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Abstract

Spatial-wise dynamic convolution has become a promising approach to improving1

the inference efficiency of deep networks. By allocating more computation to the2

most informative feature pixels, such an adaptive inference paradigm alleviates3

the spatial redundancy in image features and reduces a considerable amount of4

unnecessary computation. However, the theoretical efficiency achieved by previous5

methods can hardly translate into the realistic speedup, especially on the multi-6

core processors (e.g. GPUs). The key challenge is that the existing literature has7

only focused on designing algorithms with minimal computation, ignoring the8

fact that the practical latency can also be influenced by scheduling strategies and9

hardware properties. To bridge the gap between the theoretical computation and10

the practical efficiency, we propose a latency-aware spatial-wise dynamic network11

(LASNet), which performs coarse-grained spatially adaptive inference under the12

guidance of a novel latency prediction model. This latency prediction model can13

efficiently estimate the inference latency of dynamic networks by simultaneously14

considering the algorithms, the scheduling strategies, and the hardware properties.15

We use the latency predictor to guide both the algorithm design and the scheduling16

optimization on various hardware platforms. Experiments on image classification17

demonstrate that the proposed framework significantly improves the trade-off18

between the accuracy and the inference efficiency of deep networks. For example,19

the average latency of a ResNet-101 on the ImageNet validation set could be20

reduced by 23% and 45% on a server GPU (Nvidia Tesla-V100) and an IoT device21

(Nvidia Jetson TX2 GPU) respectively without sacrificing the accuracy.22

1 Introduction23

Dynamic neural networks [6] have attracted great research interests in recent years. Compared to24

static models [8, 14, 10, 20] which treat different inputs equally during inference, dynamic networks25

can allocate the computation in a data-dependent manner. For example, they can conditionally26

skip the computation of network layers [12, 29, 27] and convolutional channels [16, 1], or perform27

spatially adaptive inference on the most informative image regions (e.g. the foreground areas)28

[5, 4, 28, 32, 30, 7]. Spatial-wise dynamic networks, which typically decide whether to compute29

each feature pixel with plug-in masker modules [4, 28, 32, 7] (see Figure 1 (a)), have shown very30

promising results in improving the inference efficiency of convolution neural networks (CNNs).31

Despite the remarkable theoretical efficiency achieved by spatial-wise dynamic networks [4, 28, 32],32

researchers have found it challenging to translate the theoretical results into realistic speedup,33

especially on some multi-core processors, e.g., GPUs [32, 2, 7]. The challenges are two-fold: 1) most34

previous approaches [4, 28, 32] perform spatially adaptive inference at the finest granularity: every35

pixel is flexibly decided whether to be computed or not. Such flexibility induces non-contiguous36

memory access [32] and requires specialized scheduling strategies (Figure 1 (b)); 2) the existing37

literature has only adopted the hardware-agnostic FLOPs (floating-point operations) as an inaccurate38

proxy for the efficiency, lacking latency-aware guidance on the algorithm design. For dynamic39
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Figure 1: An overview of our method. (a) illustrates the spatially adaptive inference algorithm; (b) is
the scheduling strategy; and (c) presents the three key factors to the practical latency. For a given
hardware, the latency is used to guide our algorithm design and scheduling optimization.

networks, the adaptive computation with sub-optimal scheduling strategies further enlarges the40

discrepancy between the theoretical FLOPs and the practical latency. Note that it has been validated41

by previous works that the latency on CPUs has a strong correlation with FLOPs [7, 32]. Therefore,42

we mainly focus on the GPU platform in this paper, which is more challenging and less explored.43

We address the above challenges by proposing a latency-aware spatial-wise dynamic network44

(LASNet). Three key factors to the inference latency are considered: the algorithm, the scheduling45

strategy, and the hardware properties. Given a target hardware device, we directly use the latency,46

rather than the FLOPs, to guide our algorithm design and scheduling optimization (see Figure 1 (c)).47

Because the memory access pattern and the scheduling strategies in our dynamic operators differ48

from those in static networks, the libraries developed for static models (e.g. cuDNN) are sub-optimal49

for the acceleration of dynamic models. Without the support of libraries, each dynamic operator50

requires scheduling optimization, code optimization, compiling, and deployment for each device.51

Therefore, it is laborious to evaluate the network latency on different hardware platforms. To this end,52

we propose a novel latency prediction model to efficiently estimate the realistic latency of a network53

by simultaneously considering the aforementioned three factors. Compared to the hardware-agnostic54

