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Abstract

Modeling directed graphs with differentiable representations is a fundamental
requirement for performing machine learning on graph-structured data. Geometric
embedding models (e.g. hyperbolic, cone, and box embeddings) excel at this task,
exhibiting useful inductive biases for directed graphs. However, modeling directed
graphs that both contain cycles and some element of transitivity, two properties
common in real-world settings, is challenging. Box embeddings, which can be
thought of as representing the graph as an intersection over some learned super-
graphs, have a natural inductive bias toward modeling transitivity, but (as we prove)
cannot model cycles. To this end, we propose binary code box embeddings, where
a learned binary code selects a subset of graphs for intersection. We explore several
variants, including global binary codes (amounting to a union over intersections)
and per-vertex binary codes (allowing greater flexibility) as well as methods of
regularization. Theoretical and empirical results show that the proposed models
not only preserve a useful inductive bias of transitivity but also have sufficient
representational capacity to model arbitrary graphs, including graphs with cycles.

1 Introduction

Many real-world networks, such as social media interactions, paper citations, web links, and ontolo-
gies, are naturally represented as directed graphs [14, 6]. Two common properties of these graphs
are transitivity and cyclicity. A cycle in a directed graph is a directed path starting from a vertex and
traversing back to itself. For example, “organic matter” → “worm” → “fish” → “cat” → “organic
matter” is a food cycle. Transitivity in a directed graph is the property that if there exists a directed
path from u to v, then edge (u, v) also exists. For example, if “cat is mammal” and “mammal is
animal” are true, “cat is animal” is true.

In the age of deep learning, it is necessary to determine a way to capture the salient information from
a graph via some differentiable parameterization. To this end, various graph embedding methods have
been proposed. Some work, such as DeepWalk [17] and Node2vec [8], maps each vertex to a vector
in Euclidean space. These methods perform a low-rank factorization of the adjacency matrix or the
graph Laplacian [18] and are designed to model undirected graphs. These can be extended to capture
edge asymmetry in directed graphs by using two separate representations - one for source, and one
for target - either unconstrained or related with one another via some function. It has been proven
that using a dot product or distance-based energy function, separate source and target vectors can
encode any graph (given sufficient dimension) [1], including graphs with cycles. When the source
and target representations live in separate spaces, however, relationships which result from following
directed paths (e.g., transitivity) are harder to encode. For example, given edge (i, j) and (j, k), a
vector model can learn to make |si − tj |2 ≈ 0 and |sj − tk|2 ≈ 0, where si, sj are source vectors and
tj , tk are target vectors. However, the condition |si − tk|2 ≈ 0 which would represent the transitive
edge (i, k) has no encouragement to hold, as the source and target spaces are entirely disconnected.
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Transitivity cannot be trivially injected via symbolic rules, e.g., adding all transitive edges to a directed
graph. This is because most real world edges are not strictly transitive: the degree of transitivity is
“soft”, and may hold locally but not globally, or vary for different edge types or sets of nodes in the
graph. Some work, such as HOPE [15] and APP [29], attempts to capture transitivity by factorizing
high-order proximity signals instead of the graph Laplacian. This branch of work is limited by the
imperfection of high-order proximity scores (for example, these scores do not model cycles well).
ATP [25] resolves this by breaking cycles in the graph, accepting a loss of graph information.

An alternative approach is to represent nodes in an embedding space with additional geometric
structure. For example, hyperbolic embeddings leverage the negative curvature of hyperbolic space to
provably model trees with less distortion [22]. Region-based embeddings such as box embeddings [28,
11, 3] and hyperbolic entailment cones [13, 7, 21, 9] have a natural bias toward modeling transitivity.
These region-based embeddings can capture the transitivity in a directed graph without relying
on high-order proximity scores, using only the original adjacency matrix as supervision. Previous
work [2] proved that box embeddings can model any directed acyclic graph (DAG). A natural question,
therefore, is whether box embeddings can capture graphs with cycles. As we will show in Section 2,
this is not the case.

In this work, we propose binary code box embeddings 1, a generalization of box embeddings to
represent arbitrary directed graphs. The model is motivated by the intuition that a given directed graph
can be regarded as a union of multiple sub-graphs, where each sub-graph is acyclic, and therefore
can be represented using boxes. We introduce the concept of a “binary code” which selects these
sub-graphs.

Our contributions lie in three folds:

• We propose global (GBC-BOX) and per-vertex (VBC-BOX) binary code box models, a
generalization of box embeddings capable of representing arbitrary directed graphs.

• We analyze theoretically the limitations of existing box embedding models when represent-
ing cycles. We also prove that, given sufficient dimensions, both binary code box models
can model any directed graph. This establishes that, in theory, the representational capacity
of these models is not limited.

• We evaluate our model on graph reconstruction and link prediction tasks with various
synthetic graphs and real world graphs, and observe that our proposed methods perform the
best in almost all scenarios, especially when a graph has strong cyclicity and transitivity.

2 Background

Given a simple2 directed graph G with vertices and edges (V, E), we seek to represent the vertices
using some mapping ϕ : V → Rd, and an energy function E : V ×V → R+ providing a score (based
on ϕ and, perhaps, some hyperparameters λ) which is interpreted as the negative log probability of
edge existence, E(u, v;ϕ,λ) = − logP ((u, v) ∈ E). We can view these probabilities as a weighted
graph, however in practice it is often necessary to make a hard decision on edge existence, which is
done by choosing a (global) threshold T and binarizing the output. We denote the energy function
for a particular model M with a subscript, i.e. EM, and say that M is capable of modeling a graph
G = (V, E) if there is some ϕ, λ, and T such that E = {(u, v) | EM(u, v;ϕ,λ) < T}.

2.1 Boxicity

Let I be the set of closed and bounded intervals in R. An interval graph is an undirected graph
G = (V, E) such that there exists a mapping φ : V → I for which

{u, v} ∈ E ⇐⇒ φ(u) ∩ φ(v) ̸= ∅.

1Our code is available at https://github.com/iesl/geometric_graph_embedding.
2A simple directed graph is one without multiple edges or self-loops, i.e. the adjacency matrix contains only

0s and 1s, with 0s on the diagonal. We also synthetically remove self-loops from the graph modeled by the
learned representations.

2

https://github.com/iesl/geometric_graph_embedding


More generally, we can consider Bd, the set of d-dimensional “boxes”, which are Cartesian products
of intervals,

d∏
i=1

[
x−
i , x

+
i

]
=

[
x−
1 , x

+
1

]
× · · · ×

[
x−
d , x

+
d

]
⊆ Rd. (1)

where x−i and x+i are min and max coordinates in dimension i. As defined by Roberts [20], the
boxicity of an undirected graph G is the smallest dimension d such that there exists a mapping
φ : V → Bd for which {u, v} ∈ E if and only if φ(u) ∩ φ(v) ̸= ∅. Equivalently, the boxicity is the
minimal number of interval graphs whose intersection is G.

2.2 Box Embeddings

Vilnis et al. [28] provide a way of using boxes to represent directed graphs by defining an asymmetric
energy function based on box volumes, and subsequent work has introduced various improvements
and extensions of this idea Dasgupta et al. [4], Boratko et al. [2]. In this section we will define the
energy function of box embedding models under a common framework, in preparation to motivate
our extension to binary code box embeddings.

