
Under review as a conference paper at ICLR 2021

ONCE QUANTIZED FOR ALL: PROGRESSIVELY
SEARCHING FOR QUANTIZED EFFICIENT MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatic search of Quantized Neural Networks has attracted a lot of atten-
tion. However, the existing quantization aware Neural Architecture Search (NAS)
approaches inherit a two-stage search-retrain schema, which is not only time-
consuming but also adversely affected by the unreliable ranking of architectures
during the search. To avoid the undesirable effect of the search-retrain schema, we
present Once Quantized for All (OQA), a novel framework that searches for quan-
tized efficient models and deploys their quantized weights at the same time with-
out additional post-process. While supporting a huge architecture search space,
our OQA can produce a series of ultra-low bit-width(e.g. 4/3/2 bit) quantized
efficient models. A progressive bit inheritance procedure is introduced to sup-
port ultra-low bit-width. Our discovered model family, OQANets, achieves a
new state-of-the-art (SOTA) on quantized efficient models compared with var-
ious quantization methods and bit-widths. In particular, OQA2bit-L achieves
64.0% ImageNet Top-1 accuracy, outperforming its 2-bit counterpart EfficientNet-
B0@QKD by a large margin of 14% using 30% less computation budget.

1 INTRODUCTION

Efficient architecture design (Sandler et al., 2018; Ma et al., 2018) and network quantization meth-
ods (Choi et al., 2018; Kim et al., 2019; Esser et al., 2019) are two promising research directions to
deploy deep neural networks on mobile devices. Network quantization aims at reducing the number
of bits for representing network parameters and features. On the other hand, Neural Architecture
Search(NAS) (Howard et al., 2019; Cai et al., 2019; Yu et al., 2020) is proposed to automatically
search for efficient architectures, which avoids expert efforts and design trials. In this work, we
consider both of their advantages and explore NAS’s ability in finding quantized efficient models.

Recent quantization methods quantize models with high floating-point performance no matter it is
manually designed like MobileNetV2 (Sandler et al., 2018) or searched like EfficientNet-B0 (Tan
& Le, 2019). However, the accuracy rank among floating-point models would change after they are
quantized. The NAS-then-Quantize routine in Figure 1a that searches the best floating-point models
and then quantizes the network with retraining, may fail to get a good quantized model. Directly
using quantized models’ performance to search seems to be a solution.

Existing quantization-aware NAS methods (Wang et al., 2019; Shen et al., 2019; Bulat et al., 2020;
Guo et al., 2019; Wang et al., 2020) utilize a two-stage search-retrain schema as shown in Figure 1b.
Specifically, they first search for one architecture under one bit-width setting1, and then retrain
the model under the given bit-width. This two-stage procedure will undesirably increase the num-
ber of models to be retrained if we have multiple deployment constraints and hardware bit-widths.
Furthermore, due to the instability brought by quantization training, simply combining NAS and
quantization will result in unreliable ranking (Li et al., 2019a; Guo et al., 2019) and sub-optimal
quantized models (Bulat et al., 2020). Moreover, when the quantization bit is lower than 3 bits, the
traditional training process is highly unstable and introduces very large accuracy degradation.

To alleviate the aforementioned problems, we present Once Quantized for All (OQA), a novel frame-
work that: 1) searches for quantized network architectures and deploys their quantized weights

1One bit-width setting refers to a specific bit-width for each layer, where different layers could have different
bit-widths.

1

Under review as a conference paper at ICLR 2021

Floating
Point

K1 Bits

K2 Bits

Q1
Bits Search

Q2
Bits Search

Q3
Bits Search

...

... ...
(a). NAS-then-Quantize

(b). Traditional Quantization-aware NAS (c). Once Quantized for All(Ours)

Q1 Retrain

Q2 Retrain

...

Q1 Retrain

K2 Retrain

One Arch
Deploy

Many Archs
Directly Deploy

Bit Inheritance

No Retrain

K1 Bits

K2 Bits

K3 Bits

One Arch
Deploy

Legend

Search

Search

Search

Search NAS MethodKi bits
Search Space

Ki BitsFloating-Point
Search Space

Retrain model
into Ki bits

Qi Retrain

Bit Inheritance

Floating
Point

K1 Retrain

K2 Retrain

K1 Retrain

Ki Retrain

Figure 1: The overall frameworks of existing works on combining quantization and NAS and our
method. (a) denotes directly converting the best searched floating-point architecture to quantization.
(b) first adopts a QNN search algorithm to find a single architecture, then retrain the weights to
quantization. Our OQA (c) can search for many quantized efficient models under various bit-width
and deploy their quantized weights directly.

concurrently without retraining, 2) progressively produces a series of ultra-low bits(e.g. 4/3/2 bit)
quantized models. Our approach leverages the recent NAS approaches which require no retrain-
ing (Yu & Huang, 2019; Cai et al., 2019; Yu et al., 2020). We adopt the search for kernel size, depth,
width, and resolution in our search space. And we further enable searching them under different
quantization bit-widths. Furthermore, we propose the bit inheritance mechanism to reduce the bit-
width progressively so that we can utilize the higher bit models to provide better initialization and
distillation knowledge for lower bit models. Benefiting from the no retraining property and large
search space under different bit-width, we are able to evaluate the effect of network factors which
could provide some insight into quantization-friendly architecture design.