FLOPs, our predicted latency can better reflect the practical efficiency of dynamic models.55

Guided by this latency prediction model, we establish our latency-aware spatial-wise dynamic56

network (LASNet), which adaptively decides whether to allocate computation on feature patches57

instead of pixels [4, 28, 32] (Figure 2 top). We name this behavior as spatially adaptive inference at a58

coarse granularity. While less flexible than the pixel-level adaptive computation in previous works59

[4, 28, 32], it facilitates more contiguous memory access, benefiting the realistic speedup on hardware.60

The scheduling strategy and the implementation are further ameliorated for faster inference.61

It is worth noting that LASNet is designed as a general framework in two aspects: 1) the coarse-62

grained spatially adaptive inference paradigm can be conveniently implemented in various CNN63

backbones, e.g., RegNets [22] and ResNets [8]; and 2) the latency prediction model is an off-the-shell64

tool which can be directly used for various computing platforms (e.g. server GPUs and IoT devices).65

We evaluate the performance of LASNet on multiple CNN architectures on image classification,66

object detection, and instance segmentation tasks. Experiment results show that our LASNet improves67

the efficiency of deep CNNs both theoretically and practically. For example, the inference latency of68

ResNet-101 is reduced by 23% and 45% on an Nvidia Tesla V100 GPU and an Nvidia Jetson TX269

GPU, respectively, without sacrificing the accuracy on the ImageNet [3] validation set. Moreover, the70

proposed method outperforms various lightweight networks in a low-FLOPs regime.71

Our main contributions are summarized as follows:72

1) We propose LASNet, which performs coarse-grained spatially adaptive infee.g., nce guided by the73

practical latency instead of the theoretical FLOPs. To the best of our knowledge, LASNet is the first74

framework that directly considers the real latency in the design phase of dynamic neural networks;75

2) We propose a latency prediction model, which efficiently estimates the latency of dynamic operators76

by simultaneously considering the algorithm, the scheduling strategy, and the hardware properties;77

3) Experiments on image classification, object detection, and instance segmentation tasks verify that78

our proposed LASNet can effectively improve the practical efficiency of different CNN architectures.79
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2 Related works80

Spatial-wise dynamic network is a common type of dynamic neural networks [6]. Compared to81

static models which treat different feature locations evenly during inference, these networks perform82

spatially adaptive inference on the most informative regions (e.g., foregrounds), and reduce the83

unnecessary computation on less important areas (e.g., backgrounds). Existing works mainly include84

three levels of dynamic computation: resolution level [33, 34], region level [30] and pixel level85

[4, 28, 32]. The former two generally manipulate the network inputs [30, 34] or require special86

architecture design [33]. In contrast, pixel-level dynamic networks can flexibly skip the convolutions87

on certain feature pixels in arbitrary CNN backbones [4, 28, 32]. Despite its remarkable theoretical88

efficiency, the pixel-wise dynamic computation brings considerable difficulty to achieving realistic89

speedup on multi-core processors, e.g., GPUs. Compared to the previous approaches [4, 28, 32]90

which only focus on reducing the theoretical computation, we propose to directly use the latency to91

guide our algorithm design and scheduling optimization.92

Hardware-aware network design. To bridge the gap between theoretical and practical efficiency93

of deep models, researchers have started to consider the real latency in the network design phase.94

There are two lines of works in this direction. One directly performs speed tests on targeted95

devices, and summarizes some guidelines to facilitate hand-designing lightweight models [20]. The96

other line of work searches for fast models using the neural architecture search (NAS) technique97

[26, 31]. However, all existing works try to build static models, which have intrinsic computational98

redundancy by treating different inputs in the same way. However, speed tests for dynamic operators99

on different hardware devices can be very laborious and impractical. In contrast, our proposed latency100

prediction model can efficiently estimate the inference latency on any given computing platforms by101

simultaneously considering algorithm design, scheduling strategies and hardware properties.102

3 Methodology103

In this section, we first introduce the preliminaries of spatially adaptive inference, and then demon-104

strate the architecture design of our LASNet. The latency prediction model is then explained, which105

guides the granularity settings and the scheduling optimization for LASNet. We further present the106

implementation improvements for faster inference, followed by the training strategies.107

3.1 Preliminaries108

Spatially adaptive inference. The existing spatial-wise dynamic networks are usually established by109

attaching a masker M in each convolutional block of a CNN backbone (see Figure 1 (a)). Specifically,110

let x∈RH×W×C denote the input of a block, where H and W are the feature height and width, and111