The energy function for all box embedding variants has the form

E(u, v;ϕ,λ) = − log

d∏
i=1

F (ϕ(u)i, ϕ(v)i;λ), (2)

where ϕ(u)i are the parameters associated with node u in dimension i and F (ϕ(u)i, ϕ(v)i;λ) ∈ [0, 1]
is a per-dimension score representing the probability of edge existence. 3 The model originally defined
in Vilnis et al. [28] represented each node using a box, as in (1). The per-dimension parameters are
the endpoints of an interval, ϕ(u)i = [ϕ(u)−i , ϕ(u)

+
i ], and the score function is defined as

FBox([x
−, x+], [y−, y+]) =

|[x−, x+] ∩ [y−, y+]|
|[y−, y+]|

=
max(min(x+, y+)−max(x−, y−), 0)

max(y+ − y−, 0)
.

This encourages the box for a given vertex to contain (or overlap highly with) the boxes for it’s
children. Boxes which are disjoint or contained in one another can present problems for training,
however. Dasgupta et al. [3] addressed this by modeling the endpoints of intervals using Gumbel
random variables. The per-dimension score can be written as4

FG-BOX((x
−, x+), (y−, y+); (τ, ν)) =

LSEν (−LSEτ (−x+,−y+)− LSEτ (x
−, y−), 0)

LSEν(y+ − y−, 0)
, (3)

where LSEt denotes the following continuous extension of LogSumExp with temperature t ≥ 0:

LSEt(x) =

{
t log(

∑
i e

xi/t) if t > 0,

max(x) if t = 0.
(4)

In practice, the temperatures τ and ν are tuned separately as global hyperparameters, however
when they are equal the parameters x−, y− (resp. x+, y+) can be interpreted as the mean of the
GumbelMax (resp. GumbelMin) random variables with scale ν = τ , and FG-BOX approximates a
ratio of expected box volumes. Note that for any (x−, x+), (y−, y+) ∈ R2, FG-BOX is continuous
with respect to τ, ν ∈ R≥0, and FG-BOX((x

−, x+), (y−, y+); 0, 0) = FBOX([x
−, x+], [y−, y+]).

Boratko et al. [2] takes this one step further, using a mapping which learns 4 parameters per dimension:
ϕ(u)i = (ϕ(u)−i , ϕ(u)

+
i , ϕ(u)i,τ , ϕ(u)i,ν). The per-dimension score function is then defined as

FT-BOX((x
−, x+, xτ , xν), (y

−, y+, yτ , yν)) = FG-BOX((x
−, x+), (y−, y+); (xτ+yτ

2 , xν+yν

2 )). (5)

3As in boxicity, we can interpret these box embedding models as representing a graph as an intersection of
interval graphs, one for each dimension.

4In Dasgupta et al. [4] they interpret ϕ(u)±i as the “location” parameters of the distribution, resulting in
a slightly different form of the score function, however as we show in Appendix A our score (3) leads to an
equivalent model.
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3 Existing Representational Capacity and Limitations

3.1 Representational Capacity

We would like to know each model’s representational capacity (the set of graphs capable of being
modeled) as well as how this may change depending on hyperparameter settings. It was proven
in Boratko et al. [2] that BOX can model any DAG, and of course since T-BOX is equivalent to
BOX when ϕ(u)i,τ = ϕ(u)i,ν = 0 this also holds for T-BOX. As defined in Section 2, we can also
say that G-BOX is capable of modeling any DAG, since it is equivalent to BOX when we set the
temperature hyperparameters to zero (i.e. τ = ν = 0), however this is practically quite different – the
temperatures are not trainable as in T-BOX, and would never be set to 0 in order to avoid the training
difficulties of BOX. Hence, the existing proof of representational capacity in [2] says very little about
the practical representational capacity of G-BOX.5 Thankfully, more can be proven.
Theorem 1. Given a threshold T , temperature hyperparameters τ, ν, there exists and a bijection ψ
on the set of parameterizations {V → R2d} such that for all u, v ∈ V ,

EG-BOX(u, v;ψ(ϕ), (τ, ν)) < T ⇐⇒ EBOX(u, v;ϕ) < T.

In other words, for any temperature hyperparameters, G-BOX can represent any graph representable
by BOX. For the proof, see Appendix B. Proposition 3 in Boratko et al. [2] states that any DAG can
be modeled by BOX in O((∆ + 2) log |V|) dimensions with O(D(∆ + 2) log2 |V|) bits of precision
per box, where D ≤ |V| is the depth of G and ∆ is the maximum degree. Combining this with
Theorem 1 we have the following:
Corollary 2. Let G be any DAG. Given any τ, ν ∈ R≥0, there exists a mapping ϕ : V → R2d

and a threshold T > 0 such that EG-BOX(u, v;ϕ, (τ, ν)) < T if and only if (u, v) ∈ E , where
d = O((∆ + 2) log |V|), and ∆ is the maximum degree in G.

In other words, for any setting of temperature hyperparamters, G-BOX can model any DAG.

3.2 Limitation on Modeling Cycles

In this section, we point out that G-BOX cannot model any graph containing a (directed) chordless
cycle, which is a cycle such that no two vertices are connected by an edge which does not belong to
the cycle. Furthermore, we show that while G-BOX can model certain graphs with cycles, it may be
sensitive to a perturbation of the parameters.
Theorem 3. If E is such that E(u, v)− E(v, u) = g(u)− g(v) for some function g : V → R then it
cannot model any graph containing a chordless cycle with more than 2 nodes.

Proof. Suppose the vertices 1, 2, ..., N comprise a chordless cycle, the edges of which are D =
{(1, 2), (2, 3), ..., (N − 1, N), (N, 1)}. Suppose further that we can model the graph containing this
cycle using energy E and threshold T . In particular, we have E(u, v) < T and E(v, u) ≥ T for
(u, v) ∈ D. This implies that g(u)− g(v) = E(u, v)− E(v, u) < 0, and thus g(u) < g(v) for each
(u, v) ∈ D. Hence g(1) < g(2) < · · · < g(N) < g(1), which is a contradiction.

Corollary 4. G-BOX cannot model any graph containing a chordless cycle on more than 2 nodes.

Proof. Theorem 3 applies to EG-BOX with g(u) = − log
∏d

i=1 LSEν(ϕ(u)
+
i − ϕ(u)−i , 0).

It is possible to avoid the contradiction in Theorem 3 by the introduction of one reverse edge, and in
this case we observe that it is theoretically possible for G-BOX to represent a graph.
Proposition 1. If G is a graph which is the union of a chordless cycle and one reverse edge, G-BOX
can model G in 2 dimensions.

The proof of this statement is contained in Appendix C, where we also prove that, while it is possible
to represent such a graph, it is highly sensitive to perturbation of the parameters in a way which is
dependent on the length of the cycle, and therefore may be challenging to learn.

5This limitation was acknowledged in Boratko et al. [2] just before Section 4.3 as part of the motivation for
the trainable temperatures of T-BOX.

4



4 Method

In this section, we will introduce the binary code box embedding concept, which includes a family
of models whose shared feature is the use of learned binary codes to select subsets of dimensions.
Two we will focus on in particular include GBC-BOX, which uses “global” binary code vectors,
and VBC-BOX, which uses per-vertex binary code vectors. The following topics will be covered:
the motivation for binary codes, the definition of GBC-BOX and VBC-BOX, their representational
capacity to model arbitrary directed graphs, our learning objectives and regularization, the models’
inductive biases and strengths, and some discussion about their limitations and alternative variants.

