include ob-
jectives that penalise misalignment between the source and
target domain feature distributions [10], train a domain clas-
sifier that can then be used adversarially to penalise dis-
tinguishable source and target domain features [4], or pe-
nalise deviation from a prior on the expected target label
distribution [20]. However, all algorithms have a number
of hyper-parameters, such as stopping iteration and strength
of the weighting factor for supervised vs unsupervised loss
components. How to set these hyper-parameters is not clear
given the lack of a labelled target domain validation set in
UDA applications.

The long-established mainstream setting for unsuper-
vised domain adaptation (UDA) assumes that source and
target data are accessed simultaneously for training. Two
related problem variants have more recently gained rapid
popularity, namely source-free domain adaptation (SFDA)
and Test Time Adaptation (TTA). SFDA refers to the con-
dition where pre-trained source models should be adapted
to the target data without revisiting the source data [8] – for
example, by unsupervised fine-tuning. TTA [25, 22] simi-

larly adapts a pre-trained model without access to the source
data, but assumes that the test data arrives in mini-batches,
providing the opportunity to adapt to each mini-batch be-
fore making decisions on their labels. Both of these settings
obviously still have many hyperparameters (e.g., learning
rate, number of iterations, regularisation strengths) for the
proposed algorithms, and hence suffer from the lack of a
clear validation protocol in a DA context. None of the sem-
inal studies in this area show valid HPO criteria in their pa-
pers or code.

2.2. Validation Approaches for DA

Comparatively few papers have systematically studied
validation criteria for UDA, given the importance of this is-
sue for practical application of UDA. Typical solutions ap-
plied by UDA algorithm papers include: (1) Oracle risk.
Many papers use the target test set for hyperparameter se-
lection [12], which is obviously incorrect as it can not be
used in real applications; (2) Source risk. Evaluating the
adapted model on the source validation set is reasonable but
may not be a good validation criterion due to domain shift
between source and target domains; (3) Evaluating another
UDA algorithm objective (such as InfoMax [20] and MMD
[10]) on an unlabelled validation split of the target set; (4)
Validation domain. Use of a held-out labelled validation do-
main, as used in the VisDA challenge [14], is fair. However,
this assumes multiple labelled domains, which may not be
available in practice, and also raises additional questions of
whether the optimal hyperparameters for the validation do-
main are representative of the optimal hyperparameters for
the target domain.

Besides the above strategies, a few purpose-designed
validation criteria have been proposed: Deep embedding
validation (DEV) [29] weights the source validation risk by
the probability that each sample belongs to the source do-
mains. Meanwhile, Silhouette Score [15], Batch nuclear-
norm minimisation (BNM) [2], and soft neighbourhood
density (SND) [18] criteria that boil down to evaluating the
adapted models’ posterior label distribution on the target
domain under different notions of a prior for the expected
target domain label distribution. Mean ensemble-based val-
idation (ENS) [15] considers a linear combination of the
above criteria in an attempt to improve performance. How-
ever, overall it is unclear which to prefer for UDA.

2.3. Benchmarking Domain Adaptation

There have been two major benchmarking exercises in
UDA. The VisDA competition challenge [14] provides a
labelled validation domain for model selection and hyper-
parameter optimisation (HPO). However, validation do-
mains may not be available in practice—-and if they are,
they may not be representative of the target domain. Thus,
the vast majority of research literature on UDA has not used
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this approach. A recent empirical evaluation [12, 11] anal-
ysed the GitHub repositories of a number of UDA methods
and found that: (1) In practice different methods used very
different validation criteria for empirical evaluation, making
published results incomparable with each other; (2) A large
number of prior studies used the oracle risk as a validation
criterion, meaning that their results are not representative
of how well domain adaptation would work in reality using
validation criteria that can be implemented in practice; (3)
Variation in existing validation criteria was high compared
to variation across adaptation algorithms, and none of them
were strongly correlated with recognition performance. Our
evaluation extends this early study but goes beyond it in
considering all three major branches of DA research (UDA,
SFDA, TTA), considering a wider variety of validators, and
demonstrating how validator performance can be improved
through proper use of validation splits within the target do-
main.

