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ABSTRACT

The generalization performance of a machine learning algorithm such as a neural
network depends in a non-trivial way on the structure of the data distribution. To
analyze the influence of data structure on test loss dynamics, we study an exactly
solveable model of stochastic gradient descent (SGD) which predicts test loss when
training on features with arbitrary covariance structure. We solve the theory exactly
for both Gaussian features and arbitrary features and we show that the simpler
Gaussian model accurately predicts test loss of nonlinear random-feature models
and deep neural networks trained with SGD on real datasets such as MNIST and
CIFAR-10. We show that the optimal batch size at a fixed compute budget is
typically small and depends on the feature correlation structure, demonstrating the
computational benefits of SGD with small batch sizes. Lastly, we extend our theory
to the more usual setting of stochastic gradient descent on a fixed subsampled
training set, showing that both training and test error can be accurately predicted in
our framework on real data.

1 INTRODUCTION

Due to the challenge of modeling the structure of realistic data, theoretical studies of generalization
often attempt to derive data-agnostic generalization bounds or study the typical performance of
the algorithm on simple data distributions. The first set of theories derive bounds based on the
complexity or capacity of the function class and often struggle to explain the success of modern
learning systems which generalize well on real data but are sufficiently powerful to fit random noise
(Mohri et al., 2012; Zhang et al., 2017). Rather than exploring data-agnostic bounds, it is often useful
to analyze how algorithms generalize typically or on average over a stipulated data distribution (Engel
& Van den Broeck, 2001). In this style of analysis, the data distribution is usually assumed to be
highly symmetric, stipulating that input data follows a factorized probability distribution across input
variables (Advani et al., 2013). For example, spherical cow models treat data vectors as drawn from
the isotropic Gaussian distribution or uniformly from the sphere while Boolean hypercube models
treat data as random binary vectors. Rather than being distributed isotropically throughout the entire
set of ambient dimensions, realistic datasets often lie on low dimensional structures embedded in
high dimensional ambient spaces (Pope et al., 2021). For example, MNIST and CIFAR-10 lie on
surfaces with intrinsic dimension of ⇠ 14 and ⇠ 35 respectively (Spigler et al., 2020). To understand
the average-case performance of SGD in more realistic learning problems, incorporating structural
information about realistic data distributions is necessary.

In this paper, we first explore the minimal improvement on the spherical cow approximation by
studying an elliptical cow model, where the image of the data under a possibly nonlinear feature map
is treated as a Gaussian with certain covariance. We express the generalization error in terms of the
induced distribution of nonlinear features. Using the structure of the data, we study the evolution
of the expected test loss during SGD. We derive test error dynamics throughout SGD in terms of
the correlation structure in a feature space. We analyze SGD on random feature models and neural
networks using MNIST and CIFAR-10 and accurately predict test loss scalings on these datasets.

We then analyze the general case where the feature distribution is arbitrary and provide an exact
solution for the expected test loss dynamics. This result requires not only the second moment structure
but also all of the fourth moments of the features. For MNIST and CIFAR-10, we empirically observe
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that the Gaussian model provides an excellent approximation to the true dynamics due to negligible
non-Gaussian effects.

We explore in detail the effect of minibatch size, m, on learning dynamics. By varying m, we can
interpolate our theory between single sample SGD (m = 1) and gradient descent on the population
loss (m ! 1). To explore the computational advantages SGD compared to standard full batch
gradient descent we analyze the loss achieved at a fixed compute budget C = tm for different
minibatch size m and number of steps t, trading off the number of parameter update steps for
denoising through averaging. We show that generally, the optimal batch size is small, with the precise
optimum dependent on the learning rate and structure of the features.

Overall, our theory shows how learning rate, minibatch size and data structure interact with the
structure of the learning problem to determine generalization dynamics. It provides a predictive
account of training dynamics in wide neural networks.