4.1 Motivation

The idea of binary code boxes is to allow more flexibility than simply taking an intersection over
interval graphs, as captured by boxicity (see Section 2.1). Recall, in the undirected case, the boxicity
of a graph G = (V, E) was equivalent to the smallest number d such that for some set of interval
graphs S = {Gi = (V, Ei)}di=1, we have E = ∩d

i=1Ei, i.e.

{u, v} ∈ E ⇐⇒ ∀F : (V,F) ∈ S, {u, v} ∈ F .

There are various ways to increase the flexibility of this representation. For example, we could
consider allowing a union over intersections by specifying k subsets of S, {Si}ki=1, for which
E = ∪k

i=1 ∩(V,F)∈Sk
F , i.e.

{u, v} ∈ E ⇐⇒ ∃i : ∀F : (V,F) ∈ Si, {u, v} ∈ F . (6)

To allow for even greater flexibility, we could allow each vertex to select a subset of graphs to
intersect. Formally, we allow the specification of a function ψ : V → 2S which assigns a subset of
interval graphs to each vertex, for which

{u, v} ∈ E ⇐⇒ ∀F : (V,F) ∈ ψ(u) ∩ ψ(v), {u, v} ∈ F . (7)

For the undirected case the advantage is minimal. Increasing the flexibility in these ways may allow
us to represent an undirected graph in smaller dimension (or, equivalently, using a smaller number of
interval graphs), however as mentioned previously we know any undirected graph can be represented
as an intersection of interval graphs. For directed graphs, however, this is not the case, and (as we
prove in Section 4.3) this generalization allows for any directed graph to be represented.

4.2 Definition

In order to capture the idea of a “union of intersections” specified in (6) we consider learning k
“binary code” vectors bj ∈ [0, 1]d. Each binary vector corresponds to a selection of which dimensions
to include - if the ith component is 0 the scores for edges in this dimension should be ignored, and if
it is 1 they should be included. For convenience, we will represent these as the columns of a d× k
matrix B ∈ [0, 1]d×k. The energy function in this case is

EGBC-BOX(u, v; (ϕ,B), (τ, ν, k)) := min
j∈{1,...,k}

(
− log

d∏
i=1

FG-BOX(ϕ(u)i, ϕ(v)i; (τ, ν))
Bi,j

)
(8)

In order to capture the notion of per-vertex subset selection in (7), we learn 3 parameters per
dimension, which we denote as ϕ(u)i = (ϕ(u)−i , ϕ(u)

+
i , ϕ(u)

⋄
i ) ∈ R× R× [0, 1]. The binary code

ϕ(u)⋄i indicates whether this dimension should be taken into account when calculating the probability
of edge existence for edges involving this node - if it is 0, the dimension should be ignored, and if it is
1 it may be included. We incorporate this at the level of the per-dimension score function as follows:

FVBC-BOX((x
−, x+, x⋄), (y−, y+, y⋄); (τ, ν)) := FG-BOX((x

−, x+), (y−, y+); (τ, ν))x
⋄y⋄

. (9)

Using the product in the exponent is a relaxation of the intersection ψ(u) ∩ ψ(v) from (7). When
computing the probability of an edge (u, v), the binary codes can learn to ignore certain dimensions
by making ϕ(u)⋄i or ϕ(v)⋄i equal to 0.

In the following, we point out two perspectives which provide further intuition behind these models:
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Generalization: Both GBC-BOX and VBC-BOX are a generalization of G-BOX, and revert back to
it when all binary codes are 1, in which case all dimensions are used for volume calculation. As we
will show in Section 4.3 these models are strictly more expressive, as when some binary codes are
less than 1 these models can represent more complex graphs.

Projection: If Bi,j ∈ {0, 1} we can think of this defining a set of projections {Pj}kj=1 where Pj

projects the boxes parameterized by ϕ into the
∑d

i=1Bi,j dimensional subspace where Bi,j = 1.
Similarly, for VBC-BOX, if ϕ(u)⋄i ∈ {0, 1} we can think of this determining the dimensions
Du := {i : ϕ(u)⋄i = 1} which the box will be projected in. Given an edge (u, v), we project into
dimensions Du ∩Dv before determining the edge existence.

4.3 Representational Capacity

The energy functions for GBC-BOX and VBC-BOX were constructed such that Theorem 3 would
not apply, thus making it possible that they may be capable of representing some graphs with cycles.
In this section, we prove that both can model any directed graph.

Theorem 5. Given a directed graph G = (V, E) and any τ, ν ≥ 0 and k ≥ 2, there exists a threshold
T > 0, parameters ϕ : V → R2d, and binary codes B ∈ [0, 1]d×k for which

EGBC-BOX(u, v; (ϕ,B), (τ, ν)) < T ⇐⇒ (u, v) ∈ E .

Proof. Given a directed graph G = (V, E), let (<,V) be an arbitrary strict total order on the vertices.
Then define subgraphs D1 = (V, E1) and D2 = (V, E2) where E1 = {(u, v) | u < v} ∩ E and
E2 = {(u, v) | u > v} ∩ E . Observe that D1 and D2 are directed acyclic graphs, and thus Corollary
2 implies that for j ∈ {1, 2} there exists a threshold Tj , dimension dj = O((∆ + 2) log |V|), and
mapping ϕj : V → R2dj such that EG-BOX(u, v;ϕ, (τ, ν)) < Tj ⇐⇒ (u, v) ∈ Ej . Let
d = d1 + d2, T = min(T1, T2), and define ϕ : V → R2d and B ∈ [0, 1]d×k as follows:

∀i ∈ {1, . . . , d1}, ϕ(u)±i = ϕ1(u)
±
i , Bi,1 = T

T1
, Bi,2 = 0,

∀i ∈ {d1 + 1, . . . , d1 + d2}, ϕ(u)±i = ϕ2(u)
±
i , Bi,1 = 0, Bi,2 = T

T2
.

Then we have EGBC-BOX(u, v; (ϕ,B), (τ, ν)) = minj∈{1,2}
T
Tj

EG-BOX(u, v;ϕj , (τ, ν)) which com-
pletes the proof with k = 2, and therefore implies the result for all k > 2.

While motivated by a similar idea, note that VBC-BOX is not a generalization of GBC-BOX, and
thus an independent proof of representational capacity is required.

Theorem 6. Given a directed graphG = (V, E) and any τ, ν ≥ 0, there exists a threshold T > 0 and
parameters ϕ : V → R2d × [0, 1]d for which EVBC-BOX(u, v;ϕ, (τ, ν)) < T if and only if (u, v) ∈ E .

Proof. Given a graph G = (V, E) let H = {{u, v} | u, v ∈ V, u ̸= v}. We will construct a VBC-
BOX model in d = |H| dimensions. For convenience, index the dimensions using h ∈ H . Then
let ϕ(u)⋄h = 1 if u ∈ h, and 0 otherwise. This means when evaluating the edge (u, v) or (v, u) we
simply need to compare in the 1-d space obtained by projecting the boxes to dimension h = {u, v},
and furthermore that this dimension will not be used when considering any other edges. Any directed
graph on 2 nodes can be embedded using boxes in 1-dimension (observable by direct construction),
which completes the proof.