3. Background
3.1. Problem Setup

Unsupervised Domain Adaptation: In the UDA setup,
one typically trains a model fθ : X 7→ Y on a labelled
dataset, DS = {xi,yi}NS

i=1, consisting of data sampled from
a source domain, pS . The goal is then to adapt fθ using an
unlabelled dataset, DT = {xi}NT

i=1, sampled from a target
domain, pT . The general learning objective to be minimised
w.r.t. to θ can be simplified as follows,

L(fθ,DS ,DT ) = Lsup(fθ,DS) + Lda(fθ,DS ,DT ), (1)

where Lsup(·) is typically the cross-entropy loss for clas-
sification and mean square error for regression problems,
and Lda(·) is the adaptation loss, such as MMD [23],
CORAL [21] and DANN [4] losses,
Source-Free Domain Adaptation: The SFDA setting aims
to adapt a pre-trained source domain model to the target do-
main, relaxing the assumption of joint occurrence of source
and target domain data in UDA. So first, a source model will
be optimized using source domain data

θ̂ = argmin
θ

Lsup(fθ,DS) (2)

then trained source model θ̂ will be adapted to the target
domain by

θ∗ = argmin
θ̂

Lsfda(fθ̂,DT ). (3)

where now Lsfda is typically an unsupervised loss, such
as pseudo labelling [?], information maximization [?] and
clustering [?] losses.
Test-Time Adaptation: Unlike SFDA, TTA assumes the
batch-wise target domain data X ∼ DT comes in a stream

and adapts a pre-trained source model for each minibatch
X as

θ∗ = argmin
θ̂

Ltta
X∼DT

(fθ̂, X), (4)

where Ltta is commonly the unsupervised loss, such as self-
supervised learning and entropy minimisation losses.

3.2. Model Selection

The de facto model selection is that the best candidate
model configured by a hyperparameter set (h ∈ H, H is
the pool of hyperparameter sets) will be selected based on
their evaluation score, d(fθ,DV )

1, where DV is a validation
dataset. The process can be formalised as

h∗ = argmax
h

d(fθ∗
h
,DV ),

s.t. θ∗
h = argmin

θ
L(fθ,DS ,DT ;h).

(5)

However, two things in UDA complicate this process: 1)
determining how to select the validation set DV ; and 2)
deciding which evaluation metric should be used if DV =
{xi}NV

i=1 is an unlabelled set from the target domain.
A recent work systematically investigated the possible

validation criteria for UDA, which we summarise below us-
ing ŷ to denote the one-hot predictions of the model and y
as the one-hot ground truth labels.

Source accuracy: d is simply the accuracy metric and
DV can be a training or validation set from a source do-
main.

d(fθ,DV ) =
1

NV

NV∑
i=1

1(ŷ = y), (6)

where 1(·) is the indicator function that evaluates to one if
its argument is true and zero otherwise.

Entropy: Entropy has been used in an adaptation
loss [26] as well as for model selection. In this case, d com-
putes the confidence of the model predictions, as measured
by the entropy of the predicted label distribution, and DV

is typically the training or validation set from an unlabelled
target domain. We further investigate the effect when DV

comes from the source domain.

d(fθ,DV ) =
1

NV

NV∑
i=1

H(pi),pi = fθ(xi), (7)

where

H(p) = −
K∑
j=1

p[j]logp[j], (8)

computes the entropy of the categorical distribution, p.
1Assuming the model performance is a monotonically decreasing func-

tion of the output of d(·,DV ).

3
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Information maximisation (IM): IM is often used as an
adaptation loss as well [20] to maximise the diversity of
prediction in addition to confidence.

d(fθ,DV ) = H(
1

NV

NV∑
i=1

pi)−
1

Nv

Nv∑
i=1

H(pi). (9)

Adjusted Mutual Information (AMI): This is the ad-
justed mutual information between predicted and cluster la-
bels.

d(fθ,DV ) = AMI(p,CL(DV )) (10)

where CL(DV ) is the cluster labels for validation set DV ,
which can be the target training or validation set.

V-Measure: Similarly to AMI, this is a metric defined
over clustering labels and predictions. It is defined as the
harmonic mean between homogeneity and completeness
[16].

Other clustering measures: Along with AMI and V-
Measure, we compute several other related clustering mea-
sures, namely, adjusted Rand index, Fowlkes–Mallows in-
dex, silhouette score, Davies–Bouldin index and Calinski-
Harabasz index.

RankMe: Originally proposed for estimating the transfer-
ability of self-supervised representations [5], RankMe ap-
proximates the rank of the feature matrix on pre-training
data. We investigate its application to both source and tar-
get domain data.