2 PROBLEM DEFINITION AND SETUP

We study stochastic gradient descent on a linear model with parameters w and feature map  (x) 2
RN (with N possibly infinite). Some interesting examples of linear models are random feature
models, where  (x) = �(Gx) for random matrix G and point-wise nonlinearity � (Rahimi & Recht,
2008; Mei & Montanari, 2020). Another interesting linearized setting is wide neural networks with
neural tangent kernel (NTK) parameterization (Jacot et al., 2020; Lee et al., 2020). Here the features
are parameter gradients of the neural network function  (x) = r✓f(x,✓)|✓0 at initialization. We
will study both of these special cases in experiments.

We optimize the set of parameters w by SGD to minimize a population loss of the form

L(w) =
D
(w · (x)� y(x))2

E

x⇠p(x)
, (1)

where x are input data vectors associated with a probability distribution p(x),  (x) is a nonlinear
feature map and y(x) is a target function which we can evaluate on training samples. We assume that
the target function is square integrable

⌦
y(x)2

↵
x
< 1 over p(x). Our aim is to elucidate how this

population loss evolves during stochastic gradient descent on w. We derive a formula in terms of the
eigendecomposition of the feature correlation matrix and the target function

⌃ =
⌦
 (x) (x)>

↵
x
=

NX

k=1

�kuku
>
k , y(x) =

X

k

vku
>
k  (x) + y?(x), (2)

where hy?(x) (x)i = 0. We justify this decomposition of y(x) in the Appendix A using an
eigendecomposition and show that it is general for target functions and features with finite variance.

During learning, parameters w are updated to estimate a target function y which, as discussed above,
can generally be expressed as a linear combination of features y = w⇤ · + y?. At each time step t,
the weights are updated by taking a stochastic gradient step on a fresh mini-batch of m examples

wt+1 = wt �
⌘

m

mX

µ=1

 t,µ (wt · t,µ � yt,µ) , (3)

where each of the vectors  t,µ are sampled independently and yt,µ = w⇤ · t,µ. The learning rate
⌘ controls the gradient descent step size while the batch size m gives a empirical estimate of the
gradient at timestep t. At each timestep, the test-loss, or generalization error, has the form

Lt =
D
(w · �w⇤ · )2

E

 
= (wt �w⇤)>⌃(wt �w⇤) +

⌦
y?(x)

2
↵
, (4)

which quantifies exactly the test error of the vector wt. Note, however, that Lt is a random variable
since wt depends on the precise history of sampled feature vectors Dt = { t,µ}. Our theory, which
generalizes the recursive method of (Werfel et al., 2004) allows us to compute the expected test loss
by averaging over all possible sequences, to obtain hLtiDt

. We show that our calculated learning
curves are not limited to the one-pass setting, but rather can accommodate sampling minibatches
from a finite training set with replacement and testing on a separate test set which we address in
Section 3.4.
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In summary, we will develop a theory that predicts the expected test loss hLtiDt
averaged over

training sample sequences Dt in terms of the quantities {�k, vk,
⌦
y?(x)2

↵
x
}. This will reveal how

the structure in the data and the learning problem influence test error dynamics during SGD. This
theory is a quite general analysis of linear models on square loss, analyzing the performance of
linearized models on arbitrary data distributions, feature maps  , and target functions y(x).

3 ANALYTIC FORMULAE FOR LEARNING CURVES

3.1 LEARNABLE AND NOISE FREE PROBLEMS

Before studying the general case, we first analyze the setting where the target function is learnable,
meaning that there exist weights w⇤ such that y(x) = w⇤ · (x). For many cases of interest, this is
a reasonable assumption, especially when applying our theory to real datasets by fitting an atomic
measure on P points 1

P

P
µ �(x� xµ). We will further assume that the induced feature distribution

is Gaussian so that all moments of  can be written in terms of the covariance ⌃. We will remove
these assumptions in later sections.
Theorem 3.1. Suppose the features  follow a Gaussian distribution  ⇠ N (0,⌃) and the target

function is learnable in these features y = w⇤ · . After t steps of SGD with minibatch size m and

learning rate ⌘, the expected (over possible sample sequences Dt) test loss hLtiDt
has the form

hLtiDt
= �>Atv2

, A = (I� ⌘ diag(�))2 +
⌘
2

m
diag

�
�2

�
+

⌘
2

m
��> (5)

where � is a vector containing the eigenvalues of ⌃ and v2
is a vector containing elements (v2)k =

v
2
k = (uk ·w⇤)2 for eigenvectors uk of ⌃. The function diag(·) constructs a diagonal matrix with

the argument vector placed along the diagonal.