While Theorem 5 and Theorem 6 are helpful in establishing that, unlike all prior box embedding
models and many other geometric embeddings, GBC-BOX and VBC-BOX are capable of modeling
any directed graph, the implied dimensionality bounds are far from optimal. In general, both models
tend to require fewer dimensions than alternatives, which we analyze theoretically in Appendix D
and observe empirically in Section 5.
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4.4 Learning

We fit geometric embeddings by optimizing a binary cross entropy objective. Given some edges in a
training set T , the loss is defined as

LBCE(ϕ;λ) =
∑

(u,v)∈T

[
E(u, v;ϕ,λ)−

∑
(u′,v′)∈N(u,v)

log
(
1− e−E(u′,v′;ϕ,λ)

)]
(10)

where N(u, v) is the set of negative samples for each positive edge (u, v) within one batch. We
sample minibatches of positive edges in T , and for each positive edge we sample 32 edges not in
T by randomly corrupting either the source or target node. We also use a self-adversarial negative
weight, as described in [26].

4.5 Limitations and Regularization

There are a few limitations of Binary Code Box Embeddings: 1) Transitivity and Flexibility In
order to model cycles with separate sub-spaces, the inductive bias of asymmetric transitivity might
be weakened. 2) Inefficiency of Parameterization For VBC-BOX, the number of parameters is
increased by 50% compared with a G-BOX model in equal dimension. In addition, during inference,
a large portion of box co-ordinates are “dead” when binary codes are near zero. Here, we introduce a
regularization method and a tunable binary code size to resolve these concerns.

Regularization We can regularize the sparsity of binary codes to penalize dimension drop-off using
the lasso with a regularization weight wr, leading to a loss function L = LBCE + wr ∗ ∥1−B∥ℓ1 .

Restricted Binary Code Size We can constrain the number of trainable binary codes to the last dbin
dimensions, setting the first d− dbin dimensions to 1.

Both wr and dbin can provide a handle on mitigating issues mentioned above. One can increase wr or
decrease dbin to preserve more transitivity and make full use of the model’s parameters.

5 Experiments

5.1 Graph Reconstruction

While GBC-BOX and VBC-BOX can provably model any directed graph, the extent to which they
can be trained to do so via gradient descent is another matter. In this section, we compare the
reconstruction performance of various geometric embedding methods on a number of synthetic
graphs, including simple directed cycles, trees and scale-free networks.

Baselines We compare our model with different baselines, including: Vector*: We implement a vector
baseline where each node is parameterized by a source and target vector, and the energy function is
measured by E(u, v) = − log σ(ϕ(u)source · ϕ(v)target). * indicates it uses source and target vectors.
Lorentzian: It has been shown that hyperbolic space can embed undirected trees with arbitrarily
low distortion [22], therefore we also compare with the baseline of squared Lorentzian distance on
the hyperboloid [10, 2]. Hyperbolic Entailment Cones [7] model vertices as cones in hyperbolic
space, combining the bias of hyperbolic space to represent tree-like graphs with the transitivity bias
of region-based representations. We also compare with G-BOX and T-BOX, as defined in Section 2.2.
We use Bayesian hyperparameter tuning based on the optimal F1 score for reconstruction.

Capacity over Cycles We evaluate each model’s capacity to represent cycles, where simple directed
cycles are generated with an increasing number of vertices (|V| = 22, 24, 28, 212). In addition,
we analyze the effect of adding one reverse edge to the cycle, where standard box embedding can
model it (though high precision is required). Results are shown in Table 1. For a fair comparison,
all methods use 12 parameters per vertex 6. VBC-BOX shows the best reconstruction performance.
Most other geometric baselines cannot model cycles. Surprisingly, VBC-BOX even outperforms
the Vector baseline when |V| = 212, indicating our model’s high expressivity and surprising ease
of training. Results also show that, in concordance with Proposition 1, G-BOX can model a cycle
containing a reverse edge when |V| is small. We also see that T-BOX can model certain cycles when
|V| is small, which is not surprising as Theorem 3 does not apply to T-BOX.

612 is the least common multiple of 2, 3, 4 which are the minimum number of parameters per node for
G-BOX, t-box and VBC-BOX
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Table 1: Reconstruction performance (F1 score) on directed cycles. All embeddings use 12 parameters
per vertex. Different columns show results as we increase the number of vertices in the cycle.

Methods Simple cycle + One bidirectional edge

|V| = 22 24 28 212 22 24 28 212

Vector* 1.0 1.0 1.0 0.676 1.0 1.0 1.0 0.666
Lorentzian 0.857 0.75 0.679 0.671 1.0 0.839 0.693 0.665
Hyperbolic Entailment Cones 0.75 0.667 0.662 0.635 0.75 0.692 0.654 0.645
G-BOX 0.857 0.762 0.695 0.648 1.0 0.914 0.689 0.630
T-BOX 1.0 1.0 0.996 0.685 1.0 1.0 0.992 0.659
GBC-BOX 1.0 1.0 0.992 0.957 1.0 1.0 0.993 0.967
VBC-BOX (dbin = d) 1.0 1.0 1.0 0.973 1.0 1.0 1.0 0.978

Capacity over Trees It is known that Box space can naturally capture asymmetric transitivity, and
hyperbolic space is suitable for un-directed trees. In this experiment, we evaluate whether BC-Box
maintains the inductive bias of Box Embeddings. Therefore, we generated four balanced (out-)trees,
each has 213 vertices and the number of branches are choosing from [2, 3, 5, 10]. And we also
generated another four graphs with full transitive closures. We compare each methods with 12, 24 and
48 parameters per vertex. All results are average performances over four graphs. The results are shown
in Table 2. As expected, G-BOX performs the best on transitively closed trees, while Lorentzian
distance embedding performs well on balanced trees. It is shown that, GBC-BOX performs equally
well as G-BOX on transitively closed trees, while the performance of VBC-BOX is slightly lower.
In contrast, the latter performs similarly or better than former in the transitive reduction trees. This
suggests that more transitive bias is preserved in GBC-BOX, while per vertex binary codes provide
more representational flexibility. In addition, we get similar observation as [2], where Binary Code
Boxes and t-Box outperform Lorentzian model on balanced trees when dimension size is increased,
while performances of other geometric-based embeddings saturate on larger dimension sizes.

Table 2: Average reconstruction performance (F1 score) on balanced trees with |V| = 213 and
branching factors of 2, 3, 5, 10 using 12, 24, and 48 parameters per vertex.

Methods Balanced tree w. transitive closures

# Parameters / vertex = 12 24 48 12 24 48

Vector* 0.453 0.992 1.0 0.863 0.999 1.0
Lorentzian 0.929 0.935 0.951 0.975 0.979 0.995
Hyperbolic Entailment Cones 0.828 0.834 0.838 0.977 0.982 0.987
G-BOX 0.832 0.830 0.842 1.0 1.0 1.0
T-BOX 0.800 0.957 1.0 0.952 0.997 1.0
GBC-BOX 0.901 0.961 0.983 1.0 1.0 1.0
VBC-BOX (dbin = d) 0.866 0.994 1.0 0.987 0.999 1.0

Capacity over Random Graphs Finally, we conduct experiments on scale-free networks, a sim-
ulation to real-world graphs, where the edge distribution follows preferential attachment. In order
to analyze how the cyclicity of graphs affects each model’s performance, we randomly sampled
nearly three-thousand graphs using a wide range of parameters used for graph generation. Then
we split the generated graphs into five bins by our proposed measure cyclicity: The proportion of
vertices in a given graph involved in at least one cycle. In order to analyze models’ effectiveness
of modeling cycles instead of the density of graphs, we randomly sample 5 graphs from each bin
where the average degree is in the range between 3 and 4. Results are shown in Figure 1. From the
chart, we can see that our proposed model outperforms standard G-BOX in all scenarios. And there
exists significant gap when cyclicity is high. It also clearly shows that VBC-BOX provides more
representational capacity overall, while GBC-BOX is less expressive in modeling cyclic graphs.