CORAL: CORAL is an adaptation algorithm that aligns
the feature distributions of the source and target data by
minimising second-order statistics [21]. Their loss can be
used as a validator and is defined as the difference between
the covariance matrices of the two domains, CS and CT .

d(fθ,DV ) = CORAL(DS ,DT )

=
1

4d2
∥CS − CT ∥2F

(11)

Maximum mean discrepancy (MMD): A common met-
ric used to compute the discrepancy of feature distributions
from source and target domains [23], which can be used
with the assumption that the trained model may have a good
target performance when the source and target domain fea-

tures are aligned.

d(fθ,DV ) = MMD(DS ,DT )

=
1

NS(NS − 1)

NS∑
i=1

NS∑
j ̸=i

k(vs.i, vs.j ; fθ)

+
1

NT (NT − 1)

NT∑
i=1

NT∑
j ̸=i

k(ti, tj)

− 2

NSNT

NS∑
i=1

NT∑
j=1

k(vs.i, tj),

k(a, b) = exp

{
−∥a− b∥22

e

}
,

(12)

where vs. and t are the features extracted for the data from
source and target domains, respectively. And additionally,
the Class-wise MMD which computes the MMD distance
between source and target domains from the same classes
separately.

d(fθ,DV ) = CW-MMD(DS ,DT )

=
1

C

C∑
i=1

MMD(DS |y=i,DT |y=i)
(13)

When MMD is used for validation, the validation set com-
bines the train sets or validation sets of source and target
domains.

Soft neighbourhood density (SND): SND computes the
entropy based on the gram matrix of the validation features.

d(fθ,DV ) = H(α(X, τ)),

X = vTv,
(14)

where v are the data features, α(.) and τ are softmax func-
tion and temperature. Here DV can be the train or validation
set of source or target domains.

Batch nuclear-norm maximization (BNM): BNM was
originally a UDA algorithm, which maximizes the nuclear
norm of the prediction matrix in a batch, being repurposed
as a validation criterion.

d(fθ,DV ) = ∥P ∥∗,P = fθ(DV ) (15)

where P ∈ RNV ×C the prediction matrix of whole data in
DV using fθ. And ∥∥∗ computes the nuclear norm.

4. Evaluation
Our evaluation extends the benchmark of [12]. We make

their setup more rigorous by splitting the target domain into

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. How the source and target domains are split and how each
split is used for (1) the source-only model and (2) adaptation algo-
rithms.

Source Target

Train Val Train Val Test

Source-only Train Validate - - Test
Adaptors Adapt - Adapt Validate Test

Table 2. Summary of adaptation algorithms considered
Algorithm Approach

U
D

A

ATDOC [9] Pseudo-labelling
BNM [3] SVD loss
DANN [4] Adversarial
MCC [7] Information maximisation
MCD [19] Classifier discrepancy
MMD [10] Feature distance

SF
D

A AAD [28] Clustering
NRC [27] Graph clustering
SHOT [8] Information maximisation

T
TA TENT [25] Entropy minimisation

TTT++ [22] Self-supervised learning

train/val/test sets. Previous works often compute target per-
formance on the same data that the algorithms adapt to, or
the same data that the validators use. This fails to properly
measure generalisation performance as we will show later.
Ours splits and how we use them are detailed in Table 1.

In order to compare different validation criteria, we
collect a large set of model checkpoints that span sev-
eral datasets, algorithms, feature layers and hyperparameter
choices. We want the optimal validator to behave similarly
to the target domain test performance of the corresponding
algorithm. We measure the quality of each validator in two
ways: 1) computing the Spearman rank correlation between
validator scores and oracle test accuracy, 2) using the val-
idator to select the best model for an algorithm/task pair and
comparing the test performance of it against the best model
as selected by the oracle.

4.1. Unsupervised Domain Adaptation

4.1.1 Setup

Datasets: We gather model checkpoints from a wide range
of UDA benchmark datasets: MNIST-M [4] which consists
of one setup from standard MNIST to a modified version;
VisDA2017-C which contains train, validation and test do-
mains — we consider the shifts train → validation and
train → test; Office31 [17] which consists of three domains:
amazon, dslr and webcam; and OfficeHome [24] with four
domains: art, clipart, product and real.
Algorithms: We consider six representative domain adap-
tation algorithms, spanning both recent and classic meth-
ods and a variety of underlying principles. These include
the pseudo-label based ATDOC [9]; domain-adversarial

Table 3. Summary of validation criteria considered

Criterion Approach

BNM [3] Label prior
AMI [11, 15] Label prior
ARI Label prior
V-Measure Label prior
FMI Label prior
Silhouette [11, 15] Label prior
DBI Label prior
CHI Label prior
MMD [10] Domain Alignment
CORAL [21] Domain Alignment
SND [18] Label prior
InfoMax [20] Label prior
Entropy Label prior
Source Accuracy

learning with the seminal DANN [4]; domain-alignment
with MMD [10]; BNM and MCC which optimise the tar-
get label distribution under nuclear norm prior and mini-
mum class confusion priors respectively, and the classifier-
discrepancy-based MCD [19].