Proof. See Appendix B for the full derivation. We will provide a brief sketch of the proof here. The
strategy of the proof relies on the fact that hLti = Tr ⌃Ct where Ct =

⌦
(wt �w⇤) (wt �w⇤)>

↵
Dt

.
We derive the following recursion relation for this error matrix

Ct+1 = (I� ⌘⌃)Ct(I� ⌘⌃) +
⌘
2

m
[⌃Ct⌃+⌃Tr (⌃Ct)] (6)

The loss only depends on the quantities ck,t = u>
k Ctuk. As a vector the recurrence for these

quantities can be solved ct = Atv2. Using the fact that Lt =
P

k �ku>
k Ctuk =

P
k ck,t�k =

�>Atv2, we obtain the desired result.

Below we provide some immediate interpretations of this result.

• The matrix A contains two components; a matrix (I� ⌘ diag(�))2 which represents the time-
evolution of the loss under average gradient updates. The remaining matrix ⌘2

m

�
diag(�2) + ��>�

arises due to fluctuations in the gradients, a consequence of the stochastic sampling process.
• The test loss obtained when training directly on the population loss can be obtained by taking the

minibatch size m ! 1. In this case, A ! (I� ⌘ diag(�))2 and one obtains the population loss
L
pop
t =

P
k v

2
k�k(1 � ⌘�k)2t. This population loss can also be obtained by considering small

learning rates, i.e. the ⌘ ! 0 limit, where A = (I� ⌘ diag(�))2 +O(⌘2).
• For general � and ⌘

2
/m > 0, A is non-diagonal, indicating that the components {u1, ...,uk} are

not learned independently as t increases like for Lpop
t , but rather interact during learning due to

non-trivial coupling across eigenmodes at large ⌘
2
/m. This is unlike offline theory for learning in

feature spaces (kernel regression) where errors across eigenmodes were shown to decouple and are
learned at different rates (Bordelon et al., 2020; Canatar et al., 2020). This observation of mixing
across covariance eigenspaces agrees with a recent analysis of SGD, which introduced recursively
defined “mixing terms” that couple each mode’s evolution (Varre et al., 2021).

• Though increasing m always improves generalization at fixed time t (proof given in Appendix D),
learning with a fixed compute budget (number of gradient evaluations) C = tm, can favor smaller
batch sizes. We provide an example of this in the next sections and Figure 1 (d)-(f).
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• The lower bound hLti � �>v2
h
(1� ⌘)2 + ⌘2

m |�|2
it

can be used to find necessary stability

conditions on m, ⌘. This bound implies that hLti will diverge if m <
⌘|�|2
2�⌘ . The learning rate must

be sufficiently small and the batch size sufficiently large to guarantee convergence. This stability
condition depends on the features through |�|2 =

P
k �

2
k. One can derive heuristic optimal batch

sizes and optimal learning rates through this lower bound. See Figure 2 and Appendix C.

3.1.1 SPECIAL CASE 1: UNSTRUCTURED ISOTROPIC FEATURES

This special case was previously analyzed by Werfel et al. (2004) which takes ⌃ = I 2 RN⇥N and
m = 1. We extend their result for arbitrary m, giving the following learning curve

hLtiDt
=

✓
(1� ⌘)2 +

1 +N

m
⌘
2

◆t

||w⇤||2 , hL⇤
t iDt

=

✓
1� m

m+N + 1

◆t

||w⇤||2, (7)

where the second expression has optimal ⌘. First, we note the strong dependence on the ambient
dimension N : as N � m, learning happens at a rate hLti ⇠ e