5.2 Link Prediction

We apply Binary Code Box on link prediction tasks to evaluate model’s generalization ability. We
employ following real world graphs: Google hyperlink network, Epinions trust network, CORA

8



Figure 1: Reconstruction performance on Scale-free networks with |V| = 213. We plot the F1 scores
for G-BOX, GBC-BOX and VBC-BOX using 24, 48, 96 parameters per vertex.

citation network, Twitter network, and DREAM5 gene regulatory networks. For more data statistics,
see Appendix E. During training, all hyper-parameters are tuned via 10% cross-validation and then
the test set results are averaged over 10 models of different random seeds, which trained on the full
training set with the best hyper-parameters found during corss validation. We also tune wr for all
BC-Box models on the link prediction task.

In Table 3, we follow [30] and compare with several baselines including vector based baselines
such as DeepWalk [17], LINE [27], node2vec [8], HOPE [15], APP [29], DGGAN [30] and our
implementation of vector-based model with source and target parameters, and region based baselines
such as G-BOX [3] and t-Box [2]. Models are evaluated using the Area Under ROC Curve (AUC).
For fair comparison, we following [30] and use 128 parameters per vertex for all our models. Results
show that our Binary Code Box models out-performs other baselines in most cases. And there is an
clear trend that VBC-BOX performs the best when graphs are highly cyclic (on the left side of the
table), then VBC-BOX with less binary code dimensions and GBC-BOX model start to perform better
when graphs are less cyclic. In the case where a graph is mostly acyclic (on the right side of the table),
G-BOX performs equally well. We can see that box geometry is superior than vector inner-product
models in all scenario, even if graphs are less transitive, or has a lot of cycles, showing the strength
of box geometry in modeling directed graphs. In addition, we also compared with another recent
work from Sim et al. [23] over DREAM5 datasets, where we observe that Box embedding-based
model out-performs their baselines significantly in most cases (On In Silico dataset, our model has an
average precision of 68.8%, out-performs their best result 61.0%). Detailed results are in Appendix F.

Table 3: Link prediction on real-world graphs We use AUC as evaluation metric. Vector-based
methods (upper), and box embedding variants (bottom). We evaluated over two negative sampling
strategies for testing, unif.: uniformly sampled negatives; corr.: randomly corrupting source or target
node in each positive edge in the test set. All methods use 128 parameters per vertex. Bold numbers
perform the best, and underscored numbers perform the best in all non-box models

.

Methods Google Epinions CORA Twitter
Cyclicity = 0.96 0.88 0.23 0.01

Transitivity = 0.40 0.09 0.22 0.01

unif. corr. unif. corr. unif. corr. unif. corr.

DeepWalk 2014 83.6 - 76.6 - 84.9 - 50.4 -
LINE-1 2015 89.7 - 78.8 - 84.7 - 53.1 -
node2vec 2016 84.3 - 89.7 - 85.3 - 50.6 -
HOPE* 2016 87.5 - 79.6 - 77.6 - 98.0 -
APP* 2017 92.1 - 70.5 - 76.6 - 71.6 -
DGGAN 2021 92.3 - 96.1 - 85.1 - 99.7 -
Vector(Ours)* 94.0 94.2 93.0 88.9 78.9 76.7 99.8 84.1

G-BOX 99.2 98.2 95.1 90.0 93.9 89.6 99.8 86.3
T-BOX 97.1 95.8 96.4 89.6 87.3 79.6 99.8 84.4
GBC-BOX 99.0 98.3 96.8 92.7 92.7 90.3 99.9 86.2
VBC-BOX (0 < dbin < d) 99.3 98.3 97.6 92.2 94.1 89.7 99.9 86.1
VBC-BOX (dbin = d) 99.5 98.6 98.0 92.4 93.2 88.8 99.8 85.7
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6 Conclusion

In this paper, we introduced binary code box embeddings, a generalized box embedding method to
model directed graphs. We provide both theoretical and empirical results showing the capacity of our
model for modeling directed graphs. We demonstrated that this model can maintain a useful bias of
transitivity while also modeling graphs with cycles.
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A Equivalence of G-BOX and Dasgupta et al. [4]

In our notation, the model in Dasgupta et al. [4] would have score function

FD-BOX((x
−, x+), (y−, y+); (τ, ν)) :=

LSEν (−LSEτ (−x+,−y+)− LSEτ (x
−, y−)− 2νγ, 0)

LSEν(y+ − y− − 2νγ, 0)

where γ is the Euler-Mascheroni constant.

As presented in Dasgupta et al. [4], D-BOX used a single temperature β = τ = ν, and derived this
score function as an approximation to a ratio of expected volumes of intervals whose endpoints were
modeled by Gumbel random variables. Gumbel random variables are typically parameterized by a
location and scale, and Dasgupta et al. [4] interpreted the parameters x−, y− (resp. x+, y+) as the
location parameters for GumbelMax (resp. GumbelMin) distributions with scale β.
Remark 1. Although the model was proposed and analyzed in Dasgupta et al. [4] using a single
temperature parameter β, the authors do use separate τ and ν parameters when implementing the
model, and so we adopt that formulation when defining FD-BOX above.

We claim D-BOX and G-BOX are equivalent, in the following sense.
Proposition 2. Given any ν ≥ 0 there exists a bijection ψ on the set of functions {V → R2d} such
that

EG-BOX(u, v;ψ(ϕ), (τ, ν)) = ED-BOX(u, v;ϕ, (τ, ν)), (11)
and, being a bijection,

EG-BOX(u, v;ϕ, (τ, ν)) = ED-BOX(u, v;ψ
−1(ϕ), (τ, ν)). (12)

Proof. Observe that for any a, b, c ∈ R and t ≥ 0,

LSEt(a+ c, b+ c) = LSEt(a, b) + c.

Then

FG-BOX((x
− + νγ, x+ − νγ), (y− + νγ, y+ − νγ); (τ, ν))

=
LSEν (−LSEτ (−x+ + νγ,−y+ + νγ)− LSEτ (x

− + νγ, y− + νγ), 0)

LSEν(y+ − νγ − y− − νγ, 0)

=
LSEν (−LSEτ (−x+,−y+)− LSEτ (x

−, y−)− 2νγ, 0)

LSEν(y+ − y− − 2νγ, 0)

= FD-BOX((x
−, x+), (y−, y+); (τ, ν)).

Therefore, as introduced in Section 2, if we label the output of ϕ using d pairs ϕ(u)i =
(ϕ(u)−i , ϕ(u)

+
i ) and define ψ(ϕ) to be a mapping from V → R2d such that

ψ(ϕ)(u)i = (ϕ(u)−i + νγ, ϕ(u)+i − νγ), (13)

the calculations above prove (11), and the proof of (12) is similar.

Remark 2. Note that the mean of X ∼ GumbelMax(µ, β) is µ + βγ, and similarly the mean
of X ∼ GumbelMin(µ, β) is µ − βγ. As mentioned above, in the setting where β = τ = ν the
parameters of D-BOX can be interpreted as the location parameters for Gumbel distributions, and
thus (13) simply takes the location parameters to their mean. Hence, in the case where τ = ν, the
G-BOX model can simply be interpreted as using the mean of the Gumbel distributions as opposed to
the location parameter. This leads to a slight simplification in the score function by removing the 2νγ,
which has minor computational and mathematical benefits. The more conceptual benefit, however, is
that it unifies BOX, G-BOX, and T-BOX.