C is the channel number. The masker M takes x as input, and generates a binary-valued spatial112

mask M=M(x)∈{0, 1}H×W . Each element of M determines whether to perform convolution113

operations on the corresponding location of the output feature. The unselected regions will be filled114

with the values from the input [4, 28] or obtained via interpolation [32]. We define the activation rate115

of a block as r=
∑

i,j Mi,j

H×W , representing the ratio of the calculated pixels.116

Scheduling strategy. During inference, the current scheduling strategy for spatial-wise dynamic117

convolutions generally involve three steps [23] (see Figure 1 (b)): 1) gathering, which re-organizes118

the selected pixels (if the convolution kernel size is greater than 1×1, the neighbors are also required)119

along the batch dimension; 2) computation, which performs convolution on the gathered input; and120

3) scattering, which fills the computed pixels on their corresponding locations of the output feature.121

Limitations. Compared to performing convolutions on the entire feature map, the aforementioned122

scheduling strategy reduces the computation while bringing considerable overhead to memory access123

due to the mask generation and the non-contiguous memory access. Such overhead would increase124

the overall latency, especially when the granularity of dynamic convolution is the finest pixel level.125

3.2 Architecture design126

Spatial granularity. As mentioned above, pixel-level dynamic convolutions [4, 28, 32] raise sub-127

stantial challenges to achieving realistic speedup on multi-core processors due to the non-contiguous128

memory access. To this end, we propose to optimize the granularity of spatially adaptive inference.129

Specifically, take the commonly used bottleneck structure in [8] as an example, our coarse-grained130

spatial-wise dynamic convolutional block is illustrated in Figure 2. Instead of directly producing131
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Figure 2: Our proposed LASNet block. Top: we first generate a low-resolution spatial mask Mcoarse,
which is then upsampled to obtain the mask M with the same size as the output feature. Gumbel
Softmax [15, 21] is used for end-to-end training (Sec. 3.5). Bottom: the scheduling optimimzation is
performed to decrease the memory access for faster inference (Sec. 3.4).

a mask with the shape of H ×W , we first generate a low-resolution mask Mcoarse∈{0, 1}H
S ×W

S ,132

where S is named as the spatial granularity. Each element in Mcoarse determines the computation133

of an S×S-sized feature patch. For instance, the feature size in the first ResNet stage1 is 56× 56.134

Then the possible choices for S are {1, 2, 4, 7, 8, 14, 28, 56} . The mask Mcoarse is then upsampled135

to the size of H ×W . Notably, S = 1 means that the granularity is still at the pixel level as previous136

methods [4, 28, 32]. In this paper, the other extreme situation (S = 56) is not considered, when the137

masker directly determines whether to skip the whole block (i.e. layer skipping [27, 29]). The masker138

is composed of a pooling layer followed by a 1× 1 convolution.139

Differences to existing works. Without using the interpolation operation [32] or the carefully140

designed two-branch structure [7], the proposed block architecture is simple and sufficiently general141

to be plugged into most backbones with minimal modification. Our formulation is mostly similar to142

that in [28], which could be viewed as a variant of our method with the spatial granularity S=1 for all143

blocks. Instead of performing spatially adaptive inference at the finest pixel level, our granularity S is144

optimized under the guidance of our latency prediction model (details are presented in the following145

Sec. 4.2) to achieve realistic speedup on target computing platforms.146

3.3 Latency prediction model147

As stated before, it is laborious to evaluate the latency of dynamic operators on different hardware148

platforms. To efficiently seek preferable granularity settings on arbitrary hardware devices, we149

propose a latency prediction model G, which can directly predict the delay of executing dynamic150

operators on any target devices. For a spatial-wise dynamic convolutional block, the latency predictor151

G takes the hardware properties H, the layer parameters P, the spatial granularity S, and the activation152

rate r as input and predicts the latency ℓ of a dynamic convolutional block: ℓ = G(H,P, S, r).153

Hardware modeling. We model a hardware device as multiple processing engines (PEs), and parallel154

computation can be executed on these PEs. As shown in Figure 3, we model the memory system as a155

three-level structure [9]: 1) off-chip memory, 2) on-chip global memory, and 3) memory in PE. Such156

a hardware model enables us to accurately predict the cost on both data movement and computation.157

Latency prediction. When simulating the data movement procedure, the efficiency of non-contiguous158

memory accesses under different granularity S settings is considered. As for the computation latency,159

it is important to adopt a proper scheduling strategy to increase the parallelism of computation.160

Therefore, we search for the optimal scheduling (the configuration of tiling and in-PE parallel161

computing) of dynamic operations to maximize the utilization of hardware resources. A more162

detailed description of our latency prediction model is presented in the supplementary material.163

Empirical validation. We take the first block in ResNet-101 as an example and vary the activation164

rate r to evaluate the performance of our prediction model. The comparison between our predictions165

and the real testing latency on the Nvidia V100 GPU is illustrated in Figure 4, from which we can166

observe that our predictor can accurately estimate the real latency in a wide range of activation rates.167

1Here we refer to a stage as the cascading of multiple blocks which process features with the same resolution.