Extensive experiments show the effectiveness of our approach. Our discovered quantized model
family, OQANets, achieves state-of-the-art (SOTA) results on the ImageNet dataset under various
quantization methods and bit-widths. In particular, our OQA2bit-L far exceeds the accuracy of 2bit
Efficient-B0@QKD (Kim et al., 2019) by a large 14% margin using 30% less computation budget.
Comparing with the quantization-aware NAS method APQ (Wang et al., 2020), our OQA4bit-L-
MBV2 uses 43.7% less computation cost while maintaining the same accuracy as APQ-B.

To summarize, the contributions of our paper are three-fold:

• Our OQA is the first quantization NAS framework to search for the architecture of quan-
tized networks and deploy their quantized weights without retraining.

• We present the bit inheritance mechanism to reduce the bit-width progressively so that the
higher-bit models guide the search and training of lower-bit models.

• We provide some insight into quantization friendly architecture design. Our systematical
analysis reveals that shallow-fat models are more likely to be quantization friendly than
deep-slim models under low bit-width.

2 RELATED WORK

Network Architecture Search without retraining Slimmable neural networks (Yu et al., 2018)
first proposes to train a model to support multiple width multipliers(e.g. 4 different global width
multipliers for MobileNetV2). OFA (Cai et al., 2019) and BigNAS (Yu et al., 2020) push the enve-
lope forward in network architecture search(NAS) by introducing diverse architecture space (stage
depth, channel width, kernel size, and input resolution). These methods propose to train a single

2

Under review as a conference paper at ICLR 2021

over-parameterized supernet from which we can directly sample or slice different candidate archi-
tectures for instant inference and deployment. However, all of the aforementioned methods are
tailored towards searching for floating-point efficient models. Converting the best floating-point ar-
chitecture to quantization tends to result in sub-optimum quantization models. In the quantization
area, recent papers (Jin et al., 2019a; Yu et al., 2019) propose to train a single model that can support
different bit-width. But they only quantize manually design networks(e.g. ResNet, MobileNetV2)
under relatively high bit-width (e.g. 4bit for MobileNetV2), our OQA can search architectures and
produce lower bit-width(e.g. 2bit) quantized efficient models.

Quantization-aware Network Architecture Search Recent studies combine network quantiza-
tion and NAS to automatically search for layer bit-width with given architectures or operations with
given bit-width. HAQ (Wang et al., 2019) focuses on searching for different numbers of bits for
different layers in a given network structure and shows that some layers, which can be quantized to
low bits, are more robust for quantization than others. AutoBNN (Shen et al., 2019) utilizes the ge-
netic algorithm to search for network channels and BMobi (Phan et al., 2020) searches for the group
number of different convolution layer under certain 1bit. SPOS (Guo et al., 2019) train a quantized
one-shot supernet to search for bit-width and network channels for heavy ResNet (He et al., 2016).
BATS (Bulat et al., 2020) devises a binary search space and incorporate it within the DARTS frame-
work (Liu et al., 2018). The aforementioned methods concentrate on the quantization of heavy net-
works, like ResNet (He et al., 2016), or replace the depthwise convolution with group convolution.
Moreover, they inherit a two-stage search-retrain schema: once the best-quantized architectures have
been identified, they need to be retrained for deployment. This procedure will significantly increase
the computational cost for the search if we have different deployment constraints and hardware bit-
width. Compared with all these methods, our OQA can search for quantized efficient models and
learn their quantized weights at the same time without additional retraining. Without our bit inheri-
tance mechanism, these approaches also suffer from significant drop of accuracy when a network is
quantized by very low bit like 2.

3 METHOD

3.1 OVERVIEW

Our OQA aims to obtain quantized efficient models which can directly be sampled from quantiza-
tion supernet without retraining. As shown in Figure 1c, the overall procedure of OQA is as follows:
Step 1, Quantized Supernet Training (Section 3.3): Train a K-bit supernet by learning the weight
parameters and quantization parameters jointly. Step 2: given a constraint on computational com-
plexity, search the architecture with the highest quantization performance on the validation dataset
from the supernet. If K = 2, the whole process is finished. Step 3, Bit Inheritance (Section 3.4):
Use the weight and quantization parameters of the K bit supernet to initialize the weight and quan-
tization parameters of the K − 1 bit supernet. Step 4: K ← K − 1 and Go to step 1.

The starting bit-width K of OQA and the steps of the bit-inheritance procedure can be arbitrary. In
this paper, we focus on the efficient models under one fixed low bit-width quantization strategy, thus
we define the bit-width is 4/3/2.

3.2 PRELIMINARIES

Neural Architecture Search without Retraining. Recently, several NAS methods (Yu et al.,
2018; Cai et al., 2019; Yu et al., 2020) are proposed to directly obtain deployable subnets from a
well-trained supernet without retrain. Specifically, a supernet with the largest possible depth (num-
ber of layers), width (number of channels), kernel size, and input resolution is trained. Then the
subnet with top accuracy among the set of subnets satisfying a given computational complexity
requirement is selected as the searched network. A subnet is obtained from parts of the supernet
with depth, width, and/or kernel size smaller than the supernet. The subnet uses the well-trained
parameters of the supernet for direct deployment without further retraining.