B Representational Capacity of G-BOX

In this section we prove any graph capable of being represented by BOX is also capable of being
represented by G-BOX, regardless of the temperature hyperparameters. The proof involves two
components:
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1. The representational capacity of G-BOX depends not on the absolute values of τ and ν, but
rather their ratio.

2. The energy of BOX can be approximated by G-BOX using small enough τ and ν.

Proposition 3. Let τ1, ν1 > 0 and ϕ : V → R2d be given. Then for any τ2, ν2 > 0 such that τ2
ν2

= τ1
ν1

the function ψ(ϕ) : V → R2d for which ψ(ϕ)(u)±i = ν2

ν1
ϕ(u)±i is such that

EG-BOX(u, v;ϕ, (τ1, ν1)) = EG-BOX(u, v;ψ(ϕ), (τ2, ν2)). (14)

Proof. The proof is by direct calculation. First, note that for any t, c > 0 we have for any vector
x ∈ Rn

LSEt(cx) = t log

(
n∑

i=1

exp
(
cxi

t

))
= c(t/c) log

(
n∑

i=1

exp
(

xi

t/c

))
= cLSEt/c(x).

In particular, for c = ν2

ν1
= τ2

τ1
(where the latter equality follows from the premise of the proposition)

we have for any a, b ∈ R

LSEτ2(ca, cb) = cLSEτ1(a, b) and LSEν2
(ca− cb, 0) = cLSEν1

(a− b, 0).

Thus

FG-BOX((cx
−, cx+), (cy−, cy+); (τ2, ν2))

=
LSEν2

(−LSEτ2(−cx+,−cy+)− LSEτ2(cx
−, cy−), 0)

LSEν2(cy
+ − cy−, 0)

=
LSEν2 (−cLSEτ1(−x+,−y+)− cLSEτ1(x

−, y−), 0)

LSEν2
(cy+ − cy−, 0)

=
cLSEν1(−LSEτ1(−x+,−y+)− LSEτ1(x

−, y−), 0)

cLSEν1
(y+ − y−, 0)

= FG-BOX((x
−, x+), (y−, y+); (τ1, ν1)),

which proves (14).

The following lemma will be helpful in proving the next part.

Lemma 1. For all y > 0, given ε > 0 and some M ∈ R, there exists δ > 0 such that for all
0 < ν < δ, for all x < M we have∣∣∣∣LSEν(x, 0)

LSEν(y, 0)
− max(x, 0)

y

∣∣∣∣ < ε.

Proof. Note that LSEν(x, 0) is monotonically increasing in x for any ν ≥ 0, and is always greater
than max(x, 0). Furthermore,

|LSEν(x, 0)−max(x, 0)| = LSEν(x, 0)−max(x, 0) ≤ ν log 2

as it obtains it’s maximum when x = 0 (which can be observed by inspection of the signs of the
derivative). Then for all x < M we have∣∣∣∣LSEν(x, 0)

LSEν(y, 0)
− max(x, 0)

y

∣∣∣∣ < ∣∣∣∣LSEν(x, 0)

LSEν(y, 0)
− LSEν(x, 0)

y

∣∣∣∣+ ∣∣∣∣LSEν(x, 0)

y
− max(x, 0)

y

∣∣∣∣ .
< LSEν(M, 0)

∣∣∣∣ 1

LSEν(y, 0)
− 1

y

∣∣∣∣+ ν log 2

y
. (15)

Now (15) does not depend on x, and tends to 0 as ν → 0, which completes the proof.

Proposition 4. Given a mapping ϕ : V → R2d where ϕ(u)+i > ϕ(u)−i for each u ∈ V , i ∈
{1, . . . , d}, we have that for all u, v ∈ V ,

lim
(τ,ν)→(0,0)

EG-BOX(u, v;ϕ, (τ, ν)) = EBOX(u, v;ϕ). (16)
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Proof. Given fixed x− < x+, y− < y+, let f(τ) = −LSEτ (−x+,−y+) − LSE(x−, y−), and
z = min(x+, y+)−max(x−, y−) = limτ→0 f(τ). Then∣∣FG-BOX((x

−, x+), (y−, y+); (τ, ν))− FBOX((x
−, x+), (y−, y+))

∣∣
=

∣∣∣∣ LSEν(f(τ), 0)

LSEν(y+ − y−, 0)
− max(z, 0)

y+ − y−

∣∣∣∣
<

∣∣∣∣ LSEν(f(τ), 0)

LSEν(y+ − y−, 0)
− max(f(τ), 0)

y+ − y−

∣∣∣∣+ ∣∣∣∣max(f(τ), 0)

y+ − y−
− max(z, 0)

y+ − y−

∣∣∣∣ . (17)

Given ε > 0, choose δ1 such that 0 < τ < δ1 implies the second summand in (17) is bounded by
ε/2. Then f(τ) is bounded, and we can apply Lemma 1 to choose δ2 such that 0 < ν < δ2 implies
the first summand is less than ε/2. Thus taking δ = min(δ1, δ2) completes the proof on the level of
the per-dimension score functions, and thus (16) follows by continuity.

We are now ready to prove the main theorem.

Theorem 1. Given a threshold T , temperature hyperparameters τ, ν, there exists and a bijection ψ
on the set of parameterizations {V → R2d} such that for all u, v ∈ V ,

EG-BOX(u, v;ψ(ϕ), (τ, ν)) < T ⇐⇒ EBOX(u, v;ϕ) < T.

Proof. Let ε > 0 be a number we will specify later. Then by Proposition 4, for each (u, v) ∈ V 2 we
have some δ(u,v) > 0 such that

τ, ν ∈ (0, δ(u,v)) =⇒ |EG-BOX(u, v;ϕ, τ, ν)− EBOX(u, v;ϕ)| < ε. (18)

Let
δ = min

(u,v)∈V 2
δ(u,v), τ ′ =

δτ

2max(τ, ν)
, ν′ =

δν

2max(τ, ν)
.

Since τ ′

ν′ =
τ
ν we can apply Proposition 3, which guarantees the existence of a function ψ such that

EG-BOX(u, v;ψ(ϕ), (τ
′, ν′)) = EBOX(u, v;ϕ, (τ, ν)).

Noting that τ ′, ν′ ∈ (0, δ), we can combine this with (18), and find

EBOX(u, v;ϕ)− ε < EG-BOX(u, v;ψ(ϕ), (τ, ν)) < EBOX(u, v;ϕ) + ε.

Let
T1 = max

(u,v)∈E
EBOX(u, v;ϕ), T2 = min

(u,v)/∈E
EBOX(u, v;ϕ),

and set ε = min(T − T1, T2 − T ). Then if (u, v) ∈ E we have

EG-BOX(u, v;ψ(ϕ), (τ, ν)) < T1 + T − T1 = T,

and if (u, v) /∈ E we have

EG-BOX(u, v;ψ(ϕ), (τ, ν)) > T2 − (T2 − T ) = T,

which completes the proof.

C Representing Cycles with Box Embeddings

Proposition 1 If G is a graph which is the union of a chordless cycle and one reverse edge, G-BOX
can model G in 2 dimensions.