4



O
ff-

ch
ip

 M
em

or
y

(G
DD

R/
DD

R/
HB

M
)

O
n-

ch
ip

 M
em

or
y

(L
LC

/G
lo

ba
l B

uf
fe

r)

PE1
PE

Memory
Computation 

Units

PE2
PE

Memory
Computation 

Units

PEn
PE

Memory
Computation 

Units

…

Figure 3: Our hardware model.

0.0 0.2 0.4 0.6 0.8 1.0
Activation rate (r)

5

10

15

20

25

30

La
te

nc
y 

(
s)

Predicted
Real

Figure 4: Latency prediction results.
3.4 Implementation details168

We use general optimization methods like fusing activation functions and batch normalization169

layers into convolution layers. We also optimize the specific operators in our spatial-wise dynamic170

convolutional blocks as follows (see also Figure 2 for an overview).171

Fusing the masker and the first convolution. As mentioned in Sec. 3.1, the masker in each block172

consumes very little computation, but it takes the whole feature map as input. Therefore, it is a173

memory-bounded operation (the inference time is mainly spent on memory access). Since the masker174

and the first convolution in the block share the same input, there is an opportunity to fuse these two175

operations to avoid the repeated access of the input data. Note that a spatial-wise dynamic convolution176

requires the output of the masker. If we fuse the two layers, the first convolution will be changed to a177

static operation, which may increase the inference latency. There exists a threshold of activation rate178

rth, when r > rth, the overall latency can be reduced. We decide whether to fuse them according to179

the average activation rate. See more details in the supplementary material.180

Fusing the gather operation and the dynamic convolution. Traditional approaches first gather the181

input pixels of the first dynamic convolution in a block (see Figure 1 (b)). The gather operation is182

also a memory-bounded operation. Furthermore, when the size of the convolution kernel exceeds183

1×1, the area of input patches may overlap, resulting in repeated memory load/store. We fuse the184

gather operation into the dynamic convolution to reduce the memory access.185

Fusing the scatter operation and the add operation. Traditional approaches scatter the output186

pixels of the last dynamic convolution, and then execute the element-wise addition (see Figure 1 (b)).187

We fuse these two operators to reduce the memory access. The ablation study in Sec. 4.4 validates188

the effectiveness of the proposed fusing methods.189

3.5 Training190

Optimization of non-differentiable maskers. The masker modules are required to produce binary-191

valued spatial masks for making discrete decisions, and cannot be directly optimized with back192

propagation. Following [32, 28, 7], we adopt straight-through Gumbel Softmax [15, 21] to train the193

network in an end-to-end fashion. Specifically, let M̃∈RH×W×2 denote the output of the mask194

generator. The decisions are obtained with the argmax function during inference. In the training195

phase, a differentiable approximation is defined by replacing the argmax operation with a Softmax:196

M̂ =
exp

{(
log

(
M̃:,:,0

)
+G:,:,0

)
/τ

}
∑1

k=0 exp
{(

log
(
M̃:,:,k

)
+G:,:,k

)
/τ

} ∈ [0, 1]H×W , (1)

where τ is the Softmax temperature. Following the common practice [28, 7], we let τ decrease197

exponentially from 5.0 to 0.1 in training to facilitate the optimization of maskers.198

Training objective. The FLOPs of each spatial-wise dynamic convolutional block can be calculated199

based on our defined activation rate r [28]. Then we can obtain the FLOPs of the overall dynamic200

network Fdyn. Let Fstat denotes the FLOPs of its static counterpart. We optimize their ratio to201

approximate a target 0 < t < 1:LFLOPs = (
Fdyn

Fstat
− t)2. In addition, we define loss item Lbounds as202

in [28] to constrain the upper bound and the lower bound of activation rates in early training epochs.203