�tm/N . Increasing the minibatch size
m improves the exponential rate by reducing the gradient noise variance. Second, we note that this
feature model has the same rate of convergence for every learnable target function y. At small m,
the convergence at any learning rate ⌘ is much slower than the convergence of the m ! 1 limit,
Lpop = (1� ⌘)2t||w⇤||2 which does not suffer from a dimensionality dependence due to gradient
noise. Lastly, for a fixed compute budget C = tm, the optimal batch size is m⇤ = 1; see Figure 1 (d).
This can be shown by differentiating

⌦
LC/m

↵
with respect to m (see Appendix E). In Figure 1 (a) we

show theoretical and simulated learning curves for this model for varying values of N at the optimal
learning rate and in Figure 1 (d), we show the loss as a function of minibatch size for a fixed compute
budget C = tm = 100.

3.1.2 SPECIAL CASE 2: POWER LAWS AND EFFECTIVE DIMENSIONALITY

Realistic datasets such as natural images or audio tend to exhibit nontrivial correlation structure,
which often results in power-law spectra when the data is projected into a feature space, such as a
randomly intialized neural network (Spigler et al., 2020; Canatar et al., 2020; Bahri et al., 2021).
In the ⌘2

m ⌧ 1 limit, if the feature spectra and task specra follow power laws, �k ⇠ k
�b and

�kv
2
k ⇠ k

�a with a, b > 1, then Theorem 3.1 implies that generalization error also falls with a power
law: hLti ⇠ Ct

��
, � = a�1

b where C is a constant. See Appendix G for a derivation. Notably,
these predicted exponents we recovered as a special case of our theory agree with prior work on SGD
with power law spectra, which give exponents in terms of the feature correlation structure (Berthier
et al., 2020; Dieuleveut et al., 2016; Velikanov & Yarotsky, 2021; Varre et al., 2021). Further, our
power law scaling appears to accurately match the qualitative behavior of wide neural networks
trained on realistic data (Hestness et al., 2017; Bahri et al., 2021), which we study in Section 4.

We show an example of such a power law scaling with synthetic features in Figure 1 (b). Since the
total variance approaches a finite value as N ! 1, the learning curves are relatively insensitive to
N , and are rather sensitive to the eigenspectrum through terms like |�|2 and 1>�, etc. In Figure
1 (c), we see that the scaling of the loss is more similar to the power law setting than the isotropic
features setting in a random features model of MNIST, agreeing excellently with our theory.

For this model, we find that there can exist optimal batch sizes when the compute budget C = tm

is fixed (Figure 1 (e) and (f)). In Appendix C.1, we heuristically argue that the optimal batch size
for power law features should scale as, m⇤ ⇡ ⌘2

(2b�1)(1�⌘)2 . Figure 2 shows a test of this result and
related experiments.

We provide further evidence of the existence of power law structure on realistic data in Figure 3
(a)-(c), where we provide spectra and test loss learning curves for MNIST and CIFAR-10 on ReLU
random features. The eigenvalues �k ⇠ k

�b and the task power tail sums
P1

n=k �nv
2
n ⇠ k

�a+1

both follow power laws, generating power law test loss curves. These learning curves are contrasted
with isotropically distributed data in R784 passed through the same ReLU random feature model and
we see that structured data distributions allow much faster learning than the unstructured data. Again,
our theory predicts experimental curves accurately across variations in learning rate, batch size and
noise (Figure 3).
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(a) Isotropic Features (b) Power Law Features (c) MNIST Random ReLU Features

(d) Fixed Compute Isotropic (e) Fixed Compute Power Law (f) Fixed Compute ReLU MNIST

Figure 1: Isotropic features generated as  ⇠ N (0, I) have qualitatively different learning curves
than power-law features observed in real data. Black dashed lines are theory. (a) Online learning
with N -dimensional isotropic features gives a test loss which scales like Lt ⇠ e

�t/N for any target

function, indicating that learning requires t ⇠ N steps of SGD, using the optimal learning rates
⌘
⇤ = m

N+m+1 . (b) Power-law features  ⇠ N (0,⇤) with ⇤kl = �k,lk
�2 have non-extensive give a

power-law scaling Lt ⇠ t
�� with exponent � = ON (1). (c) Learning to discrimninate MNIST 8’s

and 9’s with N = 4000 dimensional random ReLU features (Rahimi & Recht, 2008), generates a
power law scaling at large t, which is both quantitatively and qualitatively different than the scaling
predicted by isotropic features e�t/N . (d)-(f) The loss at a fixed compute budget C = tm = 100 for
(d) isotropic features, (e) power law features and (f) MNIST ReLU random features with simulations
(dots average and standard deviation for 30 runs). Intermediate batch sizes are preferable on real data.