Quantization Network Learning. In the quantization neural networks, a quantization function
turns the floating-point weights, and activations into integers of given bit-width in the forward pass.

3

Under review as a conference paper at ICLR 2021

Given bit-width K, activations are quantized into unsigned integers in the range of [0, 2K − 1] and
weights are quantized into signed integers in the range of [−2K−1, 2K−1−1]. To enable the training
of quantized supernets, we choose a learnable quantization function following recent state-of-the-
art quantization method LSQ (Esser et al., 2019). Given floating-point weights or activation v, and
learnable scale s, the quantization function Q and its corresponding approximate gradient using the
straight through estimator (Bengio et al., 2013). Take the activation v as the example, we have

Quantization function: vq = Q(v, s) = bclip(
v

|s|
, Qmin, Qmax)e × |s|,

Approximate gradient:
∂Q(v)

∂v
≈ I(

v

|s|
, Qmin, Qmax),

(1)

where all operations for v are element-wise operations, clip(z, r1, r2) returns z with values below
r1 set to r1 and values above r2 set to r2, bze rounds z to the nearest integer, Qmin and Qmax are,
respectively minimum and maximum integers for the given bit-width k, I(v

|s| , Qmin, Qmax) means
the gradient of v in the range of (Qmin × |s|, Qmax × |s|) is approximated by 1, otherwise 0. |s|
is the absolute value of s, ensuring that the semantics of scale s is only interval, without inverting
the signs of weights or activation. The scale s is learned by back-propagation and initialized as

2√
Qmax

× ¯|v|, where ¯|v| denotes the mean of |v|.

3.3 QUANTIZED NAS WITHOUT RETRAINING

Existing problems of Quantization NAS. Existing weight-sharing-based quantization NAS
methods suffer from more unreliable order preserving (Guo et al., 2019; Bulat et al., 2020), as the
quantization function introduces more instability on the learned weights. In our perspective, com-
bining non-retrain NAS methods with quantization to avoid this problem can be a natural solution.

Search space and quantized supernet. We use a search space based on MobileNetV3 (Howard
et al., 2019) and MobileNetV2 (Sandler et al., 2018), which has the flexible input resolution, filter
kernel size, depth (number of blocks in each stage), and width (number of channels). Our search
space consists of multiple stages. Each stage stacks several inverted residual blocks. Further details
about search space can be found in Appendix A.4, A.5

Unlike the floating-point supernet training (Cai et al., 2019; Yu et al., 2020), we utilize the quanti-
zation function as Eq. 1 to discretize the weights and activation values for the quantization supernet
training. Meanwhile, the floating-point weights need to be retained for reducing quantization loss at
the training stage of each bit-width. For weight w and input activation a of a convolution layer, we
define the corresponding learnable scales of activation and weight as sa and sw. The forward pass
for a quantized convolution layer is defined as follows:

wq = Q(w, sw),

aq = Q(a, sa),

y = wq ∗ aq, (2)

where Q(·, ·) is the learnable quantization function defined in Eq. 1, * is the convolution operation
and y is the output of this layer.

Subnet sampling. During the supernet training, different subnets are sampled and trained in each
iteration. In non-retrain NAS methods, a subnet has a smaller scale than the supernet in resolution,
width, depth, and kernel size, and is obtained by cropping the corresponding part from the supernet.
In our settings, a stage with d blocks in a subnet inherits the weights from the first d blocks in the
same stage in supernet. A depthwise convolution layer in a subnet with width e and kernel size
k are cropped from the central k ∗ k region of the first e kernels in the supernet’s corresponding
convolution layer. The input image of each subnet are resized to its resolution r.

Our subnet sampling strategy combines the supernet training pipeline proposed in (Cai et al., 2019;
Yu et al., 2020), and it has two stages. We first only sample the biggest quantized subnet until it

4

Under review as a conference paper at ICLR 2021

converges as in (Cai et al., 2019). Afterward, we use sandwich rules to sample subnets, which
shows efficiency in (Yu & Huang, 2019). Further details can be found in the Appendix A.2.

Architecture search of quantized supernet. We directly evaluate the sampled subnets from the
supernet without further retraining. It’s worth to mention that we use the predictive accuracy on
10K validation images sampled from trainset to measure the subnets in the search procedure. Fur-
thermore, we exploit a coarse-to-fine architecture selection procedure, similar to Yu et al. (2020).
We first randomly sample 10K candidate architectures from the supernet with the FLOPs of the
corresponding floating-point models ranging from 50M to 300M (2K in every 50M interval). Af-
ter obtaining the good skeletons (input resolution, depth, width) in the pareto front of the first 10K
models, we randomly perturb the kernel sizes to further search for better architectures.

3.4 QUANTIZATION NAS WITH BIT INHERITANCE

The problem of quantization NAS with lower bits. When the quantization bit is lower than
3 bits, the traditional quantization-aware training (QAT) (Kim et al., 2019; Bhalgat et al., 2020)
process is highly unstable and introduces very large accuracy degradation for the challenging case
of the 2 bit-width model. Using the approach introduced in Section 3.3, we obtain the quantized
supernet with the highest K = 4 bit-width. To further obtain the quantized supernets of lower
bit-widths (e.g. K − 1, K − 2), we can use the QAT to directly train quantized supernets for each
bit-width. As shown in Table 1, the biggest architecture in our search space suffers a 19.1% accuracy
drop between 4-bit and 2-bit when using the QAT. Besides, QAT requires much more computational
cost.