We start by finetuning a network on the source task.
We take ResNet50 weights pretrained on ImageNet [6] for
all datasets apart from MNIST-M where a smaller CNN is
used. The final classification layer is replaced by an MLP
head consisting of two blocks of {Linear, ReLU, Dropout}
followed by a final Linear layer. We finetune only this
head on the source task using a standard categorical cross-
entropy loss. 10 models are trained with learning rates sam-
pled uniformly at random from a logarithmic scale between
10−5 − 10−1. These runs form the set of checkpoints for
the source-only model. They are not used for evaluating the
validation criteria, but we report performances at times for
comparison.

We use a diverse set of state-of-the-art adaptation al-
gorithms (see Table 2) to collect our checkpoints. When
training each adaptation algorithm, we use the source-only
model weights as initialisation for both the backbone and
MLP head. The specific source-only checkpoint used as
initialisation is the one with the highest source validation
accuracy and in case of ties we select the checkpoint trained
for the fewest amount of epochs.

We generate a set of feature checkpoints using 6 algo-
rithms, 20 datasets, 10 hyperparameter samples, 2 feature
layers, and record 20 different checkpoints during training.
This gives us a total of 48,000 checkpoints.
Validators: We compare our two new validators to a large
number of existing criteria, listed in Table 3.
Questions: Using the setup above, we aim to answer the
following questions: (i) How well do the various validation
criteria correlate with true testing performance? (ii) Which
validation criterion leads to the best generalisation perfor-
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Figure 1. Left: Correlations with target test accuracy on UDA benchmarks (individual domain plots in ??). Error bars are standard error
across domains. Middle: Average gap between the best model as selected by each validator and the oracle. Right: Maximum gap between
the best model as selected by each validator and the oracle.

mance when used for model selection? (iii) What is the im-
pact of validating on the training set versus an independent
validation split?

4.1.2 How well do validation criteria correlate with
testing performance?

Using our 48,000 model checkpoints, we compute the true
target domain testing performance for each; as well as each
checkpoint’s score under the various validation criteria. The
results, aggregated across all pairs of source and target do-
mains in the Office31 dataset, are shown in Figure 1; and
broken down across each pair of source and target domains
in Figure ??.

4.1.3 Which validation criterion leads to the best gen-
eralisation performance when used for model se-
lection?

We next use the various scores to perform model selection
and hyperparameter optimisation for each of the base DA
algorithms.

4.1.4 What is the impact of validating on training vs
validation splits?

As discussed in [12, 11], while prior work that validates on
the source domain has fairly consistently used the source
validation set; prior work that validates on the unlabelled
target domain has been inconsistent with regard to choice
of validation on the target train set or an independent target
val set. Our normative theory for validation requires vali-
dation on the target val set. However, because prior criteria
are often intuitively motivated there is also not an obvious
answer about which is preferred. To analyse this issue, we
compare using the train vs validation split for evaluating cri-
teria. From the results in Table 5 we see that for almost all
the criteria the val split is preferred. While this result might
seem unsurprising in retrospect, we emphasise that the use
of a val split is NOT standard practice in the literature, even
in thorough recent evaluations [11].
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Figure 2. Left: Correlations with target test accuracy on SFDA benchmarks (individual domain plots in ??). Error bars are standard error
across domains. Middle: Average gap between the best model as selected by each validator and the oracle. Right: Maximum gap between
the best model as selected by each validator and the oracle.
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Figure 3. Left: Correlations with target test accuracy on TTA benchmarks (individual domain plots in ??). Error bars are standard error
across domains. Middle: Average gap between the best model as selected by each validator and the oracle. Right: Maximum gap between
the best model as selected by each validator and the oracle.