3.2 ARBITRARY INDUCED FEATURE DISTRIBUTIONS: THE GENERAL SOLUTION

The result in the previous section was proven exactly in the case of Gaussian vectors (see Appendix
B). For arbitrary (possibly non-Gaussian) distributions, we obtain a slightly more involved result (see
Appendix F).
Theorem 3.2. Let  (x) 2 RN

be an arbitrary feature map with covariance matrix ⌃ =P
k �kuku>

k . After diagonalizing the features �k(x) = u>
k  (x), introduce the fourth moment

tensor 
4
ijkl = h�i�j�k�li. The expected loss is exactly hLti =

P
k �kck(�,,v).

We provide an exact formula for ck in the Appendix F We see that the test loss dynamics depends
only on the second and fourth moments of the features through quantities �k and ijk` respectively.
We recover the Gaussian result as a special case when ijkl is a simple weighted sum of these three
products of Kronecker tensors Gauss

ijkl = �i�j�ik�jl + �i�k�ij�kl + �i�j�il�jk. As an alternative to
the above closed form expression for hLti, a recursive formula which tracks N mixing coefficients
has also recently been utilized to analyze the test loss dynamics for arbitrary distributions (Varre
et al., 2021).

Next we show that a mild regularity condition, similar to those assumed in other recent works
(Berthier et al., 2020; Varre et al., 2021), on the fourth moment structure of the features allows
derivation of an upper bound which is qualitatively similar to the Gaussian theory.
Theorem 3.3. If the fourth moments satisfy

⌦
  >G  >↵ � (↵+ 1)⌃G⌃+ ↵⌃Tr⌃G for any

positive-semidefinite G, then

Lt  �>Atv2
, A = (I� ⌘ diag(�))2 +

↵⌘
2

m

⇥
diag(�2) + ��>⇤

. (8)
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(a) Power Law vary b (b) Optimal Batchsize vs b (c) Optimal m vs �

Figure 2: Optimal batch size depends on feature structure and noise level. (a) For power law features
�k ⇠ k

�b, �kv
2
k ⇠ k

�a, the m dependence of the loss LC/m depends strongly on the feature
exponent b. Each color is a different b value, evenly spaced in [0.6, 2.5] with a = 2.5, C = 500. The
solid lines show the exact theory while dashed lines show the error predicted by first order perturbation
theory where the mode coupling term ⌘2

m��
> is replaced with a decoupled term ⌘2

m diag(�2). This
shows that mode coupling is necessary to accurately predict optimal m. (b) The optimal m scales
proportionally with |�|2 ⇡ 1

2b�1 . We plot the lower bound mmin (black), the heuristic optimum (m

which optimizes the lower bound for L, shown in green) and ⌘2

(1�⌘)2 |�|
2 (red). (c) In noisy problems,

the optimal batch size also depends on noise level �, scaling roughly as m⇤ / �.

(a) Feature Spectra (b) Task Power Tail Sum (c) Learning Curves m = 5

(d) Varying Learning Rate (e) Varying Batch Size (f) Vary Noise (Averaged 10 Trials)

Figure 3: Structure in the data distribution, nonlinearity, batchsize and learning rate all influence
learning curves. (a) ReLU random feature embedding in N = 4000 dimensions of MNIST and
CIFAR images have very different eigenvalue scalings than spherically isotropic vectors in 784
dimensions. (b) The task power spectrum decays much faster for MNIST than for random isotropic
vectors. (c) Learning curves reveal the data-structure dependence of test error dynamics. Dashed
lines are theory curves derived from equation. (d) Increasing the learning rate increases the initial
speed of learning but induces large fluctuations in the loss and can be worse at large t. (e) Increasing
the batch size alters both the average test loss Lt and the variance. (f) Noise in the target values
during training produces an asymptotic error L1 which persists even as t ! 1.