We further propose to leverage the static counterparts of our dynamic networks as “teachers” to guide204

the optimization procedure. Let y and y′ denote the output logits of a dynamic model (“student”)205

and its “teacher”, respectively. Our final loss can be written as206

L = Ltask + α(LFLOPs + Lbounds) + βT 2 ·KL(σ(y/T )||σ(y′/T )), (2)
where Ltask represents the task-related loss, e.g., cross-entropy loss in image classification. KL(·||·)207

denotes the Kullback–Leibler divergence, and α, β are the coefficients balancing these items. We use208

σ to denote the log-Softmax function, and T is the temperature for computing KL-divergence.209
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(a) Relationship between rℓ and r for LAS-ResNet blocks on the Nvidia Tesla V100 GPU.
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(b) Relationship between rℓ and r for LAS-RegNetY-800MF blocks on the Nvidia Jetson TX2 GPU.

Figure 5: Latency prediction results of LAS-ResNet blocks on V100 (a) and LAS-RegNet blocks on
TX2 (b). For both networks, we plot the relationship between the latency ratio rℓ and the activation
rate r for the blocks in 4 stages with the convolutional stride 1. The practical efficiency is only
improved when rℓ < 1. Note that S = 1 can harm the practical latency even for a small r (reduced
computation), while a larger S will alleviate this problem. See detailed analysis in Sec. 4.2.

4 Experiments210

In this section, we first introduce the experiment settings in Sec. 4.1. Then the latency of different211

granularity settings are analyzed in Sec. 4.2. The performance of our LASNet on ImageNet is further212

evaluated in Sec. 4.3, followed by the ablation studies in Sec. 4.4. Visualization results are illustrated213

in Sec. 4.5, and we finally validate our method on the object detection task (Sec. 4.6). The results on214

the instance segmentation task are presented in the supplementary material. For simplicity, we add215

“LAS-” as a prefix before model names to denote our LASNet, e.g., LAS-ResNet-50.216

4.1 Experiment settings217

Latency prediction. Various types of hardware platforms are tested, including a server GPU (Tesla218

V100), a desktop GPU (GTX1080) and IoT devices (e.g., Nvidia Nano and Jetson TX2). The219

major properties considered by our latency prediction model include the number of processing220

engines (#PE), the floating-point computation in a processing engine (#FP32), the frequency and the221

bandwidth. It can be observed that the server GPUs generally have a larger #PE than the IoT devices.222

The batch size is set as 1 for all dynamic models and computing platforms.223

Image classification. The image classification experiments are conducted on the ImageNet [3]224

dataset. Following [28], we initialize the backbone parameter from a pre-trained checkpoint2, and225

finetune the whole network for 100 epochs with the loss function in Eq. (2). We fix α = 10, β = 0.5226

and T = 4.0 for all dynamic models. More details are provided in the supplementary material.227

4.2 Latency prediction results228

In this subsection, we present the latency prediction results of the spatial-wise dynamic convolutional229

blocks in two different models: LAS-ResNet-101 [8] (on V100) and LAS-RegNetY-800MF [22] (on230

TX2). All the blocks have the bottleneck structure with different channel numbers and convolution231

groups, and the RegNetY is equipped with Squeeze-and-Excitation (SE) [11] modules.232

We first define ℓdyn as the latency of a spatial-wise dynamic convolutional block, and ℓstat as that of233

a static block without a masker. Their ratio is denoted as rℓ =
ℓdyn
ℓstat

. We investigate the relationship234

between rℓ and the activation rate r (cf. Sec. 3.5) for different granularity settings. The results in235

Figure 5 demonstrate that: 1) pixel-level spatially adaptive inference (S=1) cannot always improve236

the practical efficiency. Such fine-grained adaptive inference is adopted by most previous works237

[28, 32], and our result can explain the reason why they can only achieve realistic speedup on less238

powerful CPUs [32] or specialized devices [2]; 2) a proper granularity S > 1 effectively alleviates this239

problem; 3) the advantage of coarse-grained spatially adaptive inference (S > 1) is more significant240

2We use the torchvision pre-trained models at https://pytorch.org/vision/stable/models.html.
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(a) Relationship between rℓ and S for LAS-ResNet blocks on V100.
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(b) Relationship between rℓ and S for LAS-RegNetY-800MF blocks on Nvidia Jetson TX2 GPU.