Table 1: The accuracy of the biggest model
in quantization-aware training(QAT) and
progressive bit inheritance from high bits
to low bits. Start denotes train with one
epoch, end denotes train at the end.

4/4 3/3 2/2

QAT-Start 48.1% 23.2% 0.8%
QAT-End 75.1% 72.1% 56%
BitInheritance-Start - 71.7% 49.9%
BitInheritance-End - 72.7% 63.9%

Inheritance from the high bit to low bit. We pro-
pose a bit inheritance procedure to compensate for
both the disadvantages. First, we use the K bit-
width supernet to provide a good initialization for the
weights of K − 1 bit-width supernet. In the initializa-
tion for K − 1 bit-width supernet, we first inherit the
weight parameters and scale parameters from K bit-
width supernet. Then the scale parameters are doubled
because they map the floating-point values to the inte-
ger range of K−1 bit-width, which is half the range of
K bit-width. Finally, to compensate for the statistics
shift of each layer’s output caused by quantization er-
ror, we forward the model to recalculate the mean and
variance of the BatchNorm layers (Yu & Huang, 2019) with randomly sampled 4096 training im-
ages. During training, we use the K and K − 1 bit-width supernets as teacher and student, and train
them in a knowledge distillation way to further reduce the quantization error between the K− 1 and
K bit-width parameters.

The benefit of bit inheritance. In the Appendix A.1, we show that the loss of the K−1 bit network
is bounded (close to that of the K bit network) if bit inheritance is used, where the parameters
of the K − 1 bit network inherit from the parameters of the K − 1 bit network. Therefore, bit
inheritance help to guarantee the 2-bit network to be close to the 3-bit network in training loss. In
comparison, existing methods like QAT start from floating point network which is far away from
the 2-bit network parameters and cause unstable training. The experimental results in Table 1 also
validate the effectiveness of our design. The row named BitInheritance-Start means with only one
epoch training, the initial accuracy is good enough in 3 bit. After finetuning with fewer epochs, the
bit-inheritance achieves higher accuracy performance, especially for 2-bits.

4 EXPERIMENTAL ANALYSIS

4.1 EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

We evaluate our method on the ImageNet dataset (Deng et al., 2009). If not specified, we follow
the standard practice for quantized networks (Kim et al., 2019; Gong et al., 2019) on quantizing

5

Under review as a conference paper at ICLR 2021

10 20 30 40 50 60 70 80
FLOPS(M)

55

60

65

70

75

To
p1

 A
cc

ur
ac

y
OQA4bit@25
OFA@25_4bit
OQA3bit@25
OFA@25_3bit

(a)

70 71 72 73 74 75 76 77
FP Top1 Accuracy

48

50

52

54

56

58

60

62
63

2b
it

To
p1

 A
cc

ur
ac

y

Pareto@2bit
Pareto@FP

(b)

Figure 2: Comparison of the parato models of NAS-then-Quantize and OQA. (a) OFA FP supernet
is used for NAS and LSQ is used as the quantization method. @25 denotes finetuning for 25 epoch.
(b) The accuracy of Pareto@2bit/FP is obtained in the correponding 2bit/FP supernet.

the weights and activation for all convolution layers except the first convolution, last linear layer,
and the convolution layers in the SE modules(Hu et al., 2018). To fairly compare with quantized
efficient models, the FLOPs is used and defined as follows. Denote the FLOPs of the FP layer by a,
following (Zhou et al., 2016; Li et al., 2019b; Phan et al., 2020; Bulat et al., 2020), the FLOPs of the
FP layer is a, and the FLOPs of m bit weight and n bit activation quantized layer is mn

64 × a. Unless
otherwise noted, all results are sampled from MBV3 search space denoted as OQA, OQA-MBV2
represents the MBV2 search space. Further training details can be found in Appendix A.2.

4.2 NAS-THEN-QUANTIZE OR OQA

We denote pareto models as those models on the pareto front of cost/accuracy trade-off curve. In
Figure 2a, we quantize the pareto models of the OFA floating-point supernet, which corresponds to
the NAS-then-Quantize procedure in Figure 1a. We compare it with the pareto models of our OQA
that directly obtained from the quantization supernet. In the comparison under 3bit, the pareto curve
of our OQA is far above that of the NAS-then-Quantize.

In Figure 2b, we sample 10k subnets from the search space, and we validate these architectures from
the FP supernet and 2bit supernet. The pareto front of the subnets denoted as Parato@FP are selected
with the FP accuracy and Pareto@2bit are selected with the 2bit accuracy. With the same accuracy
of the floating-point models, the accuracy of the model from the 2bit pareto is higher than the model
from the FP pareto. If our target is to search architectures for the quantized models, Figure 2b
shows that searching from the quantization supernet as our OQA did is better than searching from
FP supernet and then quantize. The advantage is more evident for lower bits. Further details can be
found in Appendix A.3.