We provide this proof in Appendix F.1. We note that the assumed bound on the fourth moments is
tight for Gaussian features with ↵ = 1, recovering our previous theory. Thus, if this condition on
the fourth moments is satisfied, then the loss for the non-Gaussian features is upper bounded by the
Gaussian test loss theory with the batch size effectively altered m̃ = m/↵.
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The question remains whether the Gaussian approximation will provide an accurate model on realistic

data. We do not provide a proof of this conjecture, but verify its accuracy in empirical experiments
on MNIST and CIFAR-10 as shown in Figure 3. In Appendix Figure F.1, we show that the fourth
moment matrix for a ReLU random feature model and its projection along the eigenbasis of the
feature covariance is accurately approximated by the equivalent Gaussian model.

3.3 UNLEARNABLE OR NOISE CORRUPTED PROBLEMS

In general, the target function y(x) may depend on features which cannot be expressed as linear
combinations of features (x), y(x) = w⇤ · (x)+y?(x). Let

⌦
y?(x)2

↵
x
= �

2. Note that y? does
not have to be a deterministic function of x, but can also be a stochastic process which is uncorrelated
with  (x).

Theorem 3.4. For a target function with unlearnable variance
⌦
y
2
?
↵
= �

2
, the expected test loss has

the form

hLti = �>Atv2 +
1

m
⌘
2
�
2�>(I�A)�1(I�At)� (9)

which has an asymptotic, irreducible error hL1i = 1
m⌘

2
�
2�>(I�A)�1� as t ! 1.

See Appendix H for the proof. The convergence to the asymptotic error takes the form hLt � L1i =
�>At

�
v2 � 1

m⌘
2
�
2(I�A)�1�

�
. We note that this quantity is not necessarily monotonic in t and

can exhibit local maxima for sufficiently large �
2, as in Figure 3 (f).

3.4 TEST/TRAIN SPLITS

Rather than interpreting our theory as a description of the average test loss during SGD in a one-pass
setting, where data points are sampled from the a distribution at each step of SGD, our theory can be
suitably modified to accommodate multiple random passes over a finite training set. To accomplish
this, one must first recognize that the training and test distributions are different.
Theorem 3.5. Let p̂(x) = 1

M

P
µ �(x� xµ) be the empirical distribution on the M training data

points and let ⌃̂ =
⌦
 (x) (x)>

↵
x⇠p̂(x)

=
P

k �̂kuku>
k be the induced feature correlation matrix

on this training set. Further, let p(x) be the test distribution ⌃ its corresponding feature correlation.

Then we have

hLtraini = Tr

h
⌃̂Ct

i
, hLtesti = Tr [⌃Ct]

u>
k Ctuk =

⇥
Atv2

⇤
k
, u>

k Ctu` =

✓
1� ⌘�̂k � ⌘�̂` + ⌘

2

✓
1 +

1

m

◆
�̂k�̂`

◆t

vkv` (10)

where A =
⇣
(I � diag(�̂))2 + ⌘2

m

h
diag(�̂2) + �̂�̂>

i⌘
.

We provide the proof of this theorem in Appendix I. The interpretation of this result is that it provides
the expected training and test loss if, at each step of SGD, m points from the training set {x1

, ...,xM}
are sampled uniformly with replacement and used to calculate a stochastic gradient. Note that while
⌃ can be full rank, the rank of ⌃̂ has rank upper bounded by M , the number of training samples.
As a consequence learning will only occur along the M dimensional subspace spanned by the data.
Thus, the test error will have an irreducible component at large time, as evidenced in Figure 4. While
the training errors continue to go to zero, the test errors saturate at a M -dependent final loss. This
result can also allow one to predict errors on other test distributions.