Figure 6: The relationship between the latency ratio rℓ and the spatial granularity S.

on the server GPU with a larger #PE, as the finest granularity (S = 1) brings considerable overhead241

on the memory access and is not friendly to parallel computation.242

The latency prediction results are further used to seek for a preferable granularity setting for the first243

3 stages (we fix S = 1 for the last stage, where the feature resolution is 7× 7). Therefore, we plot244

the relationship between rℓ and S in Figure 6. It can be observed that: 1) rℓ generally decreases245

with S increasing for a given r on V100; 2) an overly large S brings insignificant improvement on246

V100, and even harms the practical efficiency on the less powerful TX2. Therefore, we can simply set247

Snet=4-4-2-1 for the 4 stages in a network on TX2. As for the server GPU V100, Snet=8-4-7-1 will be248

appropriate for realistic speedup. The accuracy-latency plots in Figure 7 also validate this observation.249

More results of our latency prediction model are presented in the supplementary material.250

4.3 ImageNet classification results251

We now empirically evaluate our proposed LASNet on the ImageNet dataset. The network perfor-252

mance is measured in terms of the trade-off between classification accuracy and inference efficiency.253

Both theoretical (i.e. FLOPs) and practical efficiency (i.e. latency) are tested in our experiments.254

4.3.1 Standard baseline comparison: ResNets255

We first establish our LASNet based on the standard ResNets [8]. Specifically, we build LAS-ResNet-256

50 and LAS-ResNet-101 by plugging our maskers in the two common ResNet structures.257

Compared baselines include various types of dynamic inference approaches: 1) layer skipping258

(SkipNet [29] and Conv-AIG [27]); 2) channel skipping (BAS [1]); and 3) pixel-level spatial-wise259

dynamic network (DynConv [28]). For our LASNet, we compare various settings of the spatial260

granularity Snet. We set training targets (cf. Sec. 3.5) t∈{0, 4, 0.5, 0.6, 0.7} for our dynamic models261

to evaluate their performance in different sparsity regimes. We apply the same operator fusion262

(Sec. 3.4) for both our models and the compared baselines [27, 28] for fair comparison.263

Results are presented in Figure 7a. On the left we plot the relationship of accuracy v.s. FLOPs. It264

can be observed that our LAS-ResNets with different granularity settings significantly outperform265

the competing dynamic neural networks. Surprisingly, coarse-grained spatially adaptive inference266

(Snet=4-4-2-1 and Snet=8-4-7-1 for the 4 stages) can achieve even higher accuracy when consuming267

similar FLOPs on ResNets, despite the sacrificed flexibility compared to Snet=1-1-1-1.268

We compare the practical latency of three granularity settings in Figure 7a (middle on TX2 and269

right on V100) based on our latency prediction model. We can witness that although they achieve270

comparable theoretical efficiency (Figure 7a left), larger S is more hardware-friendly compared271

to the finest granularity. For example, the inference latency of LAS-ResNet-101 (Snet=1-1-1-1)272

is significantly higher than the ResNet-101 baseline on V100 (Figure 7a right), even though its273

theoretical computation is much smaller than that of the static model. However, larger granularities274

7



2 3 4 5 6 7 8
FLOPs (x1e9)

73

74

75

76

77

78

79

Ac
cu

ra
cy

 (%
)

static ResNets
ConvAIG-ResNet-101
SkipNet-ResNet-101
BAS-ResNet-50
DynConv-ResNet-101
LAS-ResNet-50 (Snet=1-1-1-1)
LAS-ResNet-50 (Snet=4-4-2-1)
LAS-ResNet-50 (Snet=8-4-7-1)
LAS-ResNet-101 (Snet=1-1-1-1)
LAS-ResNet-101 (Snet=4-4-2-1)
LAS-ResNet-101 (Snet=8-4-7-1)

15 20 25 30 35 40
Latency on Nvidia Jetson TX2 GPU (ms)

76.0

76.5

77.0

77.5

78.0

78.5

79.0

Ac
cu

ra
cy

 (%
)

static ResNets
ConvAIG-ResNet-101
DynConv-ResNet-101
LAS-ResNet-50 (Snet=1-1-1-1)
LAS-ResNet-50 (Snet=4-4-2-1)
LAS-ResNet-50 (Snet=8-4-7-1)
LAS-ResNet-101 (Snet=1-1-1-1)
LAS-ResNet-101 (Snet=4-4-2-1)
LAS-ResNet-101 (Snet=8-4-7-1)

1 2 3 4 5 6
Latency on Nvidia Tesla V100 GPU (ms)