4.3 EXISTING QUANTIZATION-AWARE NAS OR OQA

In Table 2, we compare our OQANet model family with several quantization-aware NAS meth-
ods, named SPOS (Guo et al., 2019), BMobi (Phan et al., 2020), BATS (Bulat et al., 2020) and
APQ (Wang et al., 2020).

With the quantization supernets without retraining, our OQANet model family shows great ad-
vantages over traditional weight-sharing methods corresponding to the paradigm of Figure 1b.
While SPOS (Guo et al., 2019) focuses on the search of network channels and bit-width of heavy
ResNet (He et al., 2016), we focus on the search of efficient models with fixed bit-width and achieve
better results with fewer FLOPs. BMobi (Phan et al., 2020) and BATS (Bulat et al., 2020) did not
provide the results for 2bits, 3bits or 4 bits. Therefore, we would like not to directly compare our ap-
proach with BMobi and BATS, because the results are obtained from different bit-widths. However,
if only the FLOPs-accuracy trade-off is concerned, our OQA with higher bit-width can be a better
solution. APQ corresponds to the NAS-then-Quantize paradigm in Figure 1a. It first searches for
floating-point network architecture in the FP supernet, then trains a quantization network predictor

6

Under review as a conference paper at ICLR 2021

Table 2: Quantization-aware NAS performance under different bit-widths on ImageNet dataset. Bit
(W/A) denotes the bit-width for both weights and activation. The number of bit for different layers
is different for SPOS (Guo et al., 2019) with bit-width in the range of {1, 2, 3, 4} and APQ (Wang
et al., 2020) with bit-width in the range of {4, 6, 8}. BMobi (Phan et al., 2020), BATS (Bulat et al.,
2020), and OQA use the same bit-width for different layers.

Methods Models Bit (W / A) FLOPs (M) Top-1 Acc.(%)
SPOS ResNet-34 {1, 2, 3, 4} 337 71.5
SPOS ResNet-18 {1, 2, 3, 4} 221 66.4
BATS 2× 1 155 66.1
BATS 1× 1 98.5 60.4
BMobi M2 1 62 59.3
BMobi M3 1 33 51.1
OQA OQA3bit-L 3 48 71.3
OQA OQA3bit-M 3 30 68.3
OQA OQA2bit-M 2 19 61.7
APQ APQ-B {4, 6, 8} 258 74.1
APQ APQ-A {4, 6, 8} 206 72.1
OQA OQA4bit-L-MBV2 4 145 74.1
OQA OQA4bit-M-MBV2 4 107 72.4

25 50 75 100 125 150
FLOPs(M)

60

64

68

72

75

To
p1

 A
cc

ur
ac

y

MobV2

MobV3

MobV2

EffB0

MobV1MobV2

4 bit quant.
OQA@25
OQA
LSQ*
QKD
SAT

25 50 75 100
FLOPs(M)

52

56

60

64

68

72
MobV2

MobV3
MobV2

EffB0

3 bit quant.
OQA@25
OQA
LSQ*
QKD

10 20 30 40 50
FLOPs(M)

38
42
46
50
54
58
62

MobV2

MobV3 MobV2

EffB0
2 bit quant.

OQA@25
OQA
LSQ*
QKD

Figure 3: Comparison with the state-of-the-art quantization methods (LSQ , QKD, SAT) in various
network(MobileNetV2/V3, EfficientNet-B0) on the ImageNet dataset.

to predict the searched quantized architecture. The transfer learning from FP predictor to quantiza-
tion predictor brings the proxy problem and it also needs retraining. Our OQA4bit-L-MBV2 uses
43.7% less computation cost while maintaining the same accuracy as APQ-B.

4.4 FURTHER COMPARISON WITH NAS-THEN-QUANTIZE METHODS

We compare with several strong quantization methods including LSQ (Esser et al., 2019),
LSQ+ (Bhalgat et al., 2020), APOT (Li et al., 2019b), QKD(Kim et al., 2019), SAT (Jin et al.,
2019b), and LSQ* which is the LSQ implemented by us on different models to construct strong
baselines. The result of 4bit ResNet-18@LSQ* validates that our implementation is comparable.

Our OQA benefits from joint quantization and network architecture search, as well as the bit in-
heritance for lower bits. As shown in Table 3, our OQANets outperforms multiple quantization
methods on models like MobileNetV2 (Sandler et al., 2018), EfficientNet-B0 (Tan & Le, 2019)
and MbV3 (Howard et al., 2019) under all bit-widths we implements. 4bits: OQA4bit-L has 1%
accuracy gain than Efficient-B0@QKD. OQA4bit-M outperforms ResNet-18@LSQ with 10% of
its FLOPs. 3bits: Our OQA3bit-L can also match the accuracy of 3bit ResNet-18@LSQ with
13% FLOPs and 3 bit Efficient-B0@QKD with 74% FLOPs. 2bits: Our OQA2bit-L requires less
FLOPs but achieves significantly higher Top-1 accuracy (64.0%) when compared with EfficientNet-
B0@QKD (50.0%) and MobileNetV2@LSQ* (55.7%). The results verify that the joint search of
quantization parameters and network architectures results in more quantization-friendly efficient
models. We also show more searched models in the Figure 3 and our OQANets significantly out-
perform other quantization methods.