4 COMPARING NEURAL NETWORK FEATURE MAPS

We can utilize our theory to compare how wide neural networks of different depths generalize when
trained with SGD on a real dataset. With a certain initialization of the model parameters, infinite width
networks behave as linear functions of their parameters f(x,✓) ⇡ f(x,✓0) +r✓f(x,✓0) · (✓� ✓0)
(Lee et al., 2020). To predict test loss dynamics with our theory, it therefore suffices to characterize
the geometry of the gradient features  (x) = r✓f(x,✓). In Figure 5, we show the Neural Tangent
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(a) MNIST Training Error (b) MNIST Test Error

Figure 4: Training and test errors of a model trained on a training set of size M can be computed
with the Ct matrix. Dashed black lines are theory. (a) The training error for MNIST random feature
model approaches zero asymptotically. (b) The test error saturates to a quantity dependent on M .

(a) MNIST NTK Spectra (b) MNIST Task Spectra (c) Test Loss Scaling Laws

(d) CIFAR-10 NTK Spectra (e) CIFAR-10 Task Spectra (f) Test Loss Scalings

Figure 5: ReLU neural networks of depth D and width 500 are trained with SGD on full MNIST. (a)-
(b) Feature and spectra are estimated by diagonalizing the infinite width NTK matrix on the training
data. We fit a simple power law to each of the curves �k ⇠ k

�b and v
2
k ⇠ k

�a. (c) Experimental test
loss during SGD (color) compared to theoretical power-law scalings t�

a�1
b (dashed color). Deeper

networks train faster due to their slower decay in their feature eigenspectra �k, though they have
similar task spectra. (d)-(f) The spectra and test loss for convolutional and fully connected networks
on CIFAR-10. The CNN obtains a better convergence exponent due to its faster decaying task spectra.
The predicted test loss scalings (dashed black) match those observed in experiments (color).

Kernel (NTK) eigenspectra and task-power spectra for fully connected neural networks of varying
depth, calculated with the Neural Tangents API (Novak et al., 2020). We compute the kernel on a
subset of 10, 000 randomly sampled MNIST images and estimate the power law exponents for the
kernel and task spectra �k and v

2
k. We find that, accross architectures, the task spectra v

2
k are highly

similar, but that the kernel eigenvalues �k decay more slowly for deeper models, corresponding to
a smaller exponent b. As a consequence, deeper neural network models train more quickly during
stochastic gradient descent as we show in Figure 5 (c). After fitting power laws to the spectra
�k ⇠ k

�b and the task power v
2
k ⇠ k

�a, we compared the true test loss dynamics (color) for
a width-500 neural network model with the predicted power-law scalings � = a�1

b from the fit
exponents a, b. The predicted scalings from NTK regression accurately describe trained networks at
finite width. On CIFAR-10, we compare the scalings of the CNN model and a standard MLP and find
that the CNN obtains a better exponent due to its faster decaying tail sum

P1
n=k �nv

2
n.
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5 RELATED WORK AND DISCUSSION

The analysis of stochastic gradient descent has a long history dating back to seminal works of Polyak
& Juditsky (1992); Ruppert (1988), who showed that the time-averaged iterates provably converge
to the optimum in noisy convex problems with the optimal minimax rate of O(�2

t
�1) in the large t

limit. Many more works have examined a similar setting, identifying how averaged and accelerated
versions of SGD perform asymptotically (Flammarion & Bach, 2015; 2017; Jain et al., 2018; Duchi
& Ruan, 2021; Shapiro, 1989; Robbins & Monro, 1951; Chung, 1954; Duchi & Ruan, 2021; Yu et al.,
2020; Anastasiou et al., 2019; Gurbuzbalaban et al., 2020).