Proof. Given a G = {V, E}, E = {(1, 2), (2, 3), (3, 4), (4, 5), , (N − 1, N), (N, 1)} ∪ {(1, N)}
When N = 2, it is trivial since two boxes can be equal. When N > 2 and N is an even number
(odd number), we can construct 2-d BOX in Figure 2 left (right). Let the area of ϕ(i) be V (ϕ(i)),
i ≤ N , the area of intersection box between two nodes that are connected δi = V (ϕ(i) ∩ ϕ(i+ 1)),
i ≤ N − 1, and let V (ϕ(N) ∩ ϕ(1)) = CδN−1 where C > 1. It can be observed from Figure 2
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N

Figure 2: Visualization of 2D box to represent a graph with chordless cycles and one reverse edge.
Diagram on the left is when there are even number of nodes in the graph, while the one on the right is
when the number is odd.

that there exists arrangement of ϕ, threshold T and a large enough α where 0 < α < 1, such that
for any N > 2, V (ϕ(i + 1)) = α ∗ V (ϕ(i)), δi+1 = α ∗ δi, i ≤ N − 1 and C = 1

αN−1 . Then,
there exists t, for any pair of node (i, i + 1) ∈ G, E(i, i + 1) = E(N, 1) = −log δ1

ϕ(1)α < T ,

E(1, N) = −log δ1
αNϕ(1)

< T , and for (u, v) /∈ E , E(u, v) ≥ T . Given Appendix B, this proof also
applies to G-BOX.

Proposition 2 Given box embeddings that model a directed graph G ∈ (V, E) which is
the union of a chordless cycle and one reverse edge. Let P (u, v) = e−E(u,v;ϕ,λ) =∏d

i=1 F (ϕ(u)i, ϕ(v)i;λ), P (u) =
∏d

i=1 max(ϕ(u)+i − ϕ(u)−i , 0), µ = e−T and γ =
min(u,v)∈E P (u, v)−max(u′,v′)/∈E P (u

′, v′). Then, γ and µ need to satisfy:

γ < µ(1− µ
1

N−1 )

Proof. Given G = (V, E) where E = {(1, 2), (2, 3), ..., (N − 1, N), (N, 1), (1, N)} and N = |V|.
According to Proposition 1, that there exist G-BOX that can reconstruct G with threshold µ = e−T :
a directed edge (u, v) exists iff P (u, v) > µ and (u, v) does not exist iff P (u, v) ≤ µ− γ. γ is a
positive margin. We would like to understand the relationship between N and γ, where a smaller γ
will be more sensitive to perturbation on the box parameters.

If (u, v) ∈ E and (v, u) /∈ E , we have P (v)µ < P (u, v) ≤ P (u)(µ− γ). Thus
P (u)/P (v) > µ/(µ− γ). By extending this inequality from u = 1,v = 2 to u = N − 1, v = N ,
we can derive a lower bound of marginal ratio between P (N) and P (1):

P (1)/P (N) > µN−1/(µ− γ)N−1 (19)

Since (N, 1) ∈ E , we have
P (1, N)/µ > P (1) (20)

Given Eq. 19 and Eq. 20, we have

P (1, N)/P (N) > µN/(µ− γ)N−1 (21)

Since P (1, N)/P (N) ≤ 1, µN < (µ− γ)N−1, therefore

γ < µ(1− µ
1

N−1 ) (22)

Since γ > 0, according to sandwich theorem, Eq. 22 indicates that γ will be close to zero when
N → +∞.

D Dimensionality Bounds for Binary Code Models

We start by proving the following lemma, which implies that any directed graph on 2 nodes can be
embedded using boxes in 1-dimension with any threshold T > 0.
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Lemma 2. Given T > 0, there exist x−, x+, y−, y+ ∈ R such that

− logFBOX((x
−, x+), (y−, y+)) < T < − logFBOX((y

−, y+), (x−, x+)).

Proof. The proof is a direct construction; take

y− = x− = 0, x+ = 1, and y+ = e−2T .

Then
max(min(1, e−2T )−max(0, 0), 0) = e−2T ,

and thus
FBOX((0, 1), (0, e

−T/2)) = 1, and FBOX((0, e
−2T ), (0, 1)) = e−2T

which implies the desired result.

We then strengthen the statement of Theorem 6 to apply to an arbitrary threshold.

Theorem 7. Given a directed graph G = (V, E), any temperatures τ, ν ≥ 0, and any threshold
T > 0, there exists a parameterization ϕ : V → R2d × [0, 1]d with d = O(|V|2) for which

EVBC-BOX(u, v;ϕ, (τ, ν)) < T ⇐⇒ (u, v) ∈ E .

Proof. Given a graph G = (V, E) let H = {{u, v} | u, v ∈ V, u ̸= v}. We will construct a
VBC-BOX model in d = |H| dimensions. For convenience, index the dimensions using h ∈ H , and
let ϕ(u)⋄h = 0 if u /∈ h. Thus when evaluating edge (u, v) or (v, u), dimension h = {u, v} is the
only dimension whose score may not be equal to 1.

Lemma 2 implies any graph on 2 nodes can be embedded using threshold T in one dimension,
and Theorem 1 implies this is also true for G-BOX for any setting of temperatures, completing the
proof.

Theorem 8. Let G = (V, E), and let τ, ν ≥ 0 be given temperature hyperparameters. Let VF be the
minimum feedback vertex set, EF = E ∩ V2

F , and GF = (VF , EF ). Then for any temperatures τ, ν
there exists a threshold T > 0 and a parameterization ϕ : V → R2d × [0, 1]d such that

EVBC-BOX(u, v;ϕ, (τ, ν)) < T ⇐⇒ (u, v) ∈ E ,

where d = O((∆F + 2) log(|VF |) + |VC |2), with ∆F the maximum degree of GF , and

VC = {u | (u, v) ∈ E , u /∈ VF or v /∈ VF }.

Proof. Theorem 2 implies that GF can be embedded using G-BOX with the given temperature
hyperparameters τ, ν in dimension at most dF = O((∆F + 2) log |VF |). Let ϕF : VF → R2dF be
the parameterization for this embedding, and T the threshold on the energy. Now let

E¬F = {(u, v) ∈ V2 | u /∈ VF or v /∈ VF },

and define E1 = EF ∪ E¬F and G1 = (V, E1). We can extend ϕF to a VBC-BOX parameterization
ϕ1 : V → R2dF × [0, 1]2dF as follows:

ϕ1(u)i =

{
(ϕF (u)

−
i , ϕF (u)

+
i , 1) if u ∈ VF ,

(0, 1, 0) otherwise.

This parameterization is such that

EVBC-BOX(u, v;ϕF , (τ, ν))


= 0 if (u, v) ∈ E¬F ,

< T if (u, v) ∈ EF ,
> T otherwise.

(23)

Now let EC = E ∩ E¬F , and note that these edges are only between nodes in VC . Define GC =
(VC , EC), which, by Theorem 7, can be embedded with threshold T in dC = O(|VC |2) dimensions.
Let ϕC : VC → R2dC be the associated parameterization.
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Now let G2 = (V, EC ∪ (VF × VF )), then extend ϕC to a parameterization ϕ2 : V → R2dC as
follows:

ϕ2(u)i =

{
(ϕC(u)

−
i , ϕC(u)

+
i , 1) if u ∈ VC ,

(0, 1, 0) otherwise.