76.0

76.5

77.0

77.5

78.0

78.5

79.0

Ac
cu

ra
cy

 (%
)

static ResNets
ConvAIG-ResNet-101
DynConv-ResNet-101
LAS-ResNet-50 (Snet=1-1-1-1)
LAS-ResNet-50 (Snet=4-4-2-1)
LAS-ResNet-50 (Snet=8-4-7-1)
LAS-ResNet-101 (Snet=1-1-1-1)
LAS-ResNet-101 (Snet=4-4-2-1)
LAS-ResNet-101 (Snet=8-4-7-1)

(a) LAS-ResNet results.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
FLOPs (x1e9)

71

72

73

74

75

76

Ac
cu

ra
cy

 (%
)

RegNets-X
RegNets-Y
MobileNets-v2
ShuffleNets-v2
CondenseNets
SD-RegNetY-400MF (Snet=1-1-1-1)
SD-RegNetY-400MF (Snet=4-4-2-1)
SD-RegNetY-800MF (Snet=1-1-1-1)
SD-RegNetY-800MF (Snet=4-4-2-1)
SD-RegNetY-800MF (Snet=4-4-7-1)

3 4 5 6 7 8
Latency on Nvidia Jetson TX2 GPU (ms)

72.5

73.0

73.5

74.0

74.5

75.0

75.5

76.0

76.5

Ac
cu

ra
cy

 (%
)

RegNets-X
RegNets-Y
MobileNets-v2
SD-RegNetY-800MF (Snet=1-1-1-1)
SD-RegNetY-800MF (Snet=4-4-2-1)
SD-RegNetY-800MF (Snet=4-4-7-1)

8 10 12 14 16 18 20
Latency on Nvidia nano GPU (ms)

72.5

73.0

73.5

74.0

74.5

75.0

75.5

76.0

76.5

Ac
cu

ra
cy

 (%
)

RegNets-Y
RegNets-X
MobileNets-v2
SD-RegNetY-800MF (Snet=1-1-1-1)
SD-RegNetY-800MF (Snet=4-4-2-1)
SD-RegNetY-800MF (Snet=4-4-7-1)

(b) LAS-RegNetY results.

Figure 7: Experimental results on the ImageNet classification task. The proposed coarse-grained
spatially adaptive inference is tested on standard ResNets (a) and lightweight RegNets (b).

(Snet=4-4-2-1 and Snet=8-4-7-1) can effectively improve the inference latency due to its lower burden275

on the memory access. The superiority of coarse-grained spatially adaptive inference diminishes (but276

still exists) on the less powerful IoT device, Nvidia Jetson TX2 (Figure 7a right). The advantage is277

more significant on the Tesla V100 GPU, because of its large number of processing engines (#PE).278

Moreover, the realistic speedup ratio rℓ is more close to the theoretical FLOPs ratio target t on279

TX2, because the latency is computation-bounded on such IoT devices. Interestingly, the optimal280

settings for the two different hardware platforms are different (Snet=4-4-2-1 is superior on TX2,281

while Snet=8-4-7-1 leads to higher efficiency on V100). Remarkably, the latency of ResNet-101282

could be reduced by 23% and 45% on V100 and TX2 respectively without sacrificing the accuracy.283

The classification accuracy is increased by 1.9% with similar inference efficiency.284

4.3.2 Lightweight baseline comparison: RegNets285

We further evaluate our LASNet in lightweight CNN architectures, i.e. RegNets-Y [22]. Two different286

sized models are tested: RegNetY-400MF and RegNetY-800MF. Compared baselines include other287

types of efficient models, e.g., MobileNets-v2 [25], ShuffletNets-v2 [20] and CondenseNets [13].288

The results are presented in Figure 7b. The x-axis for the three sub-figures are the FLOPs, the latency289

on TX2, and the latency on the Nvidia nano GPU, respectively. We can observe that our method290

outperforms various types of static models in terms of the trade-off between accuracy and efficiency.291

More results on image classification are provided in the supplementary material.292

4.4 Ablation studies293

Operator fusion. We first conduct ablation studies to investigate the effect of our operator fusion294

introduced in Sec. 4.2. One convolutional block in the first stage of a LAS-ResNet-101 (S=4, r=0.6)295

is tested. We summarize the results in Table 1. It can be observed that every step of operator fusion296

benefits the practical latency of a block, as the overhead on memory access is effectively reduced.297

Table 1: Ablation studies on operator fusion.
Masker- Gather- Scatter- Latency
Conv1x1 Conv3x3 Add (µs)