7

Under review as a conference paper at ICLR 2021

Table 3: ImageNet performance under 4, 3, 2 bit-width. OQA4bit-M and OQA4bit-L denote
medium and large model size in the 4bit OQANets family respectively. @25 means we take weights
from the supernet and finetune for 25 epochs. W/A denotes the bit-width for both weights and
activation.

Models Method Bit (W / A) FLOPs (M) Top-1 Acc.(%)
Efficient-B0 QKD 4 106 73.1
OQA4bit-L OQA@25 4 73 74.1
ResNet-18 LSQ / LSQ* 4 542 / 542 71.1 / 70.9
MobileNetV2 LSQ* / SAT 4 85 71.3 / 71.1
MbV3-L (1.0x) LSQ* 4 60 71.7
OQA4bit-M OQA@25 4 47 72.3
ResNet-18 LSQ / APOT 3 357 / 298 70.6 / 69.9
Efficient-B0 QKD 3 65 69.2
OQA3bit-L OQA@25 3 48 71.3
MobileNetV2 LSQ* / QKD 3 53 / 53 68.2 / 62.6
MbV3-L 1.0x LSQ* 3 38 67.5
OQA3bit-M OQA@25 3 30 68.3
Efficient-B0 QKD / LSQ+ 2 36 50.0 / 49.1
MobileNetV2 LSQ* / QKD 2 30 55.7 / 45.7
OQA2bit-L OQA@25 2 25 64.0
OQA2bit-S OQA@25 2 14 57.7

20 30 40 50 60
FLOPs(M)

12

10

8

6

4

2

To
p1

 A
cc

ur
ac

y
Dr

op

4 bit quant.
pareto-shallow-fat
pareto-deep-slim
shallow-fat
deep-slim

10 15 20
FLOPs(M)

24

22

20

18

16

14
To

p1
 A

cc
ur

ac
y

Dr
op

2 bit quant.
pareto-shallow-fat
pareto-deep-slim
shallow-fat
deep-slim

Figure 4: The quantization accuracy drop of shallow-fat and deep-slim subnets which are sampled
from FP/4/2 bit supernets on the ImageNet dataset.

4.5 SHALLOW-FAT OR DEEP-SLIM

With the different quantization supernet obtained by the bit inheritance process, we analyze the
following factors of a network: depth(D), kernel size(K), expand width(E) and bits(B). According
the intuitive shape, we divide the models into two group: 1) shallow-fat: D, K and E are sampled
from {2, 3}, {5, 7} and {4, 6} respectively, 2) deep-slim: D, K, and E are sampled from {3, 4},
{3, 5} and {3, 4} respectively.

Following the rules above, we randomly generate 1.5K architectures and obtain the accuracy of the
floating-point and quantized models from the corresponding supernet. The input resolution is also
randomly sampled. For a certain model, we use the accuracy drop from floating-point to quantization
to measure whether it is quantization friendly. As shown in Figure 4, the shallow-fat models are more
quantization friendly than deep-slim models. When the 4-bit and 2-bit situations are compared, the
trend becomes more obvious when the quantization bit is lower.

5 CONCLUSION

In this paper, we present Once Quantized for All (OQA), a novel framework that searches quantized
neural networks (QNNs) under the bit-width of 4/3/2 and deploys the learned quantized models
at the same time without additional retraining. With our proposed methods, we can search for the
OQANet model family which far exceeds the existing quantization aware nas and quantization meth-
ods which are applied to mobile models. Our results reveal the potential of ultra-low bit quantized
models under mobile settings.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Im-
proving low-bit quantization through learnable offsets and better initialization. arXiv preprint
arXiv:2004.09576, 2020.

Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Bats: Binary architecture search. arXiv
preprint arXiv:2003.01711, 2020.

Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 4852–4861, 2019.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. arXiv preprint
arXiv:1904.00420, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324, 2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural network quantization with adaptive bit-
widths. arXiv preprint arXiv:1912.09666, 2019a.

Qing Jin, Linjie Yang, and Zhenyu Liao. Towards efficient training for neural network quantization.
arXiv preprint arXiv:1912.10207, 2019b.

Jangho Kim, Yash Bhalgat, Jinwon Lee, Chirag Patel, and Nojun Kwak. Qkd: Quantization-aware
knowledge distillation. arXiv preprint arXiv:1911.12491, 2019.

Xiang Li, Chen Lin, Chuming Li, Ming Sun, Wei Wu, Junjie Yan, and Wanli Ouyang. Improving
one-shot nas by suppressing the posterior fading. arXiv preprint arXiv:1910.02543, 2019a.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: A non-uniform dis-
cretization for neural networks. arXiv preprint arXiv:1909.13144, 2019b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

9

Under review as a conference paper at ICLR 2021

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 116–131, 2018.

Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and Zhiqiang Shen.
Binarizing mobilenet via evolution-based searching. arXiv preprint arXiv:2005.06305, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang. Searching for accurate binary neural ar-
chitectures. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
pp. 0–0, 2019.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
tization with mixed precision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8612–8620, 2019.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han.
Apq: Joint search for network architecture, pruning and quantization policy. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2078–2087, 2020.