Recent studies have also analyzed the asymptotics of noise-free MSE problems with arbitrary feature
structure. A series of works have established that, under mild regularity conditions of the features,
power law test loss curves emerge with exponents which are better than the 1/t rates in the noisy
problem (Berthier et al., 2020; Pillaud-Vivien et al., 2018; Dieuleveut et al., 2016; Varre et al., 2021;
Dieuleveut & Bach, 2016; Ying & Pontil, 2008; Fischer & Steinwart, 2020). Their predicted exponent
in the small learning rate limit agrees with the exponent we derive with the saddle point approximation
in Section 3.1.2. In the most recent of these studies, (Varre et al., 2021) show that the error signals
across covariance eigenspaces mix at finite learning rate, an observation which also occurs in our
theory since the derived A matrix is non-diagonal. This fact can result in qualitatively different
behavior (such as different optimal hyperparameters) than what arises if one assumes the gradient
covariance and feature covariance are simulataneously diagonalizable (Zhang et al., 2019). Our work
improves upon these prior results by examining the effect of minibatch size, test train splits, and
providing exact expressions for both Gaussian and arbitrary features.

Several famous works have analyzed average case online learning in shallow and two-layer neural
networks for unstructured data (Heskes & Kappen, 1991; Biehl & Riegler, 1994; Mace & Coolen,
1998; Saad & Solla, 1999; Cun et al., 1991; Goldt et al., 2019). However, a more recent analysis has
demonstrated that structured data has significant influence in the two-layer student-teacher setting
(Goldt et al., 2020) and for regression generalization (Mel & Ganguli, 2021). While we focus
on discrete time in this work, some other recent works have analyzed shallow classification in a
continuous time dynamical field theory approach (Mignacco et al., 2020).

Studying the simple setting of least squares regression on isotropic Gaussian features, Werfel et al.
(2004) computed average case learning curves for SGD with minibatch size of one. Their results are
non-asympotic and exact, though the assumptions on the features are highly restrictive. We generalize
their result and method so that it can describe structured features and arbitrary batch sizes.

Understanding the computational benefit that SGD provides over full-batch gradient descent requires
understanding how test loss dynamics depend on batch-size m. Ma et al. (2018) study the tradeoff
between taking many steps of gradient descent at small m and taking a small number of steps at large
m. They show that for small m, doubling the batch size and cutting in half the number of steps give
roughly the same loss. After a critical m, however, they observe a saturation effect where making m

larger does not reduce the loss significantly since denoising estimated gradients provides diminishing
returns. Our results improve upon this initial study since we provide an exact analysis of SGD with
varying batch size at fixed compute budget and show how the optimal batch sizes depend on the
feature covariance.

6 CONCLUSION

By studying a simple model of stochastic gradient descent, we were able to uncover how the geometry
of the data in an induced feature space governs the dynamics of the test loss. We derived average
learning curves hLti for both Gaussian and general non-Gaussian features and showed the conditions
under which the Gaussian approximation is accurate. The proposed model allowed us to explore the
role of the data distribution and neural network architecture on the learning curves, demonstrating
how the power-law spectra observed in wide neural networks on real data allow an escape of the curse
of dimensionality during SGD. We verified our theory with experiments on MNIST and CIFAR-10. In
addition, we explored the role of batch size, learning rate, and label noise level on generalization. We
found that for a fixed compute budget small minibatch sizes give the lowest expected loss, providing
a quantitative demonstration of a benefit of SGD over large batch gradient descent.
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Arthur Jacot, Berfin Şimşek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Kernel
alignment risk estimator: Risk prediction from training data, 2020.

Prateek Jain, S. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating
stochastic gradient descent for least squares regression. In COLT, 2018.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):
124002, Dec 2020. ISSN 1742-5468. doi: 10.1088/1742-5468/abc62b. URL http://dx.doi.

org/10.1088/1742-5468/abc62b.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In ICML, pp. 3331–3340, 2018. URL
http://proceedings.mlr.press/v80/ma18a.html.

C. Mace and A. Coolen. Statistical mechanical analysis of the dynamics of learning in perceptrons.
Statistics and Computing, 8:55–88, 1998.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and double descent curve, 2020.

Gabriel Mel and Surya Ganguli. A theory of high dimensional regression with arbitrary correlations
between input features and target functions: sample complexity, multiple descent curves and a
hierarchy of phase transitions. In International Conference on Machine Learning, pp. 7578–7587.
PMLR, 2021.

Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynamical
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