✗ ✗ ✗ 103.52
✓ ✗ ✗ 99.84
✓ ✓ ✗ 95.76
✓ ✓ ✓ 86.56

More granularities settings. We test various gran-298

ularity settings on LAS-ResNet-101 to examine299

the effects of S in different stages. The results on300

the Tesla-V100 GPU are presented in Figure 8. It301

can be found that the finest granularity (Snet=1-302

1-1-1) leads to substantial inefficiency despite the303

reduced FLOPs (cf. Figure 7a left). Coarse-grained304

spatially adaptive inference in the first two stages305

(Snet=4-4-1-1) effectively reduces the inference la-306

tency. We further increase S in the third stage to 2 and 7, and this procedure consistently improves307

the realistic efficiency on the V100 GPU. It is worth noting that increasing the granularity S does308
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Figure 8: Ablation studies on S. Figure 9: Visualization results.
Table 2: Object detection results on the COCO dataset.

Detection Backbone Backbone Backbone Latency (ms) mAP (%)
Framework FLOPs (G) V100 GTX1080 TX2

Faster R-CNN
ResNet-101 (Baseline) 141.2 39.2 118.0 720.7 39.4

LAS-ResNet-101 (Snet=4-4-2-1, t=0.5) 79.3 47.8 91.6 398.5 39.8
LAS-ResNet-101 (Snet=4-4-7-1, t=0.5) 79.5 37.3 86.0 444.2 40.0

RetinaNet
ResNet-101 (Baseline) 141.2 39.2 118.0 720.7 38.5

LAS-ResNet-101 (Snet=4-4-2-1, t=0.5) 77.8 47.1 90.2 392.1 39.3
LAS-ResNet-101 (Snet=4-4-7-1, t=0.5) 79.4 37.4 86.1 443.8 39.3

not always improve the inference efficiency on other computing devices. For example, Snet=4-4-2-1309

achieves a sweetspot on Nvidia Jetson TX2 (see Figure 7a middle).310

4.5 Visualization311

We visualize the masks generated by our masker in the third block of a LAS-ResNet-101 (Snet=4-312

4-2-1) in Figure 9. The brilliant areas correspond to the locations of 1 elements in a mask, and the313

computation on the dimmed regions is skipped by our dynamic model. It can be found that the masker314

is trained to accurately locate the most task-related regions (even the tiny aircraft at the corner), which315

helps reduce the unnecessary computation on background areas. Moreover, these results suggest that316

for the first stage, the granularity S=4 is sufficiently flexible to recognize the important regions, and317

a win-win can be achieved between accuracy and efficiency. Interestingly, the masker could select318

some objects that are not labeled for the sample, e.g., the flower beside the hummingbird and the319

human holding the camera. This suggests that our spatial-wise dynamic networks can automatically320

recognize the regions with semantics, and their capability is not limited by the classification labels.321

This property is helpful in some downstream tasks, such as object detection (Sec. 4.6), which requires322

detecting multiple classes and objects in an image.323

4.6 Object detection results324

We further evaluate our LASNet on the COCO [19] object detection task. The mean average precision325

(mAP), the average backbone FLOPs, and the average backbone latency on the validation set are326

used to measure the network performance. We test two commonly used detection frameworks: Faster327

R-CNN [24] with Feature Pyramid Network [17] and RetinaNet [18]. Thanks to the generality of328

our method, we can conveniently replace the backbones with ours pre-trained on ImageNet, and the329

whole models are finetuned on COCO with the standard setting for 12 epochs (see detailed setup in330

the supplementary material). The input images are resized to a short side of 800 and a long side not331

exceeding 1333. The results of our LAS-ResNet-101 with different Snet settings are presented in332

Table 2. It could be observed that our LASNet can reduce the practical latency on GTX1080 and333

TX2 by 27% and 45% respectively while improving the mAP of both detection frameworks.334

5 Conclusion335

In this paper, we propose to build latency-aware spatial-wise dynamic networks (LASNet) under the336

guidance of a latency prediction model. By simultaneously considering the algorithm, the scheduling337

strategy and the hardware properties, we can efficiently estimate the practical latency of spatial-338

wise dynamic operators on arbitrary computing platforms. Based on the empirical analysis on the339

relationship between the latency and the granularity of spatially adaptive inference, we optimize340

both the algorithm and the scheduling strategies to achieve realistic speedup on many multi-core341

processors, e.g., the Tesla V100 GPU and the Jetson TX2 GPU. Experiments on image classification,342

object detection and instance segmentation tasks validate that the proposed method significantly343

improves the practical efficiency of deep CNNs, and outperforms various competing approaches.344
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