For this parameterization, we have

EVBC-BOX(u, v;ϕ2, (τ, ν))


= 0 if (u, v) ∈ VF × VF ,

< T if (u, v) ∈ EC ,
> T otherwise.

(24)

The desired VBC-BOX embedding ϕ for G with d = dF + dC = O((∆F + 2) log(|VF |) + |VC |2)
dimensions now be created by concatenating ϕ1 and ϕ2, for which

EVBC-BOX(u, v;ϕ, (τ, ν)) = EVBC-BOX(u, v;ϕ1, (τ, ν)) + EVBC-BOX(u, v;ϕ2, (τ, ν)). (25)

Since EF ∩ EC = ∅, inspecting (23) and (24) we have that

EVBC-BOX(u, v;ϕ(τ, ν)) < T ⇐⇒ (u, v) ∈ (EC ∩ E¬F ) ∪ (EF ∩ (VF × VF )) = E .

E Data Statistics

Google [16] (15,763 nodes and 171,206 edges) is a hyperlink network from pages within Google’s
sites. Nodes represent pages and directed edges represent hyperlink between pages. Epinions [19]
(75,879 nodes and 508,837 edges) is a trust network from the online social network Epinions. Nodes
represent users and directed edges represent trust between users. CORA [24] (23,166 nodes and
91,500 edges) is a citation network of academic papers. Nodes represent papers and directed edges
represent the citation relationships between papers. Twitter [5] (465,017 nodes and 834,797 edges) is
a social network. Nodes represent users and directed edges represent following relationships between
users. DREAM5 [12] is a gene regulatory networks across organisms. In silico network has 1,565
nodes and 4,012 edges. E. Coli network has 1,081 nodes and 2,066 edges. S. cerevisiae network has
1,994 nodes and 3,940 edges. These networks contain a relatively small number number of cycles.

F Link Prediction on DREAM5 Datasets

In Table 4, we compared with a recent work that embedding graphs into Pseudo-Riemannian mani-
folds [23], along with other baselines such as Euclidean and Hyperboloid embeddings on DREAM5
datasets. Models are evaluated using Average Precision (AP). Results show that Binary Code Box
significantly out-performs baseline methods on In Silico and S. Cerevisiae datasets, while show
competitive performance on the E. Coli graph. It can also be observed that Gumbel Box performs
competitively on these graphs, which are almost acyclic.
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Table 4: Link prediction on Experiments on DREAM5 Datasets. Following Sim et al. [23], we
use median Average Precision among 5 test sets with different negative samples as evaluation metric,
and we sample 4 times the negatives by randomly corrupting one of the node in each positive edges
in the test set. We compare our model with other baselines using 10, 50, 100 number of parameters
per vertex. Cyclicity and transitivity of each graph are shown in the table. Bold numbers perform the
best, and underscored numbers perform the best in all non-box models. For more details of baselines
models, please refer to [23].

.

Methods In Silico E. Coli S. Cerevisiae
Cyclicity = 0.01 0.01 0.01

Transitivity = 0.25 0.40 0.17

# parameters / vertex 10 50 100 10 50 100 10 50 100

Euclidean + FD 39.7 39.8 34.8 40.2 44.5 49.0 40.2 44.5 49.0
Hyperboloid + FD 50.8 50.9 52.5 52.7 53.6 50.6 46.5 48.8 47.9
Minkowski + TFD 51.2 57.7 58.0 63.4 67.7 68.2 46.4 52.7 54.0
Anti de-Sitter + TFD 51.9 55.6 56.0 61.8 63.3 63.0 44.9 47.5 49.4
Cylindrical Minkowski + TFD 56.3 58.9 61.0 62.3 65.8 63.2 46.8 53.4 54.6
Vector(Ours)* 56.7 59.2 59.8 56.0 58.1 59.6 51.2 55.2 55.2

G-BOX 62.3 66.1 66.6 65.1 66.5 68.0 55.0 58.6 59.5
GBC-BOX 62.0 66.4 68.8 65.4 68.3 65.9 55.1 59.4 59.7
VBC-BOX (dbin < d) 58.4 66.5 66.4 62.6 67.3 66.1 52.1 59.6 58.3
VBC-BOX (dbin = d) 55.3 66.0 64.9 58.1 65.8 65.3 55.3 57.5 57.7

G Hyper-parameter Search

We follow the setting from Boratko et al. [2] for hyper-parameter search strategies in graph re-
construction experiments. Table 5 shows ranges of Bayesian hyper-parameter search for our link
prediction experiments.

Table 5: Hyper-parameter range of Bayesian optimization for link prediction.

Hyper-Parameter Range

learning rate 1e-5 ∼ 1e-2
batch size 1024 (Table 3), 64 (Table 4)
max epochs 16, 32, 64, 128
τ 0.001 ∼ 0.1
ν 0.1 ∼ 10.0
wr 10−8 ∼ 1.0
k 1 ∼ 10
dbin 0 ∼ d

H Case Study

In this section, we visualize how binary codes work to preserve transitivity and cyclicity together.

As shown in Figure 3, our analysis is over two synthetic graphs. For fair comparison, we embed both
graphs into 3 dimensional G-BOX and 2 dimensional VBC-BOX. The graph on the top is formed by
a 7-node directed chain (vertex 0 to vertex 6) with full transitive closures and one additional node
connecting the chain into a cycle. It shows that Gumbel Box can model transitive closures well,
but cannot model the cycle while Binary Code Box can handle both. The latter models transitive
closures by sharing full box space from node 0 to node 5, and then models the cycle by selecting
sub-dimensions in node 6 and 7. The graph on the bottom is formed by a chain of triangle cycles. It
shows that Gumbel Box cannot handle cycles, and generates an acyclic graph. In contrast, binary
code boxes can handle this graph nicely with much lower errors by alternately switching among
sub-spaces within each triangle cycles.
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Figure 3: Two directed graphs and reconstructed graphs by G-BOX (3D) and VBC-BOX (2D). The
upper graph is a directed cycle with almost all transitive closures. The bottom graph is a chain of
directed triangle cycles. Blue colored vertices have binary codes of [1,0], pink colored vertices have
binary codes of [0,1], and grey colored vertices have binary codes of [1, 1].

In Fig. 4, we visualize how GBC-BOX handles cycles and transitive edges. We compare GBC-BOX
with 2 dimensional G-BOX. Fig. 4a shows that when representing a DAG, GBC-BOX learns to
utilize all dimensions in both binary code vectors and leverages box containment to model edge
directions. Fig. 4b shows that given a pure cycle, GBC-BOX learns “skinny” boxes to model
0 → 1, 2 → 3 using the vertical axis, and the rest of the edges in the horizontal axis. Fig. 4c shows a
more complicated graph and our model also learns to split the graph into 0 → 1, 1 → 2, 0 → 2 in the
horizontal axis, and 2 → 3, 3 → 0, 2 → 0 in the vertical axis. In comparison, the original G-BOX
struggles with cycles and cannot reconstruct ground truth graphs from 4b and 4c 7.

7The 0th and 2nd boxes cover almost same regions in the second row of Figure 4c
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Figure 4: Visualization of graph reconstruction using 2 dimensional G-Box and GBC-Box. In
figure 4a, the ground truth graph is a DAG (an out-tree with transitive closure). In figure 4b, we have
a pure cycle. In figure 4c, we have three cycles nested together, forming two 2-hop transitive closures.
We visualized 2-D boxes trained via gradient descent and binary cross entropy loss with τ = 0.001
and ν = 0.5, and learning rate 0.01.
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