Haichao Yu, Haoxiang Li, Honghui Shi, Thomas S Huang, and Gang Hua. Any-precision deep
neural networks. arXiv preprint arXiv:1911.07346, 2019.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1803–1811, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural archi-
tecture search with big single-stage models. arXiv preprint arXiv:2003.11142, 2020.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

10

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 EFFECTIVENESS OF BI

For each wi, we have:

Q(wi, sK) = bclip(
wi

|sK |
,−2K−1, 2K−1 − 1)e × |sK |,

Q(wi, sK−1) = bclip(
wi

|sK−1|
,−2K−2, 2K−2 − 1)e × |sK−1|

= 2bclip(
wi

|2sK |
,−2K−2, 2K−2 − 1)e × |sK |.

(3)

Based on this expression, we further get:

|Q(wi, sK)−Q(wi, sK−1)| =

|bclip(
wi

|sK |
,−2K−1, 2K−1 − 1)e − 2bclip(

wi

|2sK |
,−2K−2, 2K−2 − 1)e| × |sK |.

(4)

For any wi and sK , we have:

|bclip(
wi

|sK |
,−2K−1, 2K−1 − 1)e − 2bclip(

wi

|2sK |
,−2K−2, 2K−2 − 1)e| ≤ 1. (5)

Thus,
|Q(wi, sK)−Q(wi, sK−1)| ≤ |sK |,

and
||Q(w, sK)−Q(w, sK−1)||1 ≤ Nw · |sK |.

(6)

A.2 TRAINING DETAILS

Dataset config: We evaluate our method on the ImageNet dataset. The training dataset is made up
of 1.28 million images with resolution 224×224 belonging to 1000 classes and the validation set has
50k images. For ImageNet training, we use the typical random resized crop, randomly horizontal
flipping and color jitter of [32/255, 0, 0.5, 0] for data augmentation. During evaluation, we first
determine the active image size s, and resize the image into ds/0.875e × ds/0.875e and center crop
s× s image.

Quantization aware training: We reimplement LSQ (Esser et al., 2019) as our base quantization
method. We start from a floating-point model and finetune the model for 150 epochs. The optimizer
is SGD with Nesterov momentum 0.9 and weight decay 3e-5, and the label smoothing ratio is 0.1.
The initial learning rate is 0.04 under the batch of 1024, with the cosine annealing schedule. The
dropout rate is 0.1. Except for learning rate and training epochs, we follow this protocol in the OQA
procedure.

OQA procedure: Combining the advantages of OFA (Cai et al., 2019) and BigNas (Yu et al.,
2020), the overall OQA procedure is divided into four steps as follow:

Step0: we train the 4bit biggest models in the search space. It follows the typical quantization-aware
training, we use the floating-point pre-trained model as initialization and finetuning for 150 epoch.
The learning rate is 0.04 with a batch-size of 1024.

Step1: in the supernet training phase, the biggest model obtained in step 0 is used as initialization.
The input resolution, kernel size, width, and depth are random sampled. This whole process takes
200 epochs. In one iteration, four models are sampled, which is the biggest subnet and the smallest
subnet and two random sampled subnets. The learning rate is 0.02 with a batch size of 1024.

With bit inheritance, the training of the 3/2bit supernet is simplified. And the training time is re-
duced.

11

Under review as a conference paper at ICLR 2021

70 71 72 73 74 75 76 77
FP Top1 Accuracy

60

62

64

66

68

70
71

3b
it

To
p1

 A
cc

ur
ac

y

Pareto@3bit
Pareto@FP

70 71 72 73 74 75 76 77
FP Top1 Accuracy

48

50

52

54

56

58

60

62
63

2b
it

To
p1

 A
cc

ur
ac

y

Pareto@2bit
Pareto@FP

63 64 65 66 67 68 69 70
3bit Top1 Accuracy

52

54

56

58

60

62
63

2b
it

To
p1

 A
cc

ur
ac

y

Pareto@2bit
Pareto@3bit

Figure 5: Comparison of the Top-1 validation accuracy on ImageNet dataset between the FP pareto,
3bit pareto, and 2bit pareto. The pareto is selected from the corresponding supernet and the accuracy
is also obtained from the supernet.

Step2: In the 3bit supernet, we use the 4bit-supernet obtained in Architecture shrinking Step1 part2
as initialization. We directly random sample input resolution, kernel, width, and depth. four models
are sampled, which is the biggest subnet and the smallest subnet and two random sampled subnets
for one update. We only use 25 epochs and the learning rate is 0.0016.

Step3: In the 2bit supernet, we use the 3bit-supernet obtained in Step2 as initialization. We also
directly random sample resolution, kernel, width, and depth. Four models are sampled, which is the
biggest subnet and the smallest subnet and two random sampled subnets for one update. We only
use 120 epochs and the learning rate is 0.0256.

OQA subnet finetuning: Our OQA performance can be further improved by finetuning the subnet
weights sliced from the OQA supernet as suggested by OFA (Cai et al., 2019). The accuracy of
the subnet is already higher than training from scratch. In default, the subnets are finetuned for
25epochs. The initial learning rate is 0.0016 with a batch size of 1024, with the cosine annealing
schedule.

A.3 NAS-THEN-QUANTIZE OR OQA

10 11 12 13 14 15 16 17 18 19
Total Depth

0

5

10

15

20

25

30

Pr
ob

ab
ilit

y(
%

)

Pareto@2bit
Pareto@3bit
Pareto@FP

Figure 6: The probability distribution of
total depth of the candidate architectures in
the FP pareto,3bit pareto, and 2bit pareto.

In Figure 5, we sample 10k subnets from the search
space, and we validate these subnets from the FP
supernet, 3bit and 2bit supernet. The pareto front
of the subnets denoted as Parato@FP are selected
with the accuracy in the floating-point supernet and
Pareto@3bit/Pareto@2bit are selected with the accu-
racy in the 3bit/2bit supernet. In Figure 5, the first two
figure reveals that as the bit decreases, the accuracy
gain increases with searching directly in the quanti-
zation supernet. We further compare the Pareto@3bit
and Pareto@2bit, and it shows that with the same 3bit
accuracy, the accuracy of the model from the 2bit
pareto is higher than the model from the 3bit pareto,
but the accuracy gain is less compared with the FP
pareto. To search for 2bit quantized models, it is best
to search directly in the 2bit supernet, and it is better
to search in the 3bit supernet than searching in the FP
supernet.

Observed the difference in the accuracy of the pareto
architectures in different supernets at the same 2bit, we are curious whether the accuracy perfor-
mance is attributed to the structure difference in the pareto architecture. In Figure 6, we plot the
distribution of the total depth of the pareto subnets from different supernet. In the depth dimension,
the distribution reveals that Pareto@FP favors deeper models while Pareto@3bit/2bit favors shallow
models. And the distribution of depth is closer between Pareto@3bit and Pareto@2bit.

12

Under review as a conference paper at ICLR 2021

A.4 MOBILENETV3 SEARCH SPACE

Table 4: MBConv refers to inverted residual block which has a ’1× 1 pointwise - k × k depthwise-
1× 1 pointwise’ structure without SE module (Hu et al., 2018), MBConv-SE is the MBConv block
with SE module. Channels means the number of output channels in this stage. Depth means the
number of blocks in this stage. Expand ratio refers the expand ratio of input channels which controls
the width of the depthwise convolution. Convolution layers in the first and last has no expand ratio.
Kernel size refers to the kernel size k of the depthwise convolution.

Stage Operator Resolution Channels Depth Expand ratio Kernel size
Conv 128× 128 - 224× 224 16 1 1

1 MBConv 64× 64 - 112× 112 16 1 1 3
2 MBConv 64× 64 - 112× 112 24 2, 3, 4 3, 4, 6 3, 5, 7
3 MBConv-SE 32× 32 - 56× 56 40 2, 3, 4 3, 4, 6 3, 5, 7
4 MBConv 16× 16 - 28× 28 80 2, 3, 4 3, 4, 6 3, 5, 7
5 MBConv-SE 8× 8 - 14× 14 112 2, 3, 4 3, 4, 6 3, 5, 7
6 MBConv-SE 8× 8 - 14× 14 160 2, 3, 4 3, 4, 6 3, 5, 7

Conv 4× 4 - 7× 7 960 1 1
Conv 1× 1 1280 1 1

A.5 MOBILENETV2 SEARCH SPACE

Table 5: MBConv refers to inverted residual block which has a ’1× 1 pointwise - k × k depthwise-
1× 1 pointwise’ structure without SE module (Hu et al., 2018), MBConv-SE is the MBConv block
with SE module. Channels means the number of output channels in this stage. Depth means the
number of blocks or layers in this stage. Expand ratio refers the expand ratio of input channels
which controls the width of the depthwise convolution. Convolution layers in the first and last has
no expand ratio. Kernel size refers to the kernel size k of the depthwise convolution.

Stage Operator Resolution Channels Depth Expand ratio Kernel size
Conv 128× 128 - 224× 224 32 1 3

1 MBConv 64× 64 - 112× 112 16 1 1 3
2 MBConv 64× 64 - 112× 112 24 2, 3, 4 3, 4, 6 3, 5, 7
3 MBConv 32× 32 - 56× 56 40 2, 3, 4 3, 4, 6 3, 5, 7
4 MBConv 16× 16 - 28× 28 80 2, 3, 4 3, 4, 6 3, 5, 7
5 MBConv 8× 8 - 14× 14 96 2, 3, 4 3, 4, 6 3, 5, 7
6 MBConv 8× 8 - 14× 14 192 2, 3, 4 3, 4, 6 3, 5, 7
7 MBConv 4× 4 - 7× 7 320 1 3, 4, 6 3, 5, 7

Conv 4× 4 - 7× 7 1280 1 1

13

	Introduction
	Related Work
	Method
	Overview
	Preliminaries
	Quantized NAS without Retraining
	Quantization NAS with Bit Inheritance

	Experimental Analysis
	Experimental settings and implementation details
	NAS-then-Quantize or OQA
	Existing Quantization-aware NAS or OQA
	Further comparison with NAS-then-quantize methods
	Shallow-fat or Deep-slim

	Conclusion
	Appendix
	Effectiveness of BI
	Training details
	NAS-then-Quantize or OQA
	MobileNetV3 Search Space
	MobileNetV2 Search Space