4.2. Source-free Domain Adapation

4.2.1 Setup

For SFDA we use the OfficeHome dataset as a benchmark,
covering all 12 domain shifts. The same source-only mod-
els that we produced for UDA are also used here for initial-
isation of the same architecture. Three recent SFDA algo-
rithms adapt the model on target domain data, AAD [28],
NRC [27] and SHOT [8]. For each algorithm, we sample
10 sets of hyperparameters and train for 200 epochs

Validators: As the source domain is not available in this
setting, we can only apply our validators to the target do-
main splits. Following our results in Section 4.1.4 we use
the target validation split for all validators. Questions:

4.3. Test-Time Adaptation

4.3.1 Setup

We adopt the TTA setting, where a pre-trained model adapts
on the test data as it comes, one batch at a time. In par-
ticular, we use the episodic setting where the model is re-
set after each batch. Datasets: We use the most com-
mon TTA benchmark of CIFAR-10-C, consisting of 15 ver-
sions of the CIFAR-10 test set with different corruptions
applied, including Gaussian noise, pixelation and fog. Al-
gorithms: We use the pre-trained CIFAR10 checkpoint of
[30] as our source-only model and initialisation for the TTA
algorithms. TENT [26] adapts by minimising the entropy
on its predictions on the test batch, and TTT++ [30] uses
a self-supervised auxiliary loss in addition to feature align-
ment via MMD and CORAL.
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Table 4. Comparison of validation criteria for model selection in UDA. We report the target test performance for the top models selected
by each validator.

RankMe AMI ARI V-Measure FMI Silhouette DBI CHI BNM MMD CORAL SND IM Entropy Accuracy Oracle

ATDOC 61.52 68.06 67.67 68.05 67.75 44.96 57.14 16.29 64.83 55.00 18.99 15.81 65.32 60.52 68.06 72.24
BNM 64.32 69.17 69.41 69.17 69.35 61.51 58.27 32.56 64.87 59.17 37.66 27.47 64.82 64.84 66.02 71.09
DANN 63.21 64.48 63.69 64.61 63.69 56.66 56.31 39.50 64.22 57.59 42.17 34.60 63.92 63.68 62.44 68.27
MCC 61.54 69.28 70.12 69.48 70.06 59.43 53.99 24.78 68.29 54.55 23.43 18.98 68.38 60.23 69.11 72.41
MCD 64.44 60.48 48.35 60.66 41.83 16.17 39.86 8.99 64.04 35.20 15.29 8.97 64.16 54.32 63.83 67.75
MMD 60.20 65.33 63.44 65.33 60.94 54.67 58.24 35.72 61.69 56.52 35.73 32.60 62.34 62.29 63.83 67.44

Avg. 62.54 66.13 63.78 66.22 62.27 48.90 53.97 26.31 64.66 53.01 28.88 23.07 64.82 60.98 65.55 69.87
Avg. Rank 7.17 3.17 4.08 2.83 5.08 11.17 11.00 13.83 5.50 10.83 13.17 15.00 5.17 7.50 4.50 -

Souce-only 65.60

Table 5. Comparison of split for evaluation of validation criteria. We report the average target test accuracy of selected models for each
validator when applied on (1) target train data and (2) target validation data.

RankMe AMI ARI V-Measure FMI Silhouette DBI CHI BNM MMD CORAL SND IM Entropy Accuracy

Train 61.77 65.43 62.15 65.59 58.27 50.56 55.23 29.19 64.32 54.76 28.97 24.12 64.53 62.14 64.50
Val 62.54 66.13 63.78 66.22 62.27 48.90 53.97 26.31 64.66 53.01 28.88 23.07 64.82 60.98 65.55
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Figure 4. Weighted Spearman rank correlation. Comparison of
split for evaluation of validation criteria. We report the average
weighted Spearman rank correlation between each validator and
target test accuracy when using the following data splits for com-
puting validators: (1) target train data and (2) target validation
data. (G-Score uses source train/validation data and for those val-
idators that use both source and target, we always use the valida-
tion split in the source domain.)

Validators: As this setting only exposes a single batch to
the model at a time, both training and validation use the
same data. Questions: Results: In this setting, the top
validators manage to almost match the oracle performance,
indicating that ... However, it is worth noting that this is
an artificially constructed benchmark. It is likely that on
a more realistic dataset like OfficeHome, the trends would
be closer to that of SFDA. We leave this investigation for
future work.

5. Conclusion
We investigated the problem of model selection criteria

for unsupervised domain adaptation. Taking a normative
approach based on a target domain generalisation bound,
we derived two new principled model selection criteria.
Our exhaustive empirical evaluation showed that our cri-
teria both have the strongest correlation to the final testing
performance, and are also the most effective for maximising
performance when used for model selection. Uniquely, our
criteria are general bounds that can be instantiated for dif-
ferent kinds of inference problems, unlike prior work that
is restricted to classification. We showed successful instan-
tiations for both classification and regression problems. In
future work, we will instantiate them for structured predic-
tion problems such as semantic segmentation.
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Table 6. SFDA performance on Office-Home